用户名: 密码: 验证码:
天然硅酸盐纳米管作为酶固定化载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然纳米管HNT是一种天然优良的粘土质硅酸盐矿物,在天然条件下由硅酸盐片层卷曲而成的多壁微管状结构。本文中的HNT纳米管产率极高,接近100%,作为酶固定化的载体材料,它具有传统无机材料的所有优势;另外,HNT为形态完整的中空管状结构,纳米管两端开口,尺寸分布均匀稳定,具有良好的热稳定性和与酶分子相适宜的孔直径范围,而且HNT纳米管高的比表面积具有许多优越的吸附性能,富含的羟基官能团也有利于提高酶的固载率。因此HNT是一种极具潜力和竞争力的固定化酶载体材料。a-淀粉酶(EC 3.2.1.1)是一种内切葡萄糖苷酶,是目前最重要的工业酶制剂之一,广泛应用于粮食加工、食品工业、发酵工业、纺织品工业和医药工业等领域。脲酶(EC 3.5.1.5)能将尿素水解为氨和二氧化碳,它在生物传感器、医疗诊断、环境监测等诸多方面有着广阔的应用前景。但是游离酶对环境十分敏感,活性不易保持,且回收困难,使用成本高。酶固定化技术是实现酶重复连续使用和稳定性改善的有效手段。
     本文以新型天然纳米材料HNT作为酶固定化的载体材料,采用物理吸附法,制备固定化a-淀粉酶和固定化脲酶,通过测定酶活和固载率,从给酶量、pH值、固定化时间三个因素优化了固定化条件,研究了固定化酶的酶学性能,并与游离酶进行了比较。结果表明HNT具有稳定的物理化学性能,是一种良好的酶固定化载体材料。
     本文首先研究了天然纳米管HNT的物理化学性能。利用Fourier红外光谱、TEM、SEM和比表面及空隙率测定仪等对其进行表征,结果表明HNT富含羟基官能团,为中空管状结构,长度在0.5~1.5μm之间,管外径约30~50nm,管内径约10~30 nm,比表面积可达146.34 m~2/g;利用Netzsch热分析仪进行DSC-TG分析,研究表明HNT具有良好的热稳定性能,在400℃×2h煅烧数次循环未发现纳米管被破坏。
     其次,对以HNT为载体固定化a-淀粉酶和脲酶的最佳条件进行了研究。结果表明:0.25 g HNT细粉与10 mL浓度为15 mg/mL的a-淀粉酶酶液(由pH=6.07的缓冲溶液配制)固定结合,室温下振荡5 h后,酶的固定化效率最好,最大吸附量为15.4 mg/gHNT,固载率平均达到37.38%;用0.25 g HNT细粉与10 mL浓度为6 mg/mL的脲酶酶液(由pH=7.0的缓冲溶液配制)固定结合,室温下振荡8 h后,酶的固定化效率最好,最大吸附量为11.7 mg/gHNT,固载率平均达到33.13%。
     最后,研究了固定化酶的性质,并与游离酶进行了比较,结果表明:固定化酶的热稳定性和贮藏稳定性明显优于游离酶;固定化a-淀粉酶在80℃下保温15min后酶活仅下降19%左右;在4℃下保存15 d,仍保持90%的催化活性,并且连续7批次操作后其相对活力保持在56.2%左右,显示出良好的稳定性。
     固定化脲酶在80℃下保温15 min后酶活仅下降12%左右;4℃下保存15 d后,酶活力基本没有下降,并且连续10批次操作后其相对活力保持在65%左右,同样显示出良好的稳定性。
The natural nanotubes HNT is an excellent aluminosilicate clay minerals with a hollow nanotubular structure and can be mined from the natural environment. In this paper, 100% yield of HNT can be obtained. In addition to the common advantages of inorganic supports for immobilized enzymes, HNT with both ends open possesses integrated morphology of hollow tubular structures and demonstrate unique characteristics, such as a remarkable pore structure that is more accessible for anchoring enzymes, a high specific surface area, adequate hydroxyl groups and good thermal stability. These characteristics give them a very high adsorption capability, making them promising candidates for the immobilization of enzymes. a-Amylase (EC 3.2.1.1) is a starch-hydrolyzed enzyme. It is an endo-enzyme that can cut a-l,4-glycosidic linkage of starch molecules and has been widely used in grain processing, fermentation and food industry, chemical engineering and so on. Urease (EC 3.5.1.5) can catalyze the hydrolysis of urea to form ammonia and carbon dioxide, and has great application foreground in biosensors, medical diagnosis as well as environmental monitoring. However, the application of them is often hampered by the short catalytic lifetime of enzymes and by the difficulty in recovery and recycling. The technology of enzyme immobilized can realize possibilities for storage, re-use and increased stability.
