用户名: 密码: 验证码:
印染废水深度降解工艺及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水具有水量大、有机物含量高、成份复杂、生物难降解等特点,印染废水处理技术一直是世界各国研究的重点课题。本论文采用“强化厌氧水解-A/O(PACT)+混凝沉淀过滤”组合工艺,研究处理以纺织印染企业为主的工业园区综合废水,达到江苏省《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》(DB32/1072-2007)要求。研究重点:(1)通过模拟水流状态,改进折流式厌氧反应器(ABR)结构,强化泥水混合效果,提高厌氧处理难降解有机污染物的效率。(2)系统优化水处理工艺流程和工艺参数,提高难降解有机污染物和氮磷去除率,降低废水排放毒性。(3)运用GC-MS分析手段,研究印染废水中有机污染物主要成分,及其在水处理流程中的迁移演变,对比不同水处理工艺对难降解有机物的去除效率,分析尾水和污泥中难降解有机污染物残留情况。(4)探索性研究电化学氧化去除残留典型特征污染物,有效削减尾水中易造成膜污染和膜堵塞的累积性物质,破解膜技术在印染废水回用工程中应用的技术瓶颈。
     上流式厌氧反应器(UASB)和折流式厌氧反应器(ABR)处理印染废水实验研究。结果表明在厌氧反应器水力停留时间为24h条件下,进水COD平均浓度755mg·L-1, UASB和ABR出水COD平均浓度分别为409.3mg·L-1和420.9mg·L-1,平均去除率分别为45.5%和43.9%。两种厌氧反应器对色度去除效果较好,进水平均值342倍,出水平均值分别78倍和80倍,平均去除率分别为77.2%和76.6%。印染废水B/C由0.29分别提高到0.46和0.43,废水可生化性明显改善。为发挥ABR反应器在处理难降解、毒性有机物方面的优势,进一步提高其处理效率,利用Fluent软件对ABR反应器的水流状态进行数值模拟,发现反应区内存在较为严重的短流及旋流现象,导致污泥流失,降低处理效果。本研究提出优化集水堰布置方式、在反应室底部配水区增设分流挡板等改造措施,改善反应区上升流态。模拟显示,改造后的反应器上部上升流速较小,且沿断面呈均匀分布,有利于截留污泥。在反应器中部形成三个较为强烈的涡流区,增强泥水混合效果。中试验证表明,反应器处理效率和抗冲击负荷能力均有较大提高。
     强化厌氧水解+A/O(PACT)+混凝沉淀过滤工艺处理印染废水中试研究与工程应用。中试系统稳定运行70d,进水COD最高值为1060.0mg·L-1,最低值为617.7mg·L-1,平均值为765.1mg·L-1,在水质波动较大的情况下,厌氧出水COD平均值为399.6·-1,COD去除率平均值为45.6%。A/O(PACT)出水COD平均值为105.2mg·L-1,过滤池出水COD平均值为51.3mg·L-1,系统COD总去除率平均值为93.2%。进水色度平均值为354倍,出水色度平均值为22倍,系统色度总去除率平均值为93.9%。气质联用(GC-MS)检测显示,组合工艺降低了印染废水累积性有机污染物的排放。运用该工艺建设了20000m3·d-1印染废水处理工程,各项指标均达到江苏省《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》(DB32/1072-2007)要求,通过当地环保部门的验收。
     运用GC-MS研究分析印染废水处理工程中有机污染物的迁移演变。分析了“物化+生化”和“生化+物化”2种印染废水深度处理工艺中有机污染物的降解过程,对物化污泥和尾水受纳水体中有机污染物进行了检测,从有机物降解效率的角度,比较2种工艺的优缺点。结果表明两中工艺的代表性工程中,“物化+生化”工艺对有机物的降解效果不如“生化+物化”,主要是两项工程厌氧水解效率有较大差异。此外,“物化+生化”工艺污泥产生量大,有机污染物降解不充分,部分有机污染物从废水转移到物化污泥,容易产生二次污染。
     电化学氧化技术深度降解印染废水生化出水的累积性特征有机污染物(二氯对苯二胺)实验研究。对线性极化曲线和循环伏安曲线进行分析,系统考察了电流密度、溶液初始pH值和二氯对苯二胺初始浓度对电催化降解二氯对苯二胺的影响。对二氯对苯二胺降解动力学研究表明,电催化降解二氯对苯二胺的过程遵循动力学一级反应。研究了电催化氧化降解二氯对苯二胺降解机理,采用紫外可见分光光度计,离子色谱和气质联用分析了电化学降解中间产物,提出二氯对苯二胺的电催化降解路径,表明电催化氧化作用可以有效降解特征污染物二氯对苯二胺。
The printing and dyeing wastewater has large volume and complex substances, and contains many organic pollutans, which has toxicity and poor biodegradability. Treatment of printing and dyeing wastewater is a significant environmental concern. A pilot scale study of the treatment of printing and dyeing wastewater was carried out using the combined process of anaerobic-anoxic/oxic(PACT)-coagulation sedimentation to reach the discharge standard of main water pollutants for municipal wastewater treatment plant&key industries of Taihu area (DB32/1072-2007). In this thesis, the main research contents include:(1) The numerical simulation of flow pattern in anaerobic baffled reactor (ABR) used in wastewater treatment was carried out to strengthened sludge and wastewater mixing. After reconstruction using the above measures, the treatment efficiency of the reactor were improved.(2) Systematic optimization of the wastewater treatment process and operating parameters to improve the removal efficiency of refractory organic pollutans and decrease the wastewater toxicity.(3) GC-MS was used to determine the degradation process of organic pollutants in the treatment processes and compare the testing results of refractory organics removal efficiency in different treatment processes.(4) Exploratory research on removal of residual model organics by electrochemical oxidation was carried out to removal the residual organics causing membrane pollution in tail water and bread through the technical bottleneck in membrane filtration for the application ofengineering reuse of printing and dyeing wastewater.
