用户名: 密码: 验证码:
沼液对土壤改良作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国大中型沼气工程发展迅速,在新能源发展和农村环境改善等方面发挥了巨大作用,然而厌氧发酵剩余物(沼液)存在量大、集中的特点,其无害化消纳已成为制约沼气工程正常运行的瓶颈问题。沼液中含有多种作物所需的水溶性营养成分,速效营养能力强,养分可利用率高,进行田间施用时不仅能提高作物的产量和品质,还可以起到防病抗逆的作用,并且可以改善土壤结构,是一种理想的绿色有机肥料。但是目前沼液防病抑菌的机理和沼液施肥方式对其有效利用的影响都尚不能完全明确,为此本论文对沼液抑菌的机理进行了深入的研究;同时利用沼液暗灌施肥,研究了其对土壤肥力特性和土壤微生物群落结构的影响,并在此基础上提出了沼液暗灌施肥机的总体设计方案,对关键部件分配器进行了设计。获得的研究成果主要有以下几个方面:
     (1)沼液抑菌机理试验研究
     1)沼液和沼液的离心上清液均随着浓度的增加,对5种病原菌(立枯丝核菌、雪腐镰刀菌、尖孢镰刀菌、茄腐镰刀菌和核盘菌)的抑制率也逐渐提高,且表现为浓度100%的处理抑制效果最好,但随时间延长抑制率有所下降。100%沼液对立枯丝核菌、雪腐镰刀菌、尖孢菌、茄腐镰刀菌的抑制作用显著,抑制率分别为70%、40%、68%、70%,对核盘菌的抑制效果较差,抑制率为25%;经过灭菌处理100%沼液的抑制作用较小,最高抑制率分别为30%、15%、35%、25%和10%;100%沼液离心上清液的抑制率较100%沼液略小,分别为48%、35%、47%、55%和18%,而100%沼液离心上清液灭菌处理后的抑制率远小于灭菌前,分别为23%、14%、22%、20%和13%。
     2)为确定沼液中起抑制作用的因子,将沼液进行了5种处理即原沼液、沼液灭菌、离心上清液、无菌膜滤液和菌体溶液,并进行了抑菌试验。抑制效果表现为:菌体溶液最好,其它依次为原沼液、离心上清液、无菌膜滤液和沼液灭菌,菌体溶液的抑制率分别为74%、45%、68%、64%和24%,且抑制作用时间较原沼液长,说明对病原菌起主要抑制作用的是沼液中的微生物。
     3)对沼液中微生物进行了筛选和纯化,最终获得到了48株细菌、8株真菌和3株放线菌,对其进行了编号,并分别与作物5种病原菌进行了对峙试验,在真菌与病原菌对峙试验中筛选出了2株具有强抑制作用的菌株nfd-9和nfd-16。电镜扫描结果表明:nfd-9的菌丝主要表现为牢牢的缠绕在供试的5种作物病原菌的菌丝上,有些菌丝则是穿过病原菌的菌丝,从空间上限制了病原菌的生长,同时还通过与病原菌竞争生长必需的营养物质,从而达到抑制作用的目的,说明重寄生、竞争作用是nfd-9菌具有抑制作用的一个重要机制。nfd-16的抑菌机制为不断覆盖、侵入各病原真菌的菌落,侵占各病原真菌的生长空间,形成包围圈,阻止其接触到植物根系和叶片表面,从而达到抑制的目的。细菌对立枯丝核菌、核盘菌的抑制效果最好,抑制率在90%以上,对茄腐镰刀菌、尖孢和雪腐镰刀菌的抑制率在70%~80%之间。
     4)对具有抑制作用的菌株进行分子生物学鉴定,确定菌株nfd-9和nfd-16分别为米根霉(Rhizopus oryzae)和哈茨木霉(Trichoderma harzianum)。拮抗性细菌主要属于芽孢杆菌(Bacillus),其中对5种病原菌均有抑制作用的细菌有6株,沼液中的细菌中以芽孢杆菌(Bacillus)为主。
     (2)沼液暗灌施肥对土壤肥力特性和土壤微生物多样性的影响
     1).沼液可不同程度提高土壤的pH、铵态氮、速效钾、有机质的含量。T3处理能够使土壤的pH由初始的7.3提高到7.6左右,提高了4.11%;T2处理次之,可提高3.91%;T1处理最差,仅提高2.61%。3组清水对照组C1、C2、C3的pH基本没有变化;随着沼液施肥量的增加,铵态氮含量也相应提高,T3处理的土壤铵态氮含量最高,为34.52mg/kg,对照处理铵态氮的含量几乎没有变化;而沼液对速效磷的影响小于沼液对土壤氮的影响;T3处理对土壤速效钾的含量提高幅度最大,含量最高时可达到364.42mg/kg,与种植前相比提高了32.55%,其次为T2处理和T4处理,与种植前相比分别提高了26.98%和36.7%;沼液对提高土壤有机质的作用优于复合肥,T3处理的土壤有机质含量达到23.48g/kg,T2处理的土壤有机质含量达到23.13g/kg,T1处理的土壤有机质含量达到22.84g/kg,影响显著。
     2)随着沼液施用量的增加,土壤中细菌的数量也相应增加,施肥后第一次进行土壤细菌计数时T3处理的细菌数量最多,由32×105CFU/g增加到59.97×105CFU/g,T2增加到53.13×105CFU/g,T1处理的细菌数量达到49.00×105CFU/g,而C1、C2、C3的细菌数量没有显著性变化;土壤真菌数量的变化规律与土壤细菌具有类似性,但增加程度较低。T3处理土壤真菌数量最大时约为31×104CFU/g,提高约40.91%,而T2处理和T1处理分别提高了36.36%和31.81%。复合肥处理的真菌数量略有下降。放线菌的初始数量平均值为23.67×104CFU/g,施肥后最大可达27×104CFU/g左右,与初始值相比增加了26.09%,对照处理和复合肥处理的放线菌数量变化较小,基本在22~24×104CFU/g范围内,且低于沼液处理的数量。
     3)对土壤细菌的DGGE图谱分析得出细菌主要由27类菌种构成,多样性指数(Dsh)为4.16。沼液施肥后DGGE图谱的条带清晰、明亮,但条带数有所减少,说明沼液施肥降低了土壤中细菌的种类;土壤真菌DGGE图谱中主要的条带共计13条,较清晰明亮,且多数属于共同条带,特异性条带较少,沼液对土壤真菌的影响较细菌影响小。
