用户名: 密码: 验证码:
海洋可控源电磁法三维时域有限差分数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋可控源电磁法在海洋能源勘探、资源勘查、海洋目标探测中占有重要的地位,也是目前国际海洋勘探领域的研究热点。其中,海洋电磁三维时间域数值模拟是一项重要研究内容,也是具有挑战性的科学难题。本论文在国家863计划项目课题的资助下开展了海洋可控源电磁法三维时域有限差分(FDTDFinite-Difference Time-Domain)数值模拟。
     论文在前人TEM勘探的FDTD模拟基本理论和关键技术的基础上,对海洋可控源电磁法FDTD开展了系统研究,主要研究内容和成果如下。
     1.作为FDTD数值计算的检验标准,针对海洋电磁的特点,论文导出了源在导电空间激发的导电全空间、半空间中电偶极子的阶跃电流响应、截断电流响应、脉冲电流响应以及任意电流信号的时域响应解析式。并研究了导电全空间中阶跃电流响应与介质电阻率、传播时间、传播距离之间的关系,通过电偶极子场各个场分量在空间中的分布图分析,直观显示了海洋电磁响应的特征。
     2.论文研究了层状导电空间中电偶极子场的数值计算,并将数值计算结果与全空间和半空间的解析结果进行对比,验证了程序的正确性。
     3.论文重点研究了海洋环境下FDTD方法适用的控制方程,时空剖分方法,电磁场迭代差分公式,讨论了各类边界条件、稳定性、数值色散和源电流信号等关键技术,推导了扩散方程的三维Du Fort-Frankel格式,导出了“虚拟介电常数”的表达式。
     4.论文研究中采用高斯脉冲作为发射信号,完成了电偶极子在全空间的场分布的计算,模拟结果表明:场在初期为椭球型,后期为球形,与解析结果给出的图样相似;同时,全空间高斯脉冲响应与脉冲响应的解析解的时序对应较好;其次,计算了海洋导电半空间的高斯脉冲响应,并与半空间脉冲响应的解析解做了比较;再者,计算了海洋三分空间的电磁场,在高阻异常和低阻异常层的情况下,电阻率异常界面清晰,结果符合先验知识。
     5.针对浅海拖缆式海洋电磁勘探模式,应用FDTD方法分别对海洋油气等高阻储层和金属矿产等低阻储层做了一维构造、二维构造、三维构造的三维建模和数值模拟。通过正演数据的异常分析,说明了FDTD法在MCSEM数值模拟中的有效性。
     6.提出了海空联合电磁勘探技术模式,开展了频率域一维和2.5维的数值模拟。同时,分别对海洋油气高阻异常和金属矿等低阻异常进行三维建模和FDTD数值模拟,对正演数据用各种方法进行异常分析,并与一维和2.5维频率域计算结果进行比对分析,说明了海空联合勘探模式的有效性,证明了FDTD法对海空联合勘探的可行性。
     本文取得了以下性创新性成果:
     1.导出了导电全空间、导电半空间中电偶极子任意电流的时域响应解析式。给出了层状导电空间中电偶极子任意电流时域响应的数值算法。
     2.较为成功的将FDTD方法用于海洋可控源电磁勘探中,对其方程的建立、稳定性、数值色散、边界条件、虚拟介电常数、初始时刻等关键参数进行了讨论,使用高斯脉冲作为发射信号直接加到方程中,避免了前人使用解析结果作为初始条件加入迭代中的复杂性和局限性。将数值实验结果与解析结果进行对比,验证其有效性。
     3.使用FDTD方法模拟了海洋中电磁波传播及与一维、二维、三维构造不同电阻率异常体相互作用的规律和特征,给出了全空间全时段海洋电磁场的时空分布,对海洋电磁研究和资料解释有一定的参考价值。
     4.提出了海空联合电磁勘探技术模式,通过一维、2.5维频率域方法和三维FDTD方法时频域相结合验证了该模式的有效性。
     本文的研究成果对海洋电磁勘探、设计、数值模拟及海洋目标探测都有参考价值。对CSEM和MCSEM的研究具有重要的理论意义和指导作用。
Recently, MCSEM (Marine Controlled Source Electromagnetic Method) hasbecome research focus in sea energy exploration, resource exploration, and marinetarget detection. Three-Dimensional Numerical Simulation of time domain is animportant branch of MCSEM and a challenging scientific problem. In this paper, FDTD(Finite-Difference Time-Domain) simulation for mcsem is carried out with the supportof a major national project.