     A pilot-scale study was conducted on the upflow anaerobic sludge blanket (UASB) and ABR for the treatment of printing and dyeing wastewater which has poor biodegradability. With the optimal hydraulic retention time (HRT) of24hours, the experimental anaerobic reactor UASB and ABR was steadily operated for two months. In the case of mass concentration COD with large variation in the influent, the final mean concentrations were409.3mg·L-1and420.9mg·L-1in the effluent from the UASB and ABR, respectively. The mean removal rates were45.5%and43.9%, respectively. When the mean influent color was342times than normal, the mean final effluent colors were78times and80times than normal for UASB and ABR, respectively. The removal efficiencies were77.2%and76.6%, respectively. The BOD5/COD ratios of printing and dyeing wastewater increased from0.29to0.43and0.46for UASB and ABR, which were raised0.17and0.14respectively. The biodegradability of wastewater was greatly improved. The numerical simulation of flow pattern in anaerobic baffled reactor used in wastewater treatment was carried out. The results found that serious short flow and vortex flow existed in the reactor, which led to sludge loss and poor treatment efficiency. Improvement methods of the flow pattern were proposed, including optimizing the wastewater weir layout and adding flow diversion baffle in wastewater distribution zone at the bottom of the reactor. The simulation showed that the flow velocity was small and evenly distributed along the cross-section in the upper part, contributing to the sludge retention. Three relatively strong central vortexes were formed in the middle, which strengthened sludge and wastewater mixing. After reconstruction using the above measures, the treatment efficiency and the shock load resistance of the reactor were improved.
     A pilot-scale study of the treatment of printing and dyeing wastewater was carried out using the combined process of anaerobic(hydrolysis)-aerobic-advanced treatment. The result of the experiment, which was operated stably for70days, are as follows:by varying and changing the printing and dyeing wastewater (maximum COD1060.0mg·L-1, minimum COD617.7mg·L-1, mean COD765.1mg·L-1), the mean final effluent concentration of anaerobic was399.6mg-L"1with removal efficiency45.6%; the mean final effluent concentration of aerobic was105.2mg·L-1with filtration effluent concentration of51.3mg·L-1; the total COD removal efficiency was93.2%. When the influent color was354times, the mean final effluent color was22times and removal efficiency was93.9%. The GC-MS analysis show that the the organic pollutant were effectively degraded by the combined process.
     In order to analyze the advantages/disadvantages of the combined treatment process between "physicochemical+biochemica"and "biochemical+physicochemical" in the treatment of textile wastewater, GC-MS was used to determine the degradation process of organic pollutants in this two totally different treatment processes. The same analysis was also conducted to the sludge and discharged water. The results showed that the "physicochemical+biochemical" process displayed a poorer effect than "biochemical+physicochemical" in degrading the organic pollutants. The difference was mainly manifested in the efficiency of anaerobic hydrolysis in the two coupled processes. Moreover, the implement of "physicochemical+biochemical" process resulted in the migration of plenty of typical organic pollutants to sludge from primary coagulation sedimentation process and to the discharged water, which would cause secondary pollution easily.
     Electrochemical degradation of the model organic pollutans2,5-dichloro-1,4-phenylenediamine (DP) in aqueous solution was investigated. Linear sweep voltammograms and cyclic voltammograms were studied. The influence of operating parameters on electrochemical oxidation of DP was studied as a function of the current density, initial pH and initial concentration of DP. The degradation kinetics analysis indicated that the electrochemical degradation of DP followed a first-order reaction. The degradation intermediates during electrochemical oxidation were analyzed by UV-vis spectrophotometer, ionic chromatograph (IC) and gas chromatography/mass spectrometry (GC/MS). The electrochemical oxidation of DP resulted in the release of NH4+and Cl". Based on these results, a degradation mechanism for electrochemical degradation of DP was proposed. It was concluded that the DP were effectively removed in the electrochemical treatment.
引文
[1]国家环境保护部.2011年中国环境状况公报.2012年5月25日.
    [2]张利民,夏明芳,张磊,王春,刘伟.太湖流域有机毒物污染现状与控制对策.环境科技,2008,21:16-20.
    [3]Judd S, Jefferson B.蔡邦肖译.膜技术与工业废水回用[M].北京:化学工业出版社,2006.
    [4]国家环保部、国家统计局.中国绿色国民经济核算研究报告(公众版).2004,1-15.
    [5]林琳,刘高峰.2011/2012中国印染行业发展报告[J].印染,2012,37:48-51.
    [6]张成光,缪娟,符德学,张成红.电化学技术降解有机废水研究进展[J].应用化工,2006,35:799~803.
    [7]Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Science and technology for water purification in the coming decades[J]. Nature,2008,452:301-310.
    [8]魏铁军.印染废水处理的工艺选择[J].内蒙古环境科学,2007,19:53-57.