     In this paper, a-amylase and urease were immobilized on HNT with a physical adsorption method. Though study the concentration of enzymes, pH and reaction time, the conditions for a-amylase and urease immobilization were optimized. The properties of immobilized a-amylase and urease were also studied and compared with the free enzymes. The results further demonstrated that HNT can serve as an excellent support for enzyme immobilization.
     Firstly, the physical and chemical performance of the natural nanotubes HNT were investigated by means of Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and specific surface area measurements (SSA). The results showed that the HNT with adequate hydroxyl groups has a clearly hollow tubular structure, and an average length of 0.5~1.5μm, a diameter in the range of 30~50 nm, an average pore diameter of 10~30 nm, and a high specific surface area of 146.34 m /g; TG-DSC curves of HNT showed that they had excellent thermal stability and did not destroyed after calcination at 400℃for 2 h.
     Secondly, the optimized conditions for a-amylase and urease immobilization were obtained: 0.25 g HNT was added to 10 mL a-amylase solution (15 mg/mL, pH 6.07), then the mixture was shaken at room temperature for 5 h. The maximum adsorption amount of a-amylase by HNTs is 15.4 mg/g and the immobilization efficiency could achieve 37.38%; 0.25 g HNT was added to 10 mL urease solution (6 mg/mL, pH 7.0). The mixture was shaken at room temperature for 8 h. The maximum adsorption amount of urease by HNTs is 11.7 mg/g and the immobilization efficiency could achieve 33.13%.
     Finally, the properties of immobilized a-amylase and urease were tested and compared with the free enzymes. Upon immobilization, both the thermal stability and storage stability of the a-amylase and urease were improved. The immobilized a-amylase showed a 19% loss in activity at 80℃for 15 min and could retain about 90% of the original activity for 15 days (stored at 4℃). Furthermore, the immobilized a-amylase maintained over 56.2% of the original activity after 7 successive batch reactions.
     The immobilized urease showed a 12% loss in activity at 80℃for 15 min and could retain about 98.6% of the original activity for 15 days (stored at 4℃). Furthermore, after 10 successive batch reactions, the immobilized urease maintained over 65% of the original activity.
引文
[1]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002:319.
    [2]周晓云.酶学原理与酶工程[M].北京:中国轻工业出版社,2005:1-4.
    [3]Marta Tortajada,Daniel Ramon,Daniel Beltran.Hierarchical bimodal porous silicas and organosilicas for enzyme immobilization[J].Journal of Materials Chemistry,2005,15:3859-3868.
    [4]罗贵民.酶工程[M].北京:化学工业出版社,2003:38.
    [5]肖海军,贺筱蓉。固定化酶及其应用研究进展[J].生物学通报,2001,36(7):9-10.
    [6]Yung-Chuan Liu,Chih-Ming Wang,Kuang-Pin Hsiung.Comparison of different protein immobilization methods on quartz crystal microbalance surface in flow injection immunoassay[J].Analytical Biochemistry,2001,299(2):130-135.
    [7]梁足培,桑明心,李建等.戊二醛交联壳聚糖球固定化脲酶的制备[J].青岛科技大学学报,2006,27(2):123-126.