     On the basis of predecessors’ study of the basic theory and key technology to theland csem exploration with FDTD method, a comprehensive study of the applicationin MCSEM has been made in this article, including:
     1. As a testing standard and basis of the validity of numerical simulation resultsof fdtd, for the characteristics of MCSEM, source inspired in conducting space, paperfirst exports analysis formulas of step current response, truncated current response,pulse current response and time-domain response of arbitrary current type of electricdipole in the whole space, half-space, studies the relationship of the step currentresponse of electric dipole, with the resistivity of the media, propagation time andrange in the entire space. Rather more, draws spatial distribution pattern of each fieldcomponent of electric dipole in Cartesian system.
     2. Numerical solution of electric dipole field in the layered conductive space isgiven and compared with analytical solution in whole space and half space to verifythe correctness of the program.
     3. The control equation of FDTD method suitable for marine CSEM, time andspace division method, electromagnetic iterative difference formula is studied, anddiscussed the key technology of various boundary conditions, stability, numericaldispersion and current source,3D Du Fort-Frankel derived format of diffusionequation,and expression of virtual dielectric constant are derived. Finally, the program is compiled and numerical experiments are carried out.
     4. The validity and reliability of the marine FDTD method was conducted tovalidate and analyze. Field distribution of electric dipole in space is calculated withGauss pulse of transmission signal. The results show that the field is ellipsoid-shapedin the early stages, later is spherical, and the numerical results are similar to thepatterns of analytical ones; Gauss impulse responses in the whole space werecompared with analytical solution of pulse response, Timing is matched very well;Gauss pulse response of marine conductive half space was calculated and comparedwith analytical solution of impulse response in half space, Timing is matched verywell; Electromagnetic field of the ocean three space is calculated, for the situation ofcontaining high resistance layer and low resistance layer. Resistivity anomalyinterface is clear, and the results are consistent with prior knowledge. All these resultsindicated that parameters of FDTD is tunned appropriately, virtual velocity iscontrolled well, that verify the correctness and effectiveness of FDTD method inMCSEM.
     5. According to the electromagnetic exploration model of towed MCSEM inshallow sea,3D numerical simulations have been done with the FDTD method for themarine high resistance body as oil and gas and other low resistivity reservoirs as metalmineral resources of one-dimensional, two-dimensional and three-dimensionalstructure. Anomaly analysis of forward data using a variety of methods, to illustratethe effectiveness of the FDTD method in the numerical simulation of MCSEM..
     6. As for the electromagnetic exploration model of combination of air and sea,firstly, frequency domain numerical simulation of one dimensional and2.5dimensional is done to verify the effectiveness of the model. Then,3D modeling withFDTD is carried out respectively on high resistivity anomaly of the marine oil and gas,and low resistance anomaly of and metal ore. Last, abnormal analysis are done toforward data of3d modeling using various methods, and the results were comparedwith that of one-dimensional2.5dimensional frequency domain calculation. Twoconclusions can be maken, first of all, the joint exploration model of sea and air iseffective, and in addition, the numerical simulation method of FDTD is effective forthe joint exploration of sea and air.
     This paper has obtained the following innovative results:
     1. Export analytical formula of time-domain response of arbitrary electric currentof electric dipole in the whole conducting space and in a half space of conducting.Numerical algorithm of time-domain response of arbitrary electric current of electric dipole in layered conductive space is given.