    [9]朱虹,孙杰,李剑超.印染废水处理技术[M].北京:中国纺织出版社,2004,16-17.
    [10]于清跃.印染废水处理研究进展[J].工业安全与环保,2011,37:41-43.
    [11]Ivana G, Sanja P, Natalija K, Iva K. Kinetic modeling and synergy quantification in sono and photooxidative treatment of simulated dyehouse effluent[J]. Water Research,2012,46,5683-5695.
    [12]阮新潮,曾庆福,黎谦等.纺织印染废水处理技术进展[J].武汉科技学院学报,2001,14;66-71.
    [13]Chang J S, Chou C, Lin Y C, et al. Kinetic characteristics of bacterial azo-dye decolorization by pseudomonas luteola[J]. Water Research,2001,35:2841-2850.
    [14]于泊蕖,秦哲.镁盐混凝剂在印染废水脱色方面的应用研究进展[J].煤炭技术,2010,29:189-191.
    [15]Copper S G. The textile industry environmental control and energy conservation. Noyes Data Co., Park Ridge, NJ,1988.
    [16]Faisal I H, Kazuo Y, Fumiyuki N, Kensuke F. Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textilewastewater treatment[J]. Water Research,2011,45:2199-2206.
    [17]Cleder A S, Edesio L S, Savio L B, Alberto W J, Claudemir M R.Use of ozone in a pilot-scale plant for textile wastewater pre-treatment:Physico-chemical efficiency, degradation by-products identification and environmental toxicity of treatedwastewater[J]. Journal of Hazardous Materials, 2010,175:235-240.
    [18]Pinheiro H M, Touraud E, Thomas O. Aromatic amines from azo dye reduction:status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters[J], Dyes Pigm. 61(2004) 121-139.
    [19]刘雁鹏.论述印染废水的处理方法[A].资源与环境,2007,(6).
    [20]马承愚,彭英利.高浓度难降解有机废水的治理与控制[M].化学工业出版社,2011.
    [21]侯文俊,余健.印染废水处理工艺进展[J].工业用水与废水,2004,35:57-60.
    [22]俞卫阳.印染废水处理技术及进展[J].杭州化工,2005,35:9-14.
    [23]李佳,苏宏智.印染废水处理方法及其研究进展[J].污染防治科技,2009,(6).
    [24]Choi Y H, Kim H S, Kweon J H. Role of hydrophobic natural organic matter floes on the fouling in coagulation-membrane processes[J]. Separation and Purification Technology,2008(62):529-534.
    [25]Mo J, Hwang J E, Jegal J, et al. Pretreatment of a dyeing wastewater using chemical coagulants [J]. Dyes and Pigments,2007,72:240-245.
    [26]Guida A, Mattei M, Rocca C D, Melluso G, Meric S. Optimization of alum-coagulation/flocculation for COD and TSS removal from five municipal wastewater [J]. Desalination,2007,211:113-127.
    [27]Gao B Y, Yue Q Y, Wang Y. Coagulation performance of polyaluminum silicate chloride (PASiC) for water and wastewatertreatment[J]. Separation and Purification Technology,2007,56:225-230.
    [28]Krit N, Sasipan K, Preeya C, Ungsika T, Sulalit C, Pattaraluk J, Prarinya L, Mali H. Remediation of biodiesel wastewater by chemical-and electro-coagulation:A comparative study[J]. Journal of Environmental Management,2011,92:2454-2460.
    [29]Kumar P B, Mishra I M. Decolorization and COD reduction of dyeing wastewater from aco Ron textile mill using thermolysis and coagulation[J]. Journal of Hazardous Materials,2008,153:635-645.
    [30]Parama K K S, Balasubramanian N, Srinivasakannan C. Decolorization and COD reduction of paper industrial effluent using electro-coagulation[J]. Chemical Engineering Journal,2009,151:97-104.
    [31]Kumar P, Prasad B, Mishra I M, Chand S. Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation [J]. Journal of Hazardous Materials,2008,153:635-645.
    [32]Lee B B, Choo K H, Chang D, Choi S J. Optimizing the coagulant dose to control membrane fouling in combined coagulation/ultrafiltration systems for textile wastewater reclamation [J]. Chemical Engineering Journal,2009,155,101-107.
    [33]Gohary F E, Tawfik A. Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process [J]. Desalination,2009,249:1159-1164.
    [34]Wang X J, Gu X Y, Lin D X, et al. Treatment of acid rose dye containing wastewater by ozoning-biological aerated filter[J]. Dye and Pigments,2007,74:736-740.
    [35]Coelho A D, Sans C, Aguera A, Gomez M J, Esplugas S, Dezotti M. Effects of ozone pre-treatment on diclofenac:intermediates, biodegradability and toxicity assessment[J]. Science of the Total Environment,2009,407:3572-3578.
    [36]Mario H.P. Santana, Leonardo M. Da Silva, Admildo C. Freitas, Julien E C. Boodts, Karla C. Fernandes, Luiz A. De Faria. Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122[J]. Journal of Hazardous Materials,2009,164:10-17.
    [37]Yasuko Y M, Kunihiko A, Jiro N. Development and performance evaluation of ozone detection paper using azo dye orange I:Effect of pH[J]. Sensors and Actuators B:Chemical,2010,143:487-493.