    [8]薛屏,卢冠中,郭杨龙等.青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究[J].化学通报,2003,10:681-683.
    [9]Agnieszka Hamerska-Dudra,Jolanta Bryjak.Trochimczuk.Immobilization of glucoamylase and trypsin on crosslinked thermosensitive carriers[J].Enzyme and Microbial Technology,2007,41(3):197-204.
    [10]徐凤彩.酶工程[M].北京:中国农业出版社,2001:129.
    [11]方焕,高向阳,张洪利等.多孔陶瓷膜固定木瓜蛋白酶的研究[J].华南农业大学学报,2006,27(4):36-39.
    [12]Jing He,Zhihong Song,Hui Ma,et al.Formation of a mesoporous bioreactor based on SBA-15 and porcine pancreatic lipase by chemical modification following the uptake of enzymes[J].Journal of Materials Chemistry,2006,16:4307-4315.
    [13]宋锡瑾,王杰.分子筛固定氨基酰化酶Ⅰ的研究[J].高校化学工程学报,2004,18(5):617-620.
    [14]Michael Keusgen,Janina Glodek,Peter Milka,et al.Immobilization of enzymes on PTFE surfaces[J].Biotechnology and Bioengineering,2001,72(5):530-540.
    [15]顾旭炯,刘磷,朱巍,刘志强等.海藻酸钠包埋法共固定a-淀粉酶和糖化酶的研究[J].化学与生物工程,2006,23(5):26-28.
    [16]Yajun Wang,Frank Caruso.Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation[J].Chemistry of Materials,2005,17:953-961.
    [17]杨勇,李彦锋,拜永孝等.酶固定化技术用载体材料的研究进展[J].化学通报,2007,5:1-8.
    [18]袁定重,张秋禹,候振宇等.固定化酶载体材料的最新研究进展[J1.材料导报,2006,20(1):69-72.
    [19]Guo Yongsheng,Wang Jie,Song Xijin.Characterization of cellulose acetate micropore membrane immobilized acylase Ⅰ[J].Journal of Zhejiang University Science A,2004,5(12):1608-1612.
    [20]Krajewska B.Application of chitin- and chitosan-based materials for enzyme immobilizations[J].Enzyme and Microbial Technology,2004,35:126-139.
    [21]岳振峰,彭志英,徐建祥等.壳聚糖固定化a-葡萄糖苷酶的研究[J].食品与发酵工业,2000,27:20-24.
    [22]Min-Yun Chang,Ruey-Shin Juang.Activities,Stabilities,and reaction kinetics of three free and chitosan-clay composite ommobilized enzymes[J].Enzyme and Microbial Technology,2005,36:75-82.
    [23]Maogen Zhang,Conor Mullens,Waldemar Gorski.Chitosan-Glutamate Oxidase Gels:Synthesis,Characterization,and Glutamate Determination[J].Electroanalysis,2005,17(23):2114-2120.
    [24]Kazuharu Sugawara,Tomohiro Takano,Hiroshi Fukushi,Suwaru Hoshi,Kunihiko Akatsuka,Hideki Kuramitz and Shunitz Tanaka.Glucose sensing by a carbon-paste electrode containing chitin modified with glucose oxidase[J].Journal of Electroanalytical Chemistry,2000,482(1):81-86.
    [25]Ding Liang,Yao Zihua.Synthesis of macroporous polymer carrier and immobilization of papain[J].Iranian Journal(English Edition),2003,12(6):491.
    [26]Li Songjun.Use of chemically modified PMMA microspheres for enzyme immobilization[J].Biosystems,2004,77(1-3):25.
    [27]韩树波,袁卓斌.以β-环糊精聚合物(β-CDp)的超分子包结物为固定化介质的安培型过氧化氢传感器的研究[J].高等学校化学学报,1999,20(7):1036-1039.