     2. The FDTD method is first applied in marine controlled source electromagneticexploration successfully. The key parameters such as equation, stability, numericaldispersion, boundary conditions, virtual dielectric constant, and the initial time arediscussed; much numerical experiments have been done, and the experimental resultshave a good agreement with analytical results, and verify its effectiveness. Fill a gapin the time domain numerical simulation of MCSEM. The paper use the Gauss pulseas transmission signal, and add it to the iterative equation directly, avoidingcomplexity and limitation of the previous method about source, in which analyticalresults are added to electromagnetic fields iterations as initial conditions. Unlike thelinear current signal, Gauss pulse has more important research value and practicalvalue. First of all, it is a pulse, with broadband characteristics; secondly, the risingedge of it can be used to simulate the step current, and falling edge of it can be used tosimulate the truncation current. While strong numerical dispersion can not be causedusing Gauss pulse rather than using step current and truncated current, which willgenerate high-frequency oscillations at early and late time; also, Low frequencyspectrum of the Gauss pulse is rich and easy to be controled and adjusted. Therefore,Gauss pulse is very suitable to be used as signal source of marine electromagneticnumerical simulation.
     3. Using FDTD method, simulate the propagation of electromagnetic waves andthe interaction with different resistivity anomaly of one-dimensional, two-dimensional,three-dimensional structure in the ocean. Space-time distribution of the whole spacefull time marine electromagnetic field is given, which has a certain reference value forthe marine electromagnetic research and data interpretation.
     4. One-dimensional,2.5dimensional frequency domain methods are combinedwith3D FDTD method to verify the validity of the air-sea electromagneticprospecting model.
     The research results of this paper have reference value to the marineelectromagnetic exploration, design, numerical simulation and detection of marinetargets. More over, they have the theory significance and the important guiding role ofCSEM and MCSEM.
引文
[1]陈洁,温宁,李学.南海油气资源潜力及勘探现状[J].地球物理学进展,2007,22(4):1285-1294.
    [2] R. N.EDWARDS. MARINE CONTROLLED SOURCE ELECTROMAGNETICS:PRINCIPLES, METHODOLOGIES, FUTURE COMMERCIAL APPLICATIONS[J].Surveys in Geophysics,2005,(26):675~700.
    [3] R. N. Edwards. On the resource evaluation of marine gas hydrate deposits using sea-floortransient electric dipole-dipole methods[J]. GEOPHYSICS,1997,62(l):63~74.
    [4] He Zhanxiang, Kurt Strack, Yu Gang, Wang Zhigang. On reservoir boundary detection withmarine CSEM[J]. APPLIED GEOPHYSICS,2008,5(3):181-188.
    [5] Steven C. Constable, Robert L. Parker, and Catherine G. Constable. Occam’s inversion: Apractical algorithm for generating smooth models from electromagnetic sounding data[J].Geophysics,1987,52(3):289-300.
    [6] Michael J. Tompkins, Leonard J. Srnka. Marine controlled-source electromagneticmethods-Introduction[J]. GEOPHYSICS,72(2):WA1-WA2SEG1999Expanded Abstracts.
    [7] S. ELLINGSRUD, T. EIDESMO, and S. JOHANSEN. Remote sensing of hydrocarbon layersby seabed logging (SBL):Results from a cruise offshore Angola[J]. THE LEADING EDGE,2002, OCTOBER:972-982.
    [8] J.J. Carazzone, O.M. Burtz, K.E. Green. Carazzone-SEG-Three Dimensional Imaging ofMarine CSEM Data. SEG2005Expanded Abstracts,575-579.
    [9] C. K., Choo, M. Rosenquist E., Rollett. DETECTING HYDROCARBON RESERVOIRWITH SEABED LOGGINGTM IN DEEPWATER SABAH, MALAYSIA. SEG2006Expanded Abstracts,714-718.
    [10]周熙襄,钟本善.电法勘探数值模拟技术[M].成都:四川科学技术出版社,1986.
    [11]何继善等.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1990.
    [12]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005.
    [13]石昆法.可控源音频大地电磁理论与应用[M].北京:科学出版社,1999.
    [14]底青云,王若.可控源音频大地电磁数据正反演及方法应用[M].北京:科学出版社,2008.
    [15]考夫曼(Kaufman,A.A.),凯勒(Keller,G.V.).王建谋等译.频率域和时间域电磁测深[M].北京:地质出版社,1987.
    [16]纳比吉安(Nabighian Misac N.).赵经祥,王艳君译.勘查地球物理-电磁法[M].北京:地质出版社,1992.
    [17]朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    [18]傅良魁.电法勘探教程[M].北京:地质出版社,1983.