    [38]杨岳平,吴星义,徐新华等.印染废水的UV-Fenton氧化处理研究[J].高等化学工程学报,2001,15:242-247.
    [39]Nunez L, Antonio J. Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fentonprocesses[J]. Dyes and Pigments, 2007,75:647-652.
    [40]Lodha B, Chaudhari S.Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions[J]. Journal of Hazardous Materials,2007,148:459-466.
    [41]Papic S, Vujevic D, Koprivanac N, Sinko D. Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes [J]. Journal of Hazardous Materials,2009,164:1137-1145.
    [42]Hsueh C L, Huang Y H, Wang C C, Chen C Y. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system[J], Chemosphere,2005,58:1409-1414.
    [43]王承涛,贺启环,贺鹏等.氧化铝载体下二氧化氯催化氧化处理印染废水[J].环境科学与技术,2006,29:65-67.
    [44]Bi X Y, Wang P, Jiao C Y, Cao H L. Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process[J]. Journal of Hazardous Materials,2009,168: 895-900.
    [45]Bi X Y, Wang P, Jiang H. Catalytic activity of CuOn-La2O3/y-A12O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater [J]. Journal of Hazardous Materials,2008,154: 543-549.
    [46]Wang H L, Dong J, Jiang W F.Study on the treatment of 2-sec-butyl-4,6-dinitrophenol (DNBP) wastewater by ClO2 in the presence of aluminum oxide as catalyst [J]. Journal of Hazardous Materials,2010,183:347-352.
    [47]Halasz A, Spain J, Paquet L, Beaulieu C, Hawari J. Insights into the formation and degradation mechanisms of methylenedinitramine during the incubation of RDX with anaerobic sludge[J]. Environmental Science & Technology,2002,36:633-638.
    [48]Sponza D T, Isik M. Decolorization and azo dye degradation by anaerobic/aerobic sequential process[J]. Enzyme and Microbial Technology,2002,31:102-110.
    [49]Zhao J, Halasz A, Paquet L, Beaulieu C, Hawari J. Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-l-nitroso-3,5-dinitro-1,3,5-triazine by klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge[J]. Applied and Environmental Microbiology,2002,68:5336-5341.
    [50]Khehra M S, Saini H S, Sharma D K, Chadha B S, Chimni S S. Biodegradation of azo dye C.I. Acid Red 88 by an anoxic-aerobic sequential bioreactor[J]. Dyes and Pigments,2006,70:1-7.
    [51]Anjaneyulu Y, Chary N S. Decolourization of industrial effluents-available methods andemerging technologies-a review[J]. Reviews in Environmental Science and Bio/Teehnology,2005,4:245-273.
    [52]兆丰,余志荣.污水处理组合工艺及工程实例[M].北京:化学工业出版社,2003.
    [53]Yogesh M. Kolekar, Harshal N. Nemade, Vijay L. Markad, Sunil S. Adav, Milind S. Patole, Kisan M. Kodam.Decolorization and biodegradation of azo dye, reactive blue 59 by aerobic granules[J]. Bioresource Technology,2012,104:818-822.
    [54]Frank P. van der Zee, Santiago Villaverde. Combined anaerobic-aerobic treatment of azo dyes—A short review of bioreactor studies[J]. Water Research,2005,39:1425-1440.
    [55]Neill C O, Hawkes F R, Hawkes D L, Esteves S, Wilcox S J. Anaerobic aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye[J]. Water Research,2000,34: 2355-2361.
    [56]Kim S Y, An J Y, Kim B W. The effects of reductant and carbon source on the microbial decolorization of azo dyes in ananaerobic sludge process[J]. Dyes and Pigments,2008,76:256--263.
    [57]Silva M E R, Firmino P I M, Santos A B. Impact of the redox mediator sodium anthraquinone-2,6-disulphonate (AQDS) on the reductive decolourisation of the azo dye Reactive Red 2 (RR2) in one-and two-stage anaerobic systems[J]. Bioresource Technology,2012,121:1-7.
    [58]Isik M, Sponza D T. Fate and toxicity of azo dye metabolites under batch long-term anaerobic incubations[J]. Enzyme and Microbial Technology,2007,40:934-939.
    [59]Elias R F, Luijten M, Donlon B. Biodegradation of selected azo dyes undermethanogenic condition[J]. Water Science and Technology,1997,36:65-72.
    [60]竺建荣,杨艳茹,安仁虎.厌氧UASB-好氧工艺处理染料废水的研究[J].环境科学,1994,15:31-34.
    [61]刘建荣,吴国庆,牛志卿.磁态厌氧流化床处理印染废水[J].中国环境科学,1996,16(1):64-67.
    [62]Willeetts J R M, Ashholt N J. Understanding anaerobic decolourization of dye waste.water: mechanism and kinetics[J]. Water Science and Technology,2000,42:409-415.
    [63]Kuai L, Devreese I, Vandevivere P, et al. GAC-amended UASB reactor for the stle treatment of toxic textile wastewater[J]. Environmental Technology,1998,19:1111-1117.
    [64]莫健伟,姚兴东,张谷兰,张应奋.海藻去除水中双偶氮染料机理及重金属离子研究[J].中国环境科学,1997,17:241-243.
    [65]李光霞,张噩林.处理印染废水的厌氧-好氧系统技术经济分析[J].环境科学,1993,14:57-59.
    [66]Cenek N, Bhavin R, Manish B, et al. Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes[J]. Journal of Biotechnology,2001,89:113-122.