     (3)沼液施肥机的设计
     提出沼液施肥机总体方案为拖拉机牵引沼液罐车提供前进和转弯动力,施肥机具悬挂在沼液罐车后面进行施肥和其他作业。并针对沼液黏度大、易堵塞等问题,设计了转子防堵型分配器,对其原理和结构进行了分析。
In recent years, the rapid development of large and medium biogas projects played an important role in domains such as the new energy development, rural environment improvement, and so on. However, the anaerobic fermentation residues such as biogas slurry have the characteristics of continuous, large amount and centralization, its harmless treatment have become bottleneck for the normal operation of biogas projects. Biogas slurry contains a variety of water-soluble nutrients, which are available and high efficient for crops. When applied in field, the biogas slurry could not only improve crop yield and quality, but also prevent disease and improve soil structure. Thus, biogas slurry is considered as an ideal organic fertilizer. However, the antibacterial mechanism of biogas slurry and the way of effective utilization as fertilization are not yet entirely clear. In this research, the antibacterial mechanism of biogas slurry was investigated; impacts of biogas slurry subsurface irrigation on soil fertility characteristics and microbial community in soil were studied. Based on results of above research, the key components of biogas slurry fertilizer machine are designed. The main research results are as follows:
     (1) Antibacterial mechanism of biogas slurry
     1) With the concentration increased from20%to100%by step of20%, inhibition rate of both biogas slurry and supernatant on five kinds of pathogens(Rhizoctonia solani, Fusarium nivale, Fusarium oxysporum, Fusarium solani, Sclerotinia sclerotiorum) gradually improve, and the concentration of100%biogas slurry has the best inhibitory effect, but inhibition rate decline with time.100%biogas slurry has significant inhibition on Rhizoctonia solani, Fusarium nivale, Fusarium oxysporum, Fusarium solani, inhibition rates are70%,40%,68%,70%, respectively. Inhibitory rate of Sclerotinia sclerotiorum is poor, only25%.100%sterilized biogas slurry has little inhibition effect, and the maximum inhibition rates were30%,15%,35%,25%and10%, respectively.100%supernatant has tiny inhibition effect, and the maximum inhibition rates were48%,35%,47%,55%and18%, respectively.while the sterilized100%supernatant is far less than before, with inhibition rate of23%,14%,22%,20%and13%, respectively.