    [19] Gerald W. Hohman. Three-Dimensional induced polarization and electromagneticmodeling[J]. Geophysics,1975,40(2):309-3242.
    [20]樊明武,颜威利.电磁场积分方程法[M].北京:机械工业出版社,1988.
    [21] Hursán, G., and Zhdanov, M. S.,2002, Contraction integral equation method inthree-dimensional electromagnetic modeling. Radio Sci.,37,6,1089. DOI:10.1029/2001RS002513.
    [22] Masashi Endo, Martin Cuma, and Michael S. Zhdanov. Large-scale ElectromagneticModeling for Multiple Inhomogeneous Domains[J]. COMMUNICATONS INCOMPUTATIONAL PHYSICS,2008(9):1-27.
    [23] Sam C. Ting and Gerald W. Hohman. Integral equation modeling of three-dimensionalmagnetotelluric response[J]. Geophysics,1981,46(2):182-197.
    [24] Gregory A. Newman and Gerald W. Hohman. Transient electromagnetic responses ofhigh-contrast prisms in a layered earth[J]. Geophysics,1988,53(5):691-760.
    [25] Wannamaker P E. Electromagnetic modeling of three-dimensional bodies in layered earthsusing integral equations[J]. Geophysics,1984,49(1):60-74.
    [26]徐利明,聂在平,王军.半空间电场型并矢格林函数及其数值计算[J].电子科技大学学报,2004,33(5):485-488.
    [27]陈桂波,汪宏年,姚敬金等.利用积分方程法的各向异性地层频率测深三维模拟[J].计算物理,2010,27(2):274-280.
    [28] Yongliang Meng, Weidong Li, Michael S. Zhdanov, Yanzhong Luo.2.5D Electromagneticforward modeling in the time and frequency domains using the finite element method. SEG1999Expanded Abstracts.
    [29] Key, K and C. Weiss. Adaptive finite element modeling using unstructured grids: the2Dmagnetotelluric example[J]. Geophysics,2006,71, G291-G299.
    [30] Li. Y. and K. Key.2D marine controlled-source electromagnetic modeling:Part1AnAdaptive finite element algorithm[J]. Geophysics,2007,72, WA51-WA62.
    [31] Coggon,J. H. Electromagnetic and electrical modeling by the finite element method[J].Geophysics,1971,36,123-155.
    [32]底青云,UNSWORTH M,王妙月.有限元2.5维CSAMT数值模拟[J].地球物理学进展,2004,19(2):317-342.
    [33]底青云,UNSWORTH M,王妙月.复杂介质有限元2.5维可控源音频大地电磁法数值模拟[J].地球物理学报,2004,47(4):723-730.
    [34]王若,王妙月,底青云.频率域线源大地电磁法有限元正演模拟[J].地球物理学报,2006,49(6):1858-1866.
    [35]熊彬,罗延钟.电阻率分块均匀的瞬变电磁2.5维有限元数值模拟[J].地球物理学报,2006,49(2):590-597.
    [36]王华军,罗延钟.中心回线瞬变电磁法2.5维有限元算法[J].地球物理学报,2003,46(6):855-862.
    [37] Greenfield, R.J. Two-dimensional calculations of magnetic micro pulsation resonances: Ph.D.thesis. M.I.T,1965.
    [38] C. H. Stoyer. Numerical solutions of the response of two-dimensional earth to an oscillatingmagnetic dipole source with application to a groundwater field study: Ph.D. thesis.Pennsylvania State University,1974.
    [39] C. H. Stoyer, Roy J. Greenfield. Numerical solutions of the response of a two-dimensionalearth to an oscillating magnetic dipole source[J]. GEOPHYSICS,1976,41(3):519-530.
    [40] Igel H, Riollet B.and Mora P. Accuracy of staggered3-D finite-difference grids foranisotropic wave propagation. SEG Expanded Abstracts.1992,1244-1246.
    [41]胡青龙,王绪本,沙椿等.垂直磁偶极子2.5维正演模拟[J].成都理工大学学报(自然科学版),2010,37(3):283-288.
    [42]沈金松.用交错网格有限差分法计算三维频率域电磁响应[J].地球物理学报,2003,46(2):281-289.