    [67]付永胜,鄂铁军.水解酸化-UASB-SBR组合法处理印染废水[J].化工环保,2002,22:155~157.
    [68]李旭东,杨俊仕,李国欣.活性污泥-接触氧化处理印染废水[J].环境工程,2003,21:21-22.
    [69]肖利,陈季华,刘振鸿.缺氧-好氧-压滤-富氧生物炭处理印染废水[J].中国给水排水,2002,18:72-73.
    [70]温学友,张燕君,杨景亮.接触氧化-电解工艺处理印染废水[J].环境工程,2003,21:18~19.
    [71]祁佩时,李欣,程树辉.水解-混凝-复合生物池工艺处理印染废水的工程应用[J].给水排水,2003,29:44-47.
    [72]郑广宏,乔俊莲,顾国维.水解-接触氧化-活性炭工艺处理印染废水[J].中国给水排水,2003,19:71-72.
    [73]Lodha B, Chaudhari S. Optimization of Fenton-biological treatment scheme for the treatment of aqueous dye solutions[J]. Journal of Hazardous Materials,2007,148:459-466.
    [74]司朝晖,李立丽.混凝-生物膜曝气-氧化塘法处理印染废水[J].中国给水排水,2003,19:89-90.
    [75]张旋,姜洪雷,曲和玲.印染废水处理技术的研究进展[J].山东轻工业学院学报,2007,21:73-76.
    [76]罗道成,易平贵,刘俊峰.印染废水处理工艺改进的应用研究[J].环境工程,2002,20:14-15.
    [77]Haberkamp J, Ernst M, Bockelmann U, Szewzyk U, Jekel M. Complexity of ultrafiltration membrane fouling caused by macromolecular dissolved organic compounds in secondary effluents. Water Research,2008,42:3153-3161.
    [78]马志毅,张国洪.处理染色废水专用活性炭研究[J].环境科学学报,1997:328-333.
    [79]Nishijima W, Tojo M. Biodegradation oforganic substances by biological activated carbon stimulation of bacterial activity on granular activated carbon[J]. Water Science and Technology,1992,26; 2031-2034.
    [80]Wang J, Liu G F, Lu H, Jin R F, Lei T M, Zhang W, Yang H. Biodegradation of bromoamine acid using combined airlift loop reactor and biological activated carbon [J]. Bioresource Technology, 2011,102:4366-4369.
    [81]田晴,肖玉男,陈季华.生物活性炭法深度处理纺织废水二级出水中生物活性的研究[J].环境 污染治理技术与设备,2006,7:108-111.
    [82]Wang C, Li J, Wang B, Zhang G. Development of an empirical model for domestic wastewater treatment by biological aerated filter[J]. Process Biochemistry,2006,41,778-782.
    [83]兰善红等.新型填料的BAF处理印染废水的研究[J].工业水处理,2007,27:36-39.
    [84]Liu F, Zhao C C, Zhao D F, Liu G H.Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations [J]. Journal of Hazardous Materials,2008,160:161-167.
    [85]徐瑞银,王殿芳.用于染料废水光降解处理的催化剂及其作用机制[J].北京石油化工学院学报,2004,12:26-31.
    [86]陈晓青,刘崎.钛/铟复合材料的光催化性能研究[J].工业水处理,2004,24:39-41.
    [87]Wahab R, Hwang I H, Kim Y S, Musarrat J, Siddiqui M A, Seo H K, Tripathy S K, Shin H S. Non-hydrolytic synthesis and photo-catalytic studies of ZnO nanoparticles[J]. Chemical Engineering Journal,2011,175:450-457.
    [88]Gupta V K, Jain R, Mittal A, Saleh T A, Nayak A, Agarwal S, Sikarwar S. Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions[J]. Materials Science and Engineering:C, 2012,32:12-17.
    [89]张会芳,文晨.Ti02光催化分解酸性G和活性艳红K-2G的研究[J].化工时刊,2004,180:37-39.
    [90]朱永法.多空薄膜型光催化剂及其环境净化研究[J].宁夏大学学报(自然科学版),2001,22:217-218.
    [91]涂代惠,史长林.TiO2膜光催化氧化法深度处理印染废水[J].中国给水排水,2003.19:53-55
    [92]Devi L G, Murthy B N, Kumar S G. Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ ions under solar light:Correlation of dye structure and its adsorptive tendency on the degradation rate[J]. Chemosphere,2009,76: 1163-1166.
    [93]Dantas R F, Canterino M, Marotta R, et al. Bezafibrate Removal by Means of Ozonation:Primary Intermediates, Kinetics, and Toxicity Assessment [J]. Water Research,2007,41:2525-2532.
    [94]Gracia R, Aragues J L, Ocelleiro J L. Study of the Catalytic Ozonation of Humic Substances in Water and Their Ozonation Byproducts [J]. Ozone-Science & Engineering,1996,18:195-208.
    [95]Nawrocki J, Hordern B K. The Efficiency and Mechanisms of Catalytic Ozonation[J]. Applied Catalysis B:Environmental,2010,99,27-42.
    [96]王欣泽,王宝贞,王琳.臭氧-紫外光深度氧化去除水中有机污染物的研究[J].哈尔滨建筑大学学报,2001,34:70~73.
    [97]童少平,褚有群,马淳安.紫外光在臭氧降解不同有机物过程中的协同作用[J].环境科学学报, 2005,25:1041-1045.