     2) In order to find the inhibitory factors in the biogas slurry, the slurry was pretreated by five methods, namely, untreated, sterilization, centrifugal supernatant, sterile filtration and bacteria solution. Then the antibacterial test was carried out. The result showed that the antibacterial effect: bacteria solution is the best, and the others are untreated, centrifugal supernatant, sterile filtration and sterilization, respectively. The inhibition rate of bacteria solution were74%,45%, 68%,64%and24%, respectively, and the inhibition time are longer than raw slurry. This suggested that the microbial of bacteria solution played a main role in inhibiting pathogens. In addition, the inhibition rate of sterilization was still the smallest.
     3) After the isolation, screening and purification for the microbe from biogas slurry, finally,8fungi,48bacteria and3strains of Actinomycetes were obtained (No.1-59). Then, the co-culture experiments were respectively conducted using each microbe with the pathogens. As a result, there were two strains showing stronger inhibitory effect to the pathogens was detected, namely, nfd-9and nfd-16. The scan electron microscope observation showed that the mycelia of pathogens was firmly tangled or pierced by the mycelia of nfd-9, thus, the growth space of r. solani was limited. Additionally, nfd-9could rival the necessary nutrients for growth with pathogens, thus playing the inhibitory effect. These results suggested that the mycoparasitism was an important mechanism for nfd-9as antagonistic microorganism. The antibacterial mechanism of nfd-16was constantly to invade the growth space of pathogens, or covered, or intruded into the pathogenic colony, which could form a ring of encirclement to prevent the pathogens get in touch with the plant root and leaf surface, thereby playing the inhibitory effect. The inhibitory effect of Antagonistic bacteria against R.solani and Sclerotinia sclerotiorum was best, and the inhibition rate of above90%. Moreover, the inhibitory rate for Fusarium solani, Fusarium fungi and Fusarium nivale was at the range of70-80%.
     4) strains are identified by molecular biological technology, strain nfd-9and nfd-16were Rhizopus oryzae and Trichoderma harzianum. Antagonistic bacteria are mainly belonging to bacillus, illustrating huge bacteria in biogas slurry.
     (2) Soil fertility characteristics and microbial diversity
     1) Biogas slurry can improve the pH, content of ammonium nitrogen, nitrate nitrogen, available phosphorus, available potassium and organic matter. The pH of T3treatment can increase from7.3to7.6, improved about4.11%, T2is the next, about3.91%, the worst one is T1, only2.61%. The pH of three groups of water control is unchanged. With the increase of biogas slurry, ammonium nitrogen increased. Soil ammonium nitrogen of T3has the highest content,34.52mg/kg, and the control treatment has almost no change. The effects of biogas slurry on available phosphorus is less than nitrogen, and T3treatment has the biggest available potassium content in soil, about364.42mg/kg, improved32.55%compared with the pre-implantation, T2and T4are the next, about26.98%and36.7%, respectively. Biogas slurry has superior and significant effect on soil organic matter to conventional chemical fertilizers. Soil organic matter content of T3, T2and T1is23.48g/kg,23.13g/kg and22.84g/kg, respectively.
     2) With the increased of biogas slurry, the number of bacteria also corresponding increase, the number of bacteria of T3after fertilization is the most, counting up by32×105CFU/g to59.97×105CFU/g, T2is to53.13×105CFU/g, and T1reach49.00×105CFU/g. But the control did not change significantly. The number of soil fungi has similar laws with soil bacteria; however, the level of increase is low. The largest number soil fungus of T3is approximately31×104CFU/g, an increase of about40.91%, and T2and T1increased about36.36%and31.81%. Conventional chemical fertilizers reduce slightly the number of fungi. The maximum number of actinomycetes is about27×104CFU/g, increased by26.09%, compared to the average initial number of actinomycetes of23.67×104CFU/g. Actinomycetes of control treatment Conventional chemical fertilizers has almost no change, which are between22×104CFU/g and24×104CFU/g, and less than biogas slurry tretments.
     3)27categories bacterial strains are derived from the DGGE profiles of bacteria and actinomyces in soil. The diversity index is4.16, slightly higher than in the control treatment, and evenness indexes are basically the same. Biogas slurry significantly reduced species of bacteria in the soil.13major bands are derived from the DGGE profiles of soil fungi, and these bands are clear and bright, belonging to the common bands, lack of peculiar bands. Biogas slurry has little impact on fungi compare with bacteria.
     (3) Design of biogas fertilizer machine
     The total design scheme is that forward and turning power of biogas slurry tanker is provided by tractor, while fertilization and other operations are carried out by fertilizing machine behind the tanker. An antiblocking type distributor is designed to slave the problem of high viscosity and blockage of the biogas slurry, and its principle and structure are discussed.
引文
[1]申树云.生物质颗粒成型环模特性研究[D].天津:天津理工大学硕士论文,2008.