    [28]Rehana Afrin,Tetsuya Haruyama Yasuko Yanagida Eriy Kobatake,Masuo Aizawa.Catalytic activity of Teflon particle-immobilized protease in aqueous solution[J].Journal of Molecular Catalysis B:Enzymatic,2000,9:259-267.
    [29]黄锡荣,李越中,姜兴涛.脂肪酶微乳液的凝胶固定化研究[J].药物生物技术,2000,7(2):93-97.
    [30]De-Sheng Jiang,Sheng-Ya Long,Jun Huang.Immobilization of pycnoporus sanguineus laccase on magnetic chitosan microspheres[J].Biochemical Engineering Journal,2005,25:15-23.
    [31]王玫,宋芳,汪世龙等.磁性纳米颗粒Fe_3O_4固定化纤维素酶的光谱学研究[J].光谱学与光谱分析,2006,26(5):895-898.
    [32]黄磊,程振民.无机材料在酶固定化中的应用[J].化工进展,2006,25(11):1245-1250.
    [33]Rakesh Kumar Sharma,Shraboni Das,Amarnath Maitra.Enzymes in the cavity of hollow silica nanopaticles[J].Journal of Colloid and Interface Science,2005,284(1):358-361.
    [34]Paul Takhistov.Electrochemical synthesis and impedance characterization of nano-patterned biosensor substrate[J].Biosensors and Bioelectronics,2004,19(11):1445-1456.
    [35]Zheng Liangyu,Zhang Suoqin,Zhao Lifang.Resolution of N-(2-ethyl-6-methylphenyl) alanine via free and immobilized lipase from pseudomonas cepacia[J].Journal of Molecular Catalysis B:Enzymatic,2006,38(3-6):119-125.
    [36]Yang Yuxiang,Zhang Jianbo,Yang Weimin.Adsorption properties for urokinase on local diatomite surface[J].Applied Surface Science,2003,206(1-4):20-28.
    [37]Antonella Petri,Tiziana Gambicorti,Piero Salvadori.Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst[J].Journal of Molecular Catalysis B:Enzymatic,2004,27(2-3):103-106.
    [38]赵炳超,肖宁,马润宇,石波.纳米材料MCM-41的制备及其固定化酶的研究[J].北京化工大学学报,2006,33(1):8-11.
    [39]Hao-Min Ding,Lei Shao,Run-Jing Liu,et al.Silica nanotubes four lysozyme immobilization[J].Journal of Colloid and Interface Science,2005,290:102-106.
    [40]Shengdong Zhu,Yuanxin Wu,Ziniu Yu.Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester[J].Journal of Biotechnology,2005,116(4):397-401.
    [41]蔡强,宋保栋,何苗.聚苯胺修饰的辣根过氧化物酶电极的研究[J].环境科学,2005,24(1):22-26.
    [42]梅乐和,岑沛霖.现代酶工程[M].北京:化学工业出版社,2006:212-213.
    [43]袁勤生.酶与酶工程[M].上海:华东理工大学出版社,2005:489-510.
    [44]Andreas S.Bommarius,Bettina R.Riebel.Biocatalysis:Fundamentals and Applications[M].Beijing:Chemical Industry Press,2006:106-107.
    [45]Anupama Parmara,Harish Kumarb,S.S.Marwahac,et al.Adwances in enzymatic transformation of penicillins to 6-aminopenicillanic acid(6-APA)[J].Biotechnology Advances,2000,18:289-301.
    [46]肖正华,张惠静,张梦军等.壳聚糖在酶固定化中的应用[J].西南国防医药,2005,15(3):339-341.
    [47]Dilek Odaci,Suna Timur,Nurdan Pazarlioglu,et al.The effects of mediator on laccase biosensor response in paracetamol detection[J].Biotechnology and Applied Biochemistry,2006,45:23-28.
    [48]吕泉.现代传感器原理及应用[M].北京:清华大学出版社,2006:184-187.
    [49]Ulrike Klueh,Donald L.Kreutzer.Murine model of implantable glucose sensors:A novel model for glucose sensor development[J].Diabetes Technology &Therapeutics,2005,7(5):727-737.