    [98]葛玮,朱世云,王宏.不同pH条件下Fe2+/Fe3+/Ni+/O3体系对活性艳蓝X-BR的催化氧化[J].环境科学与技术,2006,29:98-101.
    [99]郑攀峰,王栋,刘钟阳.高压脉冲放电-臭氧氧化处理活性艳红K-2BP废水[J].化工环保,2007,27:12-16.
    [100]郑攀峰,王栋,刘钟阳.高压脉冲放电臭氧协同降解K-2BP模拟废水[J].环境科学与技术,2006,29:29-31.
    [101]杨少斌,费学宁,张建博.电化学氧化技术在印染废水处理中的应用[J].广东化工,2008,35:66-68.
    [102]Hine F, Yasuda M, Noda T, Yoshida T, Okuda J. Electrochemical behavior of the oxide-coated metal anodes[J].Journal of the Electrochemical Society,1979,126:1439-1445.
    [103]冯玉杰,崔玉虹,孙丽欣,刘峻峰,蔡伟民.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36:450-455.
    [104]Zhi J, Wang H, Nakashima T, Rao T N, Fujishima A. Electrochemical incineration of organic pollutants on boron-doped diamond electrode, evidence for direct electrochemical oxidation pathway[J]. Journal of Physical Chemistry B,2003,107:13389-13395.
    [105]Kushwaha J P, Srivastava V C, Mall I D. Organics removal from dairy wastewater by electrochemical treatment and residue disposal[J]. Separation and Purification Technology,2010,76:198-205.
    [106]Martinez-Huitle CA, Ferro S, Electrochemical oxidation of organic pollutants for the wastewater treatment:direct and indirect processes[J]. Chemical Society Review,2006,35:1324-1340.
    [107]Kong J, Shi S, Kong L, Zhu X, Ni J. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides[J]. Electrochimica Acta,2007,53:2048-2054.
    [108]Panizza M, Cerisola G, Direct and mediated anodic oxidation of organic pollutants[J], Chem. Rev. 2009,109:6541-6569.
    [109]Samet Y, Elaoud S.C, Ammar S, Abdelhedi R. Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes[J], Journal of Hazardous Materials B,2006,138:614-619.
    [110]Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J], Electrochim. Acta,1994,39:1857-1862.
    [111]Zhou M, Dai Q, Lei L, Ma C, Wang D. Long life modified lead dioxide anode for organic wastewater treatment:electrochemical characteristics and degradation Mechanism[J]. Environmental Science & Technology,2005,39:363-370.
    [112]毕彦梁,齐威.电化学技术在印染废水处理中应用[J].广州化工,2012,40:76-78.
    [113]Chen G. Electrochemical technologies in wastewater treatment J], Separation and Purification Technology,2004,38:11-41.
    [114]Radjenovi J, Farre M, Mu Y, Gernjak W, Keller J. Reductive electrochemical remediation of emerging and regulated disinfection byproducts[J], Water research,2012,46:1705-1714.
    [115]Radha K, Sridevi V, Kalaivani K. Electrochemcial oxidation for the treatment of textile industry wastewater[J]. Bioresource Technology,2009,100:987-990.
    [116]Mohan N, Balasubramanian N, Basha C. Electrochemcial oxidation of textile wastewater and its reuse[J]. Journal of Hazardous Materials,2007,147:644-651.
    [117]Weng Y H, Lin H C, Lee H H, et al. Removal of arsenic and humic substances (HSs) by electro-ultrafiltration (EUF) [J]. Journal of Hazardous Materials,2005,122:171-176.
    [118]张翀,陈鑫,邓慧萍,张瑞金.电场对超滤膜污染和去除性能影响的研究[J].水处理技术,2012,38:126-129.
    [119]Mo J H, Lee Y H, Kim J, Jae J Y, Jegal J. Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse[J], Dyes and Pigments,2008,76 429-434.
    [120]Li S Z, Li X Y, Wang D Z. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics[J], Separation and Purification Technology,2004,34:109-114.
    [121]Kim I C, Lee K H. Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes[J], Desalination,2006,192:246-251.
    [122]Ordonez R, Hermosilla D, Pio I S, Blanco A. Evaluation of MF and UF as pretreatments prior to RO applied to reclaim municipal wastewater for freshwater substitution in a paper mill:A practical experience[J], Chemical Engineering Journal,2011,166:88-98.
    [123]Wang A J, Liu G M, Huang J, Wang L J, Li G B, Su X D, Qi H. Styrene process condensate treatment with a combination process of UF and NF for reuse[J], Journal of Hazardous Materials,2013, 244-245:457-462.
    [124]Kurt E, Koseoglu-Imer Y, Dizge N, Chellam S, Koyuncu I. Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater [J], Desalination, 2012,302:24-32.
    [125]Bruggen B V. Integrated membrane separation processes for recycling of valuable wastewater streams: nanofiltration, membrane distillation, and membrane crystallizers revisited[J], Ind. Eng. Chem. Res., Articles ASAP (DOI:10.1021/ie302880a).
    [126]Allegre C, Moulin P, Maisseu M, Charbit F. Allegre C, Moulin P, Maisseu M, Charbit F. Treatment and reuse of reactive dyeing effluents[J], Journal of Membrane Science,2006,269:15-34.