    [2]张品翠.大力发展农村沼气加快农村能源建设[J].农业与技术,2012,32(2):162.
    [3]黄雪雯.固体酸水相催化液化纤维素的研究[D].南昌:南昌大学硕士论文,2008.
    [4]马隆龙.生物质利用技术的研究与发展[J].化学工业,2009,25(8):9-14.
    [5]李军刚,王巍.我国农村生物质资源开发利用的政策分析[J].安徽农业科学,2012,40(4):2198-2201.
    [6]马艳,李海,常志州,等.沼液对植物病害的防治效果及机理研究Ⅰ:对植物病原真菌的抑制效果及抑菌机理初探[J].农业环境科学学报,2011,30(2):366-374.
    [7]郜玉环,张昌爱,董建军.沼渣沼液的肥用研究进展[J].山东农业科学,2011,(6):71-75.
    [8]王远远.蔬菜废弃物沼气发酵工艺条件及沼气发酵残余物综合利用技术的研究[D].上海:上海交通大学硕士论文,2008.
    [9]郭强,牛冬杰,程海静,等.沼渣的综合利用[J].中国资源综合利用,2005,12:1-15.
    [10]陶红歌,李学波,赵廷林.沼肥与生态农业[J].可再生能源,2003,2:37-38.
    [11]靳红梅,常志州,叶小梅,等.江苏省大型沼气工程沼液理化特性分析[J].农业工程学报,2011,27(1):291-296.
    [12]D. P. Chynoweth, A. C. Wilkie, J. M. Owens. Anaerobic treatment of piggery slurry-review[J]. Asian Austral, J. Anim.,1999,12 (4):607-628.
    [13]G. F. Parkin, W. F. Owen, Fundamentals of anaerobic digestion of waste water sludges[J]. J. Environ. Eng. ASCE,1986,112:867-920.
    [14]M. A. Pereira, D. Z. Sousa, M. Mota, M. M. Alves, Mineralization of LCFA associated with anaerobic sludge:kinetics, enhancement of methanogenic activity and effect of VFA[J], Biotechnol.2004,88:502-511.
    [15]邱凌.庭院沼气高效生产与利用[M].科学技术文献出版社,北京,2007.
    [16]Maler, K., Stinner, W.. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses [J]. Eur. J. Agron, 2009,30:1-16.
    [17]张无敌著.沼气发酵残留物利用基础[M].云南科技出版社,2002.
    [18]史一鸣.稻田生态系统消解沼液的潜力及风险评估[D].杭州:浙江大学博士论文,2010.
    [19]叶旭君,王兆骞,李全胜.以沼气工程为纽带的生态农业工程模式及其效益分析[J].农
    业工程学报,2000(02):93-96.
    [20]杨春璐,梁成华等.合理施用沼渣对土壤钾素有效性影响[J].生态科学,2004,23(3):240-243.
    [21]陈维志,丁秀华.沼渣对能源生态模式日光温室改土作用的研究[J].农村能源,1995, (5):17-18.
    [22]余海兵.肥对糯玉米生长发育、品质及土壤特性的影响[D].南京:南京农业大学硕士论文,2007.
    [23]郭双连.沼气发酵残留物在无公害水果蔬菜生产中的研究[D].云南:云南师范大学,2005.
    [24]Lee C, Kim J, Shin S U, et al. Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater [J]. Appl Microbial Biotechnol,2010,87 (5):1963-1973.
    [25]Ranjard L, Richaume A.. Quantitative and qualitative microscale distribution of bacteria in soil [J]. Research in Microbiology,2001,152:707-716.
    [26]李轶,张玉龙,谷士艳,李光,张镇.施用沼肥对保护地土壤微生物群落影响的研究[J].可再生能源,2007,25(8):44-46.
    [27]余海兵,刘正,叶盛兰.沼肥不同施用方法对糯玉米根际土壤肥力和微生物数量影响[J].中国农学通报,2007,23(8):399-402.
    [28]颜卫卫.户用沼气工程对农村生态系统的影响[D].武汉:华中农业大学硕士论文,2008.
    [29]赵金华.沼液_化肥配施对基质性质及西瓜生长、产量和品质的影响[D].北京:中国农业科学院硕士论文,2010.
    [30]孙广辉.沼液灌溉对蔬菜产量和品质以及土壤质量影响的研究[D].杭州:浙江大学硕士论文,2006.
    [31]杨合法,范聚芳,郝晋珉,王绍雷.沼肥对保护地番茄产量、品质和土壤肥力的影响[J].中国农学通报,2006,22(7):369-372.