    [43]杨波,徐义贤.考虑地形的海洋可控源电磁[D].武汉:中国地质大学,2012.
    [44]焦健,王绪本.海洋可控源电磁法二维正演研究与响应分析[D].成都:成都理工大学,2012.
    [45]罗锋,邓明.海底大地电磁仪采集驱动程序的上位机可视化设计[D].北京:中国地质大学,2006.
    [46]李慧,林君.海洋瞬变响应理论计算及浅海瞬变电磁探测技术研究[D].北京:吉林大学,2007.
    [47]李云,魏文博.海底大地电磁数据处理系统研究[D].北京:中国地质大学,2009.
    [48]张自力,魏文博.海洋电磁场的理论及应用研究[D].北京:中国地质大学,2009.
    [49]刘长胜,林君.海底可控源电磁探测数值模拟与实验研究[D].吉林:吉林大学,2009.
    [50]史增园,刘展.海洋可控源电磁法正演研究与实现[D].北京:中国石油大学,2010.
    [51]刘方镝,王绪本.可控源海洋电磁法一维正反演研究[D].成都:成都理工大学,2012.
    [52]孙卫斌,李德春.海洋油气电磁勘探技术与装备简介[J].2006,16(1):16~18.
    [53]何展翔,孙卫斌,孔繁恕等.海洋电磁法[J].石油地球物理勘探,2006,41(4):451~457.
    [54]何展翔,余刚.海洋电磁勘探技术及新进展[J].勘探地球物理进展,2008,31(1):2~9.
    [55]孙卫斌,何展翔.海洋可控源电磁勘探技术及装备[J].物探装备,2010,20(1):51~56.
    [56] oristaglio M L, Hohmann G W. Diffusion of electromagnetic fields into a two dimensionalearth: A finite-difference approach. Geophysics,1984,49(7):870~894.
    [57] William A. SanFilipo and Gerald W. Hohmann. Integral equation solution for the transientelectromagneticresponse of a three-dimensional body in a conductive half-space[J].Geophysics,1985,50(5):798~809.
    [58] Gregory A. Newman, Gerald W. Hohmann, and Walter L. Anderson. Transientelectromagnetic response of a three-dimensional body in a layered earth[J]. Geophysics,1986,51(8):1608~1627.
    [59] JOPIE I. ADHIDJAJA and GERALD W. HOHMANN. Step Responses forTwo-Dimensional Electromagnetic Models[J]. Geoexploration,1988(25):13-35.
    [60] Jopie I. Adhidjaja and Gerald W.Hohmann. A finite-difference algorithm for the transientelectromagnetic response of a three-dimensional body[J]. Geophysics,1989,98:233-242.
    [61] Tsili Wang and Gerald W. Hohmann. A finite-difference, time-domain solution forthree-dimensional electromagnetic modeling[J]. Geophysics,1993,58(6):797~809.
    [62] Tsili Wang. Inversion of diffusive transient electromagnetic data by a conjugate-gradientmethod[J]. Radio Science,1994,29(4),1143-1156.
    [63] Tsili Wang.三维介质中电磁波传播的模拟[J].石油物探译丛.1997,2,94.
    [64] Tsili Wang. An Upgridding Method for3-DFinite-Difference Resistivity Modeling. SEG Int’lExposition and Annual Meeting. San Antonio,Texas.2001(9).
    [65] Tsili Wang and Jack Signorelli.3-D Finite-Difference Analysis of Electromagnetic Responsefor Measurement While Drilling. IEEE Conference,2002.
    [66]闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析[J].地球物理学报,2002,45(2):275-284.
    [67]闫述,陈明生.井下全空间瞬变电磁法FDTD计算中薄层和细导线的模拟[J].煤田地质与勘探,2004,32(增):87-89.
    [68]闫述,傅俏,王刚等.复杂3D瞬变电磁场FDTD模拟中需要解决的问题[J].煤田地质与勘探,2007,35(2):63-66.
    [69]傅俏,闫述.导电媒质中似稳瞬态电磁场响应的直接时域数值模拟[D].镇江:江苏大学,2007.