    [127]Arnal J M, Leon M C, Lora J, Gozalvez J M, Santafe A, Sanz D, Tena J. Ultrafiltration as a pre-treatment of other membrane technologies in the reuse of textile wastewaters[J], Desalination, 2008,221:405-412.
    [128]Kang G D, Cao Y M. Development of antifouling reverse osmosis membranes for water treatment:A review[J]. Water Research,2012,46:584-600.
    [129]Gao W, Liang H, Ma J, Han M, Chen Z L, Han Z S, Li G B. Membrane fouling control in ultrafiltration technology for drinking water production:Areview[J]. Desalination,2011,272:1-8.
    [130]Ochando-Pulido J M, Rodriguez-Vives S, Hodaifa G, Martinez-Ferez A. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater[J], Water Research, 2012,46:4621-4632.
    [131]Amar N B, Kechaou N, Palmeri J, Deratani A, Sghaier A. Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry[J]. Journal of Hazardous Materials,2009,170:111-117.
    [132]Puyol D, Monsalvo V M, Mohedano A F, Sanz J L, Rodriguez J J. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor[J]. Journal of Hazardous Materials,2011,185:1059-1065.
    [133]Wong B, Show K, Su A, Wong R, Lee D. Effect of Volatile Fatty Acid Composition on Upflow Anaerobic Sludge Blanket (UASB) Performance[J]. Energy Fuels,2008,22:108-11.
    [134]Nizami A, Nicholas E, Korres J, Murphy D. Review of the Integrated Process for the Production of Grass Biomethane[J]. Environ. Sci. Technol.,2009,43:8496-8508.
    [135]Basu D, Gupta S K. Biodegradation of 1,1,2,2-tetrachloroethane in Upflow Anaerobic Sludge Blanket (UASB) reactor[J]. Bioresource Technology,2010,101:21-25.
    [136]Bachmann A, Beard V L, McCarry P L. Comparison of fixed film reactors with a modified sludge blanket reactor[J]. Pollut. Technol. Rev.,1983,10:382-402.
    [137]沈耀良,赵丹,王承武等.ABR反应器的水利特征研究[J].中国给水排水,2003,19(11):1-3.
    [138]Nachaiyasit S, Stucky D C. The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). Step and transient hydraulic shocks at constant feed concentration [J]. Water Res, 1997,31:2747-2754.
    [139]沈耀良.废水生物处理新技术一理论与应用[M].北京:中国环境科学出版社,1999.
    [140]杜俊.新型内循环污泥浓缩池反应器(ICSTD)特性及处理污泥性能的研究[D].重庆:重庆大学.2007.
    [141]Bell J, Plumb J, Buckley C, et al.Treatment and decolorization of dyes in an anaerobic baffled reactor[J]. Environ. Eng.,2000,126:1026-1032.
    [142]Gopala K G V, Kumar P, Kumar P. Treatment of low-strength soluble wastewater using an anaerobic baffled reactor (ABR) [J]. Journal of Environmental Management,2009,90:166-176.
    [143]张寿通,郭海燕,费庆志等.斜板式ABR水力特性及生活污水的处理[J].环境化学,2009,28:492-496.
    [144]国家环保总局.水和废水监测方法(第四版)[M].北京:中国环境科学出版社,2002.
    [145]蔡金傍,段祥宝,朱亮.沉淀池水流数值模拟[J].重庆建筑大学学报,2003,25:64-69.
    [146]雷晓玲,方小桃,刘贤斌,杜佳靖.给水厂高密度沉淀池沉淀区流态模拟及优化设计[J],中国给水排水,2011,3:52~55.
    [147]付永胜,鄂铁军.水解酸化-ⅠJASB-SBR组合法处理印染废水[J].化工环保,2002,22:155-157.
    [148]刘帅霞,何松.水解酸化-生物接触氧化工艺处理印染废水[J].中国给水排水,2002,18:75-76.
    [149]李旭东,杨俊仕,李国欣.活性污泥-接触氧化处理印染废水[J].环境工程,2003,21:21~22.
    [150]肖利,陈季华,刘振鸿.缺氧-好氧-压滤-富氧生物炭处理印染废水[J].中国给水排水,2002,18:72-73.
    [151]温学友,张燕君,杨景亮.接触氧化-电解工艺处理印染废水[J].环境工程,2003,21:18-19.
    [152]郑广宏,乔俊莲,顾国维.水解-接触氧化-活性炭工艺处理印染废水[J].中国给水排水,2003,19:71-72.
    [153]刘军,鲍林发,汪苹.运用GC-MS联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备,2003,4:31-33.
    [154]Linda D. GC/MS分析20种纺织品和消费品中禁止使用胺类致癌物和印染处理废水的环境检测中出现的胺类致癌物[J].环境化学,2004,24:622-625.
    [155]Schroder H F. Polar organic pollutants from textile industries in the wastewater treatment process-biochemical and physicochemical elimination and degradation monitoring by LC-MS, FIA-MS and MS-MS[J]. TrAC Trends in Analytical Chemistry,1996,15:349-362.
    [156]Castillo M, Barcelo D. Characterisation of organic pollutants in textile wastewaters and landfill leachate by using toxicity-based fractionation methods followed by liquid and gas chromatography coupled to mass spectrometric detection[J]. Analytica Chimica Acta,2001,12:253-264.