    [32]耿玉亮,刘郁文,王泽洋,刘永志.温室番茄生产施用沼肥的试验[J].中国沼气,2000,18(1):31-32.
    [33]赵曙光.沼肥在蔬菜上应用效果及施用技术规程研究[D].杨凌:西北农林科技大学,2008.
    [34]宁晓峰,李道修,番科.沼液无土栽培无公害生产试验[J].中国沼气,2004,22(2):38-39.
    [35]陈璧瑕.沼液农用对玉米产量、品质及土壤环境质量的影响研究[D].成都:四川农业大学硕士学位论文,2010.
    [36]王伟楠,杨改河,任广鑫,等.叶面喷施沼液对苹果树营养生长和果实品质的影响[J].西北农林科技大学学报,2008,36(11):151-156.
    [37]方梦萦,陆安坤,熊安思,等.沼气发酵液对烟草赤星菌抑制作用的研究[A].云南师范大学学报,2011,31(s):115-118.
    [38]宋洪川,张无敌,孙世中,等.油菜种子在沼液中发芽的研究[J].新能源,2000,22(5):26-27.
    [39]张无敌,宋洪川,孙世中,等.不同沼气发酵液浓度对白菜种子发芽的影响[J].农业与技术,1999(1):5-6.
    [40]管莉菠,虞方伯,罗锡平,等.几种沼液复配农药对小麦雪霉叶枯病菌的抑制效果研究 [J].安徽农业科学,2009,37(16):7542-7545.
    [41]尚斌,陶秀萍,陈永杏,等.牛场沼液对几种蔬菜病原菌抑制作用的研究[J].可再生能源,2004,3:22-24.农业环境科学学报,2011,30(4):753-760.
    [42]陈丽琼,尹芳,张无敌,等.沼气发酵液对烟草赤星菌的抑制研究[J].可再生能源,2004,3: 22-24.
    [43]尹芳,张无敌,宋洪川,等.沼液对某些植物病原菌抑制作用的研究[J].可再生能源,2005,2:9-11,36.
    [44]张全国,李鹏鹏,倪慎军,等.沼液复合型杀虫剂研究[J].农业工程学报,2006,22(6):157-160.
    [45]张全国,周雪花,李鹏鹏,等.沼液复合型杀虫剂的有效期和生态环保性能[J].农业工程学报,2008,2(8):219-222.
    [46]靳红梅,常志州,叶小梅,等.江苏省大型沼气工程沼液理化特性分析[J].农业工程学报,2011,27(1):291-296.
    [47]刘丽雪,陈海涛.沼渣物理特性及沼渣纤维化学成分测定与分析[J].农业工程学报,2010,26(7):277-280.
    [48]钟攀,李泽碧,李清荣,等.重庆沼气肥养分物质和重金属状况研究[J].农业环境科学学报,2007,26(增刊):165-171.
    [49]李袆雯,曲英华,徐奕琳,等.不同发酵原料沼液的养分含量及变化[J].中国沼气2012,30(3):17-20.
    [50]赵玲.生物预处理玉米秸秆厌氧干发酵特性及沼渣基质利用的研究[D].沈阳:沈阳农业大学,2011.
    [51]张昌爱,王艳芹,袁长波,等.不同原料沼气池沼渣沼液中养分含量的差异分析[J].现代农业科学,2009,16(1):45-46.
    [52]吕锦萍,李俊杰,巴哈提古丽,等.博州地区沼气池沼液沼渣有机质及养分含量分析[J].中国沼气,2008,26(5):28-29.
    [53]Yanping Liu, Jifang Zhang, Dexun Zou, et al.. Security Risk Analysis on the Nutrients and Heavy Metals of Biogas Slurry in Agricultural Application[J]. Agricultural Science & Technology,2012,13 (5):1067-1072,1104.
    [54]李轶,吕绪凤,刘庆玉,等.沼肥对设施土壤性质的影响[J].农机化研究,2009,10:140-142.
    [55]Kaveh Moradi, Bahram Mirshekari, Farhad Farahvash. Nitrogen spraying of soybeans at earlier flowering stage will be an ecological friendly fertilization management and improve crop yield [J]. World Applied Sciences Journal,2012,19 (10):1388-1392.
    [56]胡建平,舒夙辉,李福明.利用沼肥栽培杂交水稻的试验研究[J].中国沼气,2011,29(4):51-53.
    [57]戴小阳,蔡斯,彭琼等.沼液对玉米种子的发芽及生理特性的影响[J].安徽农业科学, 2007,35(6):1679-680.