    [70]史红蓓,闫述.导电媒质中三维似稳瞬态电磁场的FDTD数值模拟[D].镇江:江苏大学,2009.
    [71]石显新,陈明生.瞬变电磁法勘探中的低阻层屏蔽问题研究[D].北京:煤炭科学院,2005.
    [72]闫玉波,葛徳彪.脉冲源激励下地下目标的电磁散射分析[J].电子学报,2002,30(3):325-327.
    [73]刘云.起伏地形大地电磁、时间域瞬变电磁二维数值模拟及直接反演法[D].成都:成都理工大学,2012.
    [74] Wright, D., Ziolkowski, A., and Hobbs B., Hydrocarbon detection and monitoring with amulticomponent transient electromagnetic (MTEM) survey. The Leading Edge,2002,21,852-864.
    [75] Wright, D.A., Ziolkowski, A.M., and Hobbs, B.A., Detection of subsurface resistivitycontrasts with application to location of fluids.2005, US patent6,914,433.
    [76] Ziolkowski, A., Hobbs, B.A., and Wright, D., Multitransient electromagnetic demonstrationsurvey in France. Geophysics,2007,72,197-209.
    [77] PGS, A Multi-Transient EM Repeatability Experiment over the North Sea Harding Field[J].PGS TECH LINK,2009,8:1-6.
    [78] Anton Ziokowski, Ronnie Parr, David Wright. Multi-transient electromagnetic repeatabilityexperiment over the North Sea Harding field[J]. Geophysical Prospecting,2010,58,1159-1176
    [79] PGS, A Towed EM Test at the Peon Discovery in the North Sea[J]. PGS TECH LINK,2010,3, Vol.10No.3
    [80] PGS, A Prototype Electromagnetic Streamer-latest advances[J]. PGS TECH LINK,2010,10:8-11
    [81] Anton Ziolkowski1, David Wright and Johan Mattsson, Comparison of pseudo-randombinary sequence and square-wave transient controlled-source electromagnetic data over thePeon gas discovery, Norway[J]. Geophysical Prospecting,2011,59:1114–1131
    [82] http://www.pgs.com/en/Geophysical-Services/Towed-Streamer-EM
    [83] R. N. Edwards, A. D. Chave. A transient electric dipole-dipole method for mapping theconductivity of the seafloor,Geophysics,1986,51(4):984~987
    [84]陈载林,黄临平,陈玉梁.我国瞬变电磁法应用综述[J].铀矿地质,2010,26(1):51~54.
    [85]吴小平,何继善.TEM中宽频激励源及单脉冲测深方法研究[D].长沙:中南大学,2010.
    [86]薛国强,周楠楠,闫述.电性源瞬变电磁法全场区探测方法.中国地球物理2011,767
    [87]张胜业,杨梅霞,罗延钟.天然气水合物的瞬变电磁响应研究[J].石油地球物理勘探,2004,39(增):62-65.
    [88]罗维斌,汤井田.伪随机海洋可控源多道电磁测深法研究[D].长沙:中南大学,2007.
    [89] M. E. Everett, R. N.EDWARDS. Transient marine electromagnetics: the2.5-D forwardproblem[J]. Geophysics,1992,113:545~561
    [90] Marius Birsan. Low-frequency transient (time domain) electromagnetic fields propagating ina marine environment[J]. International Journal of Numerical Modelling.2004,17:325-333.
    [91]薛国强,李貅,底青云.瞬变电磁法正反演问题研究进展[J].地球物理学进展.2008,23(4):1165~1172.
    [92] Bruce Hobbs, PGS, Michael S. Zhdanov and Alexander.3D focusing regularized inversionof marine transient electromagnetic data: A case study from the Alvheim field, North Sea.SEG Expanded Abstracts,2010,604-608.
    [93] J. H. Knight, A. P. Raichei. Transient electromagnetic calculations inverse Laplace transformmethod[J]. GEOPHYSICS,1982,47(1):47-50.
    [94]郭硕鸿.电动力学(第三版)[M].北京:高等教育出版社,2008.
    [95]曲超纯,张静,宋守根.点源场计算方法[M].昆明:云南科技出版社,1999.