    [157]Wu H F, Wang S H, Kong H L, et al. Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dyeing wastewater[J]. Bioresource Technology,2007,98:1501-1504.
    [158]颜秀勤,张秀华,郑兴灿.印染废水集中处理厂的工艺选择与设计参数[J].中国给水排水,1999,15:37-39.
    [159]王凯军.厌氧(水解)-好氧处理工艺的理论与实践[J].中国环境科学,1998,18:337-340.
    [160]薛志成.水解酸化-A/O-化学混凝沉淀工艺处理活性染料印染废水的设计与运行[J].上海染料,2008,36:50~53.
    [161]Pala A, Tokat E. Color removal from cotton textile industry wastewater in an activated sludge system with various additives[J]. Water Research,2002,36:2920-2925.
    [162]Satyawali Y, Balakrishnan M. Effect of PAC addition on sludge properties in an MBR treating high strength wastewater[J]. Water Research,2009,43:1577-1588.
    [163]邓喜红,王超.微电解+物化+生化处理印染废水工程实例[J].环境科学与管理,2008,33:120-122,
    [164]李亚飞,杨志南.物化+生化处理印染废水[J].广州环境科学,2008,23:13~15.
    [165]Kuai L, Devreese I, Vandevivere P, et al. GAC-amended UASB reactor for the stable treatment of toxic textile wastewater[J]. Environ Technol,1998,19:1111-1117.
    [166]马知方,童永汝.物化-生化法处理高浓度印染废水[J].染整技术,2000,22:3-8.
    [167]Wu H F, Wang S H, Kong H L, et al. Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dyeing wastewater[J]. Bioresource Technology,2007,98:1501-1504.
    [168]Harrelkas F, Paulo A, Alves M M, et al. Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes[J]. Chemosphere,2008,72:1816-1822.
    [169]Pearce C I, Lloyd J R, Guthrie J T. The removal of colour from textile wastewater using whole bacterial cells:areview[J]. Dyes and Pigments,2003,58:179-196.
    [170]张国威.“物化-生化”及“生化-物化”工艺在印染废水处理中的选择[J].工程应用,2005,8:19-22.
    [171]Kolekar Y M, Pawar S P, Gawai K R, et al. Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil[J]. Bioresource Technology,2008,99:8999-9003.
    [172]Nam J J, Song B H, Eom K C, et al. Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea[J]. Chemosphere,2003,50:1281-1289.
    [173]Fries E, Puttmann W. Analysis of the antioxidant butylated hydroxytoluene (BHT) in water by means of solid phase extraction combined with GC/MS[J]. Water Research,2002,36:2319-2327.
    [174]杨卫芳.焦化-染料废水和洹河水体的有机污染研究[J].中国环境检测,2005,21:39-41.
    [175]Rajkumar D, Song B J, Kim J G. Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds[J]. Dyes and Pigments,2007,72:1-7.
    [176]Jozwiak M K, Mitros M, Kaluzna-Czaplinska J, et al. Oxidative decomposition of Acid Brown 159 dye in aqueous solution by H2O2/Fe2+ and ozone with GC/MS analysis[J]. Dyes and Pigments,2007, 74:9-16.
    [177]Li Y, Wang F, Zhou G, Ni Y. Aniline degradation by electrocatalytic oxidation[J]. Chemosphere 2003, 53:1229-1234.
    [178]Blood PJ, Brown IJ, Sotiropoulos S. Electrodeposition of lead dioxide on carbon substrates from a high internal phase emulsion (HIPE)[J]. J Appl Electrochem,2004,34:1-7.
    [179]Liu Y, Liu H. Comparative studies on the electrocatalytic properties of modified PbO2 anodes[J]. Electrochimica Acta,2008,53:5077-5083.
    [180]Fukunaga M T, Guimaraes J R, Bertazzoli R. Kinetics of the oxidation of formaldehyde in a flow electrochemical reactor with TiO2/RuO2 anode[J]. Chemical Engineering Journal,2008,136:236-241.
    [181]Canizares P, Saez C, Lobato J, Rodrigo M A. Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes[J]. Industrial & Engineering Chemistry Research, 2004,43:1944-1951.
    [182]Martinez-Huitle C A, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:A general review[J]. Applied Catalysis B:Environmental,2009,87:105 -145.
    [183]Zhu X P, Shi S Y, Wei J J, Lv F X, Zhao H Z, Kong J T, He Q, Ni J R. Electrochemical oxidation characteristics of p-Substituted phenols using a boron-doped diamond electrode[J]. Environ Sci Technol,2007,41:6541-6546.
    [184]Kapalka A, Joss L, Anglada A, Comninellis C, Udert K M. Direct and mediated electrochemical oxidation of ammonia on boron-doped diamond electrode[J]. Electrochem Commun,2010,12: 1714-1717.
    [185]Brillas E, Mur E, Sauleda R, Sanchez L, Peral J, Domenech X, Casado J. Aniline mineralization by AOP's:anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes[J]. Appl Catal B:Environ,1998,16:31-42.
    [186]Santos V, Diogo J, Pacheco M J A, Ciriaco L, Morao A, Lopes A. Electrochemical degradation of sulfonated amines on Si/BDD electrodes[J]. Chemosphere,2010,79:637-645.
    [187]Pacheco M J, Santos V, Ciriaco L, Lopes A. Electrochemical degradation of aromatic amines on BDD electrodes[J]. J Hazardous Materials,2011,186,1033-1041.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700