    [58]王宁堂.沼液浸种的技术要点及注意事项[J].河北农业科技,2002,6:8.
    [59]宋洪川,张无敌,韦小岿,等.蔬菜种子在沼液中发芽的研究[J].云南师范大学学报,2002,22(2):20-23.
    [60]董晓涛.沼液对果菜类蔬菜生长发育调控机制研究[D].合肥:安徽农业大学硕士论文,2004.
    [61]王卫.沼液沼渣在蔬菜无土栽培中的应用研究[D].合肥:安徽农业大学硕士论文,2009.
    [62]林聪,周孟津,张榕林,等.养殖场沼气工程实用技术[M].北京,化学工业出版社,2010.
    [63]毕崇存,王文,王洁.用沼液喂育肥猪的效果观察[J].中国沼气,2003,21(1):42.
    [64]王军.饲料中添加沼液养猪[J].畜牧兽医杂志,2004,23(6):40.
    [65]李正华.厌氧发酵液的坑病防虫机理及某应用技术研究[D].郑州:河南农业大学硕士论文,2002.
    [66]高袖.沼气发酵残余物制备高效复合营养土研究[D].昆明:昆明理工大学硕士论文,2009.
    [67]李秀萍.沼液沼渣在养殖业中的应用[J].现代农业科技,2009,20:314-318.
    [68]单胜道,王志荣,宋成芳.沼液珍珠养殖高值资源化利用[J].安徽农业科学,2012,40(27):13399-13400.
    [69]Surindra Suthar. Potential of domestic biogas digester slurry in vermitechnology [J]. Bioresource Technology,2010,101:5419-5425.
    [70]Matsunaka T, Sawamoto T, Ishimura H, et al. Efficient use of digested cattle slurry from biogas plant with respect to nitrogen recycling in grassland[A]. International Congress Series 1293, Elsevier,2006,242-252.
    [71]Sanger A,Geisseler D,Ludwig B. Effects of rainfall pattern on carbon and nitrogen dynamics in soil amended with biogas slurry and composted cattle manure [J]. Journal of Plant Nutrition and Soil Science,2010,173 (5):692-698.
    [72]C. M. d. S. Cordovil, A. de Varennes, R. Pinto, R. C. Fernandes. Changes in mineral nitrogen, soil organic matter fractions and microbial community level physiological pro les after application of digested pig slurryfi and compost from municipal organic wastes to burned soils [J]. Soil Biology & Biochemistry,2011,43:845-852.
    [73]Marco Grigatti, Giuseppe Di Girolamo, Riccardo Chincarini, Claudio Ciavatta, Lorenzo Barbanti. Potential nitrogen mineralization, plant utilization efficiency and soil CO2 emissions following the addition of anaerobic digested slurries[J]. Biomass and bioenergy,2011,35: 4619-4629.
    [74]M. Tani, N. Sakamoto, T. Kishimoto, K. Umetsu. Utilization of anaerobically digested dairy slurry combined with other wastes following application to agricultural land[J]. International Congress Series,2006,1293:331-334.
    [75]K. Umetsu. Fertilizer value of anaerobically codigested dairy manure and food processing waste, in Takahashi, Green Gases and Animal Agriculture[J]. Elsevier B. V., Amsterdam, 2002,331-342.
    [76]Surindra Suthar. Potential of domestic biogas digester slurry in vermitechnology [J]. Bioresource Technology,2010,101:5419-5425.
    [77]Weltziehn H. C, Ketterer N.. Control of downy mildew, Plasmopara viticola (deBara) Berlese et de Toni, on grape vine leaves through water extracts from composted organic astes. J. Phytopath,1986,116:186-188.
    [78]Achim P., Schloesser E. Control of Plasmopara viticola with compost filtrates [J]. Med. Fac. Landbouww. Rijksuniv, Gent,1991,56 (2a):171-178.
    [79]K. A. Yongabi, P. L. Harris, D. M. Lewis and M. O. Agho.. Preliminary study on the effect of anaerobically ested cow dung slurry on the antimicrobial activity of three medicinal plants[J]. African Journal of Microbiology Research,2009,3 (4):168-174.
    [80]Dlare M, Pell M, Svensson K.. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues[J]. Waste Manag,2008,28: 1246-1253.
    [81]DeBoer HC.. Co-digestion of animal slurry can increase short-term nitrogen recovery by crops[J]. J Environ Qual,2008,37:1968-1973.
    [82]Terhoeven-Urselmans T, Scheller E, Raubuch M, Ludwig B, Joergensen. CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley[J]. Appl Soil Ecol,2009,42:297-302.