    [96]钱伟长.格林函数和变分法在电磁场和电磁波计算中的应用[M].上海:上海科学技术出版社,1989.
    [97]毕德显.电磁场理论[M].北京:电子工业出版社,1985.
    [98]戴振铎.电磁理论中并矢格林函数[M].武汉:武汉大学出版社,2005.
    [99]卢新城,龚沈光,周俊.海水中极低频电偶极子电磁场的解析解[J].电波科学学报,2004,19(3):290-295.
    [100]何继善.海洋电磁法原理[M].北京:高等教育出版社,2012.
    [101]刘胜道,龚沈光.并矢格林函数法求解海水中电偶极子电场[J].电波科学学报,2002,17(4):373-377.
    [102]梁昆淼.数学物理方法(第四版)[M].北京:高等教育出版社,2010.
    [103]数学物理方法.数学物理方法学习指导[M].北京:科学出版社,2001.
    [104]丁玉美,高西全.数字信号处理(第二版)[M].西安:西安电子科技大学出版社,2000.
    [105] Kerry Key.1D inversion of multicomponent, multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics,2009,74(2):9~20.
    [106]王华军.正余弦变换的数值滤波算法[J].工程地球物理学报,2004,1(4):329-335.
    [107]李予国,Steven CONSTABLE.浅水区的瞬变电磁法:一维数值模拟结果分析[J].地球物理学报,2010,53(3):737-742.
    [108]葛德彪,闫玉波.电磁波时域有限差分方法(第三版)[M].西安:西安电子科技大学出版社,2011.
    [109]王秉中.计算电磁学[M].北京:科学出版社,2002
    [110] Dennis M. Sullivan. Electromagnetic Simulation Using the FDTD Method[M]. New York:IEEE Process,2000.
    [111] Allen Taflove,Suan C. Hagness. Computational Electrodynamics:The Finite-DifferenceTime-Domain Method[M]. London:Arrech House,2000.
    [112]倪光正,杨仕友,钱秀英等.工程电磁场数值计算[M].北京:机械工业出版社,2004.
    [113]王长青.现代计算电磁学基础[M].北京:北京大学出版社,2005.
    [114]王长青,祝西里.电磁场计算中的时域有限差分法[M].北京:北京大学出版社,1994.
    [115]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社,2006.
    [116]刘少斌,刘崧,洪伟.色散介质时域有限差分方法[M].北京:科学出版社,2010.
    [117] Wenhua Yu, Raj Mittra. A NEW SUBGRIDDING METHOD FOR THEFINITE-DIFFERENCE TIME-DOMAIN (FDTD) ALGORITHM. MICROWAVE ANDOPTICAL TECHNOLOGY LETTERS,1999,21(5):330-333.
    [118] P. THOMA, T. WEILAND. A CONSISTENT SUBGRIDDING SCHEME FOR THEFINITE DIFFERENCE TIME DOMAIN METHOD. INTERNATIONAL JOURNAL OFNUMERICAL MODELLING,1996,9:359-374
    [119] Maksims Aba enkovs, Fumie Costen, Jean-Pierre Bérenger. Huygens Subgridding for3-DFrequency-Dependent Finite-Difference Time-Domain Method. IEEE TRANSACTIONS ONANTENNAS AND PROPAGATION,2012,60(9):4336-4343.
    [120] Svetlana S. Zivanovic, Kane S. Yee, Kenneth K. Mei. A Subgridding Method for theTime-Domain Finite-Difference Method to Solve Maxwell’s Equations[J]. IEEETRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,1991,39(3):471-479.
    [121] A. Monorchio, R. Mittra. A Novel Subgridding Scheme Based on a Combination of theFinite-Element and Finite-Difference Time-Domain Methods[J]. IEEE TRANSACTIONSON ANTENNAS AND PROPAGATION,1998,46(9):1391-1393.
    [122]胥泽银,何永富,周维奎等.解二维扩散方程的DuFort-Frankel差分格式[J].成都理工学院学报,2000,27(1):77~81.