    [50]Anh T.M.,Dzyadevych S.V.,Soldatkin A.P.,et al.Development of tyrosinase biosensor based on pH-sensitive field-effect transistors for phenols determination in water solutions[J].Talanta,2002,56(4):627-634.
    [51]Haruo Takahashi,Bo Li,Toshiya Sasaki,et al.Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability arid catalytic activity in an organic solvent[J].Microporous and Mesoporous Materials,2001,44-45:755-762.
    [52]张术根,丁俊,刘小胡.辰溪仙人湾HNT的晶体结构、形貌及应用[J].中南大学学报(自然科学版),2006,37(5):896-902.
    [53]Ju-Won Tae,Byung-Sik Jang,Jong-Ryeol Kim.Catalytic degradation of polystyrene using acid-treated halloysite clays[J].Solid State Ionicis,2004,172:129-133.
    [54]曹明礼,曹明贤.非金属纳米矿物材料[M].北京:化学工业出版社,2006.
    [55]U.Hofmann.On the Chemistry of Clay[J].Angewandte Chemie International Edition,1968,7(9):681-692.
    [56]S.R.Levis,P.B.Deasy.Characterisation of halloysite for use as a microtubular drug delivery system[J].Inter.J.Pharm.,2002(243):125-134.
    [57]S.R.Levis,P.B.Deasy.Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride[J].International Journal of Pharmaceutics,2003(253):145-157.
    [58]Yubin Fu,Lide Zhang.Simultaneous deposition of Ni nanoparticles on a tubular halloysite template:A novel metallized ceramic microstructure[J].J.Solid State Chem.,2005(178):3595-3600.
    [59]Mingliang Du,Baochun Guo,and Demin Ji.Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene)[J].Eur.Polym.J.,2006(42):1362-1369.
    [60]Guiyang Liu,Feiyu Kang,Baohua Li,et al.Characterization of the porous carbon prepared by using halloysite as template and its application to EDLC[J].J.Phys.Chem.Solids,2006(67):1186-1189.
    [61]Dmitry G.Shchukin,Gleb B.Sukhorukov,Ronald R.Price,et al.Halloysite Nanotubes as Biomimetic Nanoreactors[J].Small,2005,1(5):510-513.
    [62]冯孝庭.吸附分离技术[M].北京:化学工业出版社,2001:5.
    [63]Chang Minyun,Juang Rueyshin.Activities,stabilities,and reaction kinetics of three free and chitosan-clay composite immobilized enzymes[J].Enzyme Microb Tech,2005,36:75-82.
    [64]余冰宾.生物化学实验指导[M].北京:清华大学出版社,2004:136-138.
    [65]MAIDMENT D C J,RINGHAM J M.A study into the measurement of a-amylase activity using phadebas,iodine and gel-diffusion procedures[J].Nutr Food Sci,2001,31(3):141-146.
    [66]孙君社.酶与酶工程及其应用[M].北京,化学工业出版社:2006,4:266-269.
    [67]Xie Aihua,Lex van der Meer,Wouter Hoff,et al.Long-Lived amide Ⅰvibrational modes in myoglobin[J].Physical Review Letters,2000,84(23):5435-5438.
    [68]Sreco D.S(y丨¨) kapin,Ivan Sondi.Homogeneous precipitation of mixed anhydrous Ca-Mg and Ba-Sr carbonates by enzyme-catalyzed reaction[J].Crystal Growth &Design,2005,5(5):1933-1938.
    [69]Prajakta S.Chaudhari,Anisha Gokama,Manjusha Kulkarni,et al.Porous silicon as an entrapping matrix for the immobilization of urease[J].Sensors and Actuators B,2005,107:258-263.
    [70]Zou Jing,Yu Dezhong,Yang Xianjin,et al.The extraction of urease from glycine max and its application to the determination of urea-nitrogen in controlled release fertilizers[J].Journal of Analytical Science,2004,2:178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700