    [83]J. Abubaker, K. Risberg, M. Pell. Biogas residues as fertilisers-effects on wheat growth and soil microbial activities[J]. Applied Energy,2012,99:126-134.
    [84]Ruirui Chen, Evgenia Blagodatskaya, Mehmet Senbayram, et al.. Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities [J]. Biomass and bioenergy,2012,45:221-229.
    [85]M. Odlare, V. Arthurson, M. Pell, K. Svensson, E. Nehrenheim, J. Abubaker.. Land application of organic waste-Effects on the soil ecosystem[J]. Applied Energy,2011,88: 2210-2218.
    [86]Neeru Kadian, Anushree Malik, Santosh Satya, Prem Dureja. Effect of organic amendments on microbial activity in chlorpyrifos contaminated soil[J]. Journal of Environmental Management,2012,95:199-202.
    [87]陈丽琼,尹芳,张无敌.沼气发酵液对烟草赤星菌的抑制研究[J].可再生能源,2004(3)22-24.
    [88]尹芳,张无敌,宋洪川.沼液对某些植物病原菌抑制作用的研究[J].可再生能源,2005(2):9-11,36.
    [89]林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2009.
    [90]刘爽.复合菌系降解木质纤维素特性及其菌群动态[D].哈尔滨:东北农业大学硕士论文,2009.
    [91]刘振东.高效木质纤维素分解菌复合系的发酵特性[D].哈尔滨:东北农业大学硕士论文,2009.
    [92]种玉婷.稻杆降解复合菌系的筛选及其发酵特性研究[D].哈尔滨:东北农业大学硕士论文,2011.
    [93]马天翼.高浓度牛粪厌氧发酵最佳工艺的试验研究[D].哈尔滨:东北农业大学硕士论文,2012.
    [94]鲍士旦.土壤农化分析[M].北京:高等教育出版社,2005.
    [95]王远远.蔬菜废弃物沼气发酵工艺条件及沼气发酵残余物综合利用技术的研究[D].上海:上海交通大学硕士论文,2008.
    [96]白秀娟,刘诚刚,杜智恒,等.PCR-DGGE技术分析断奶仔兔肠道微生物菌群结构及多样性[J].东北农业大学学报,2012,43(9):64-69.
    [97]张平.沼液对禾谷镰刀菌杀抑效果的试验[J].农村能源,2001,(1):25-26.
    [98]张平.厌氧消化发酵液与植物病理防治[A].沼气技术和产业化发展研讨会论文选编,2009.
    [99]莫韵矶.厌氧发酵液对植物病菌抑制作用的研究[J].中国沼气,1988,6(2),6-10.
    [100]李顺鹏,沈标,樊庆笙.沼气发醉液对甘薯软腐病病原菌的抑菌机制研究[J].中国沼气,1991,9(3):6-9.
    [101]时振山,张平,李培乾,等.沼液防治小麦赤霉病的研究[J].中国沼气,1991,9(1)11-14.
    [102]李国庆,王道本,姜道宏,等.不同核盘菌株及其近缘种的RAPD分析[J].植物病理学报,2000,30(2):166-170.
    [103]Price K, Calhoun J. Pathogenicity of isolates of Sclerotinia sclerotiorum (Lib.) de Bary to several hosts[J]. Phytopathol,1975,83:232-238.
    [104]李永红,王灏,李建厂,等.核盘菌对油菜、向日葵和大豆的侵染及其致病性分化研究[J].植物病理学报,2005,35(6):486-492.
    [105]聂峰杰,左叶信,黄丽丽,等.陕西省核盘菌不同分离株对油菜的致病性研究[J].植物保护学报,2010,6(37):499-504.
    [106]O. Flaherty, V., Collins, G., Mahony, T.. Anaerobic digestion of agricultural residues[J]. Environmental Microbiology, USA,2010,259-260.
    [107]Yu X, Li B, Fu Y P, et al. A geminivius-related DNAmycovirus that confers hypovirulence to a plant pathogenic fungus[J]. PNAS,2010,107(18):387-8392.
    [108]张军政.黑龙江省大豆核盘菌生物学特性和生物防治的研究[D].哈尔滨工业大学博士论文,2009.
    [109]黄海婵,裘娟萍.枯草芽孢杆菌防治植物病害的研究进展[J],浙江农业科学,2005,3:213-215.
    [110]Sharma S, Singh R L, Kakkar P. Bacillus licheniformisIITRHR2:a novel source of antimicrobial proteinaceous foodsubstance[J]. Microbiol. Antimicrob.2010,2(9):127-133.