    [123] J. T. WEAVER. THE QUASI-STATIC FIELD OF AN ELECTRIC DIPOLE EMBEDDEDIN A TWO-LAYER CONDUCTING HALF-SPACE[J]. Canadian Journal of Physics.1967,45:1981~2001
    [124] Elie Boridy. Quasi-static fields generated by electric and magnetic dipoles located in apartially bounded space[J]. Journal of Applied Physics.1991,69(4):1805-1812.
    [125] James C. Macnae. Survey design for multicomponent electromagnetic systems[J].Geophysics,1984,49(3):265~273.
    [126] MISAC N. NABIGHIAN. THE ANALYTIC SIGNAL OF TWO-DIMENSIONALMAGNETIC BODIES WITH POLYGONAL CROSS-SECTION: ITS PROPERTIES ANDUSE FOR AUTOMATED ANOMALY INTERPRETATION[J]. Geophysics,1972,37(3):507~517.
    [127] MISAC N. NABIGHIAN. Toward a three-dimensional automatic interpretation of potentialfield data via generalized Hilbert transforms: Fundamental relations[J]. Geophysics,1984,49(6):780~786.
    [128]甑西丰.实用数值计算方法[M].北京:清华大学出版社,2006.
    [129]毛立峰,王绪本.超宽带电磁法正演模拟与反演成像[D].成都:成都理工大学,2007.
    [130]姜彦南,葛徳彪,魏兵.时域有限差分并行算法中的吸收边界研究[J].系统工程与电子技术,2008,30(9):1636~1640.
    [131]陈曙东,林君,张爽.发射电流波形对瞬变电磁响应的影响.地球物理学报,2012,55(2):709-716.
    [132]董良国,马在田,曹景忠,一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-418.
    [133]刘庆敏.高阶差分数值模拟方法研究[D].北京:中国石油大学,2007.
    [134]周学明,李庆春,李志华等.地震波交错网格高阶差分数值模拟研究[J].铁道工程学报,2011,8:1-6.
    [135]董良国,马在田,曹景忠.一阶弹性波方程交错网格高阶差分解法稳定性研究[J].地球物理学报,2011,43(6):856-863.
    [136] Heiner Igel, Bruno Riollet, and Peter Mora. Accuracy of Staggered3-D Finite-DifferenceGrids for Anisotropic Wave Propagation. http://library.seg.org.
    [137]周振红,徐进军,毕苏萍等. Intel Visual Fortran应用程序开发[M].郑州:黄河水利出版社,2006.
    [138]刘卫国,蔡旭晖. Fortran90程序设计教程[M].北京:北京邮电大学出版社,2003.
    [139]邓巍巍,王越南. Visual Fortran编程指南[M].北京:人民邮电出版社,2000.
    [140]薛胜军,耿焕同. FORTRAN语言程序设计[M].北京:气象出版社,2009.
    [141]吴长莉.基于MPI和OpenMP的三维FDTD并行算法的研究[D].成都:电子科技大学,2009.
    [142]李菲菲.三维FDTD并行算法的研究及应用[D].成都:电子科技大学,2011.
    [143]于文华,杨小玲,刘永俊等.并行FDTD和IBMBlueGene_L巨型计算机结合求解电大尺寸的电磁问题[J].电波科学学报,2006,21(4):562-566.
    [144]张玉.电磁场并行计算[M].西安:西安电子科技大学出版社,2006.
    [145]余文华,李文兴.高等时域有限差分方法-并行、优化、加速、标准和工程应用[M].哈尔滨:哈尔滨工程大学出版社,2011.
    [146]董长虹,余啸海. Matlab接口技术与应用[M].北京:国防工业出版社,2004.
    [147]许波,刘征. Matlab工程数学应用[M].北京:清华大学出版社,2000.
    [148]高亚峰.海洋矿产资源及其分布[J].海洋信息,2009(1):13~14.
    [149]黄皓平.国外航空电磁法在浅海测深中的应用[J].国外地质勘探技术,1990(2):16~18.
    [150]徐世浙,王瑞,周坚鑫.从航磁资料延拓出海面磁场[J].海洋学报,2007,29(6):53-57.
    [151]乔日新,周坚鑫,杨华等.航空物探在海洋地学及油气资源调查中的应用[C].第二届全国海洋高技术产业化论坛论文集,北京,2005,395~401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700