    [111]曹煜成,李卓佳,冯娟,等.地衣芽胞杆菌胞外产物消化活性的研究[J].热带海洋学报,2005,24(6):6-11.
    [112]彭爱铭,佟建明,崔建云,等.地衣芽胞杆菌TS-01胞外多糖功能的研究[J].食品科学,2004,25(z1):158-162.
    [113]杨阳,张付云,苍桂璐,等.地衣芽胞杆菌生物活性物质应用研究进展[J].生物技术进展,2013,3(1):22-26.
    [114]温小娟,闫淑珍,刘维红,等.拮抗性类芽孢杆菌F53菌株的固体发酵条件研究[J],安徽农业科学,2007,35(2):461-463.
    [115]朱海平,姚槐应,张勇勇等.不同培肥管理措施对土壤微生物生态特征的影响[J].土壤通报,2003,34(2):140-142.
    [116]张无敌,尹芳,李建昌等.沼液对土壤有机质含量和肥效的影响[J].可再生能源,2008,26(6):45-49.
    [117]冯丽,董广林.浅议PH值对玉米生长发育的影响[J].农村实用科技信息,2010,6:10.
    [118]张媛,洪坚平,王炜等.沼液对石灰性土壤速效养分含量的影响[J].中国沼气,2008,26(2):14-16.
    [119]刘恩科.不同施肥制度土壤团聚体微生物学特性及其与土壤肥力的关系[D].北京:农业资源与农业区划研究所,2007.
    [120]王延军.有机农场土壤肥力定位监测及生态肥对土壤养分的调控研究[D].南京:南京农业大学硕士论文.
    [121]王宗寿.利用沼液种植黑麦草对土壤环境质量的影响[J].农业环境科学学报,2007,26(3):172-175.
    [122]介彦超,廖新佛,林东教等.不同沼液灌溉强度对土壤和渗滤液的影响[J].家畜生态学报,2009(4):52-56.
    [123]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [124]J Hsieh C H, Hong C M, Hong K Y. Effect of surface application of cattle manure on soil physical and chemical properties on pangola grass pasture[J]. Journal of Taiwan Livestock Research,1997,30 (4):395-409.
    [125]沈宏,曹志洪,徐志洪.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173.
    [126]Jenkinson D S, Hart PBS, Rayner J H et al. Modelling the turnover of organicmatter in long-term experiments at rothamsted[J]. Intecol Bull,1987,15:1-8.
    [127]吕汶霖.沼液农用对小麦产量、品质及土壤质量的影响研究[D].成都:四川农业大学硕士:学位论文,2011.
    [128]刘恩科.不同施肥制度土壤团聚体微生物学特性及其与土壤肥力的关系[D].北京:农业资源与农业区划研究所,中国农业科学院博士学位论文,2007.
    [129]宫曼丽,任南琪,邢德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报,2004,44(6):845-848.
    [130]匡小珠.高效秸秆厌氧降解复合菌系的构建及功能菌株的筛选[D].中国科学院研究生院硕士论文,2010.
    [131]Fischer S G, Lerman L S. Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis[J]. Cell,1979,16:191-200.
    [132]Muyzer G, Waal E C. Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA[J]. Applied and Environmental Microbiology,1993,59:695-700.
    [133]张洪勋,陈曦.微生物生态学研究进展—第十一届国际微生物生态学大会综述[J].科技导报,2007,259(8):74-77.
    [134]马鸣超,姜听,李俊.应用16SrDNA克隆文库解析人工快速渗滤系统细菌种群多样性[J].微生物学通报,2008,35(5):731-736.
    [135]于崧.转BADH基因大豆对盐碱土壤磷素转化的影响[D].哈尔滨:东北农业大学博士论文,2013.
    [136]Liu, B., Zeng, Q., Yan, F., Xu, H., Xu, C.. Effects of transgenic plants on soil microorganisms [J]. Plant and Soil,2005,27 (1):1-13.
    [137]Isik I., Guenther S.. Fate and effects of insect-resistant crops in soil ecosystems [J]. Soil Biology and Biochemistry,2008,40:559-586.
    [138]黄青松,石竖鲲,高献娟,王立成.摇臂精密冲铆成形装置研究[J].锻压技术,2011,36(4):85-91.
    [139]吕波,王喜恒,房国清.拖拉机液压提升力的换算[J].农机化研究,200:1,2:142.
    [140]宋洪川.农村沼气实用技术[M].化学工业出版社,北京,2007.
    [141]周孟津,张榕林,蔺金印.沼气实用技术[M].化学工业出版社,第二版,北京,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700