用户名: 密码: 验证码:
芳氧苯氧丙酸类和氯乙酰胺类除草剂降解菌的分离鉴定、降解基因克隆表达及其代谢途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
除草剂大量使用造成的环境污染问题日益受到人们的关注,解决污染的手段与方法不断地被提出和更新,其中利用微生物降解除草剂已成为近年来的研究热点。芳氧苯氧丙酸类和氯乙酰胺类除草剂是我国除草甘膦以外,使用最多的两大类除草剂,并且这两类除草剂的品种多,使用量大;在解决了农田杂草危害的同时,也给环境带来了巨大的污染。本研究以精嗯唑禾草灵和乙草胺为底物,对芳氧苯氧丙酸类和氯乙酰胺类除草剂降解微生物进行了分离鉴定,以期为这两大类除草剂污染的生物修复及其抗除草剂转基因作物的研究提供理论基础和微生物资源。
     一、精噁唑禾草灵降解菌的分离鉴定及降解特性研究
     从长期受农药污染的土壤中分离出能够快速降解精嗯唑禾草灵的菌株T1,根据表型特征、生理生化特性及16S rDNA系统发育分析,将其初步鉴定为红球菌属(Rhodococcus sp.)。菌株T1最适生长温度和pH分别25℃和7.0,好氧性生长,当NaCl浓度小于3%时,菌体生长良好。
     经HPLC/MS鉴定菌株T1代谢精嗯唑禾草灵的产物为精噁唑禾草灵酸,即该菌株降解精噁唑禾草灵是依靠断裂其酯键来实现的,但是它不能进一步降解精嗯唑禾草灵酸。菌株T1可以精嗯唑禾草灵降解过程中产生的乙醇进行生长,其降解精噁唑禾草灵的最适温度和pH分别为30℃和8.0。在该条件下,5%接种量的菌株T1在24h内可将100mg·L-1的精噁唑禾草灵降解94%以上,且该菌株还能降解包括精喹禾灵、氰氟草酯、炔草酯、高效氟吡甲禾灵等在内的多种芳氧苯氧丙酸类除草剂,降解谱很广。
     二、精嗯唑禾草灵水解基因feh的克隆表达及酶学性质研究
     以三丁酸甘油酯为底物,利用鸟枪法从Rhobococcus sp. T1基因组文库中筛选到了两个含有酯酶基因的阳性克隆;其中阳性克隆pTT2具有精噁唑禾草灵水解活性。利用重叠延伸PCR技术从阳性克隆pTT2中成功扩增出了精噁唑禾草灵水解酶基因feh,并成功构建了该基因的表达载体pET29a-feh; feh可以在E.coli BL21(DE3)中很好地表达,重组酶Feh经Ni-NTA柱纯化后获得纯酶。
     精嗯唑禾草灵水解酶Feh的最适反应温度为50℃,最适反应pH值为9.5,具有较好的pH稳定性和热稳定性。Feh可以水解对硝基苯酯类和三酰甘油酯类物质,但水解能力受碳链长度影响。Feh以精噁唑禾草灵为底物时的Km和Vmax分别为0.37mmol·L-1和1.08mmol-min-1·mg-1.
     三、乙草胺降解菌的分离鉴定
     利用以乙草胺为唯一碳源的无机盐培养基,从乙草胺农药厂的活性污泥中获得了能够将乙草胺完全降解的富集液T3和T4,二者均能在6d内将100mg·L-1的乙草胺完全降解。富集液T3和T4均能降解丁草胺,并使敌稗部分降解产生新的产物,但二者均不能降解吡草胺和丙草胺。利用RFLP和平板培养发现富集液T3和T4中具有丰富的细菌多样性。
     从富集液T3和T4中逐步分离到了能够将乙草胺完全降解的菌株T3-1、T3-6、T4-7和MEA3-1;它们联合降解乙草胺的途径为:菌株T3-1将乙草胺降解为2’-甲基-6’-乙基-2-氯乙酰苯胺(CMEPA),菌株T3-6和菌株T4-7再将CMEPA降解为2,6-甲乙基苯胺(MEA),而菌株MEA3-1则可将MEA完全降解。利用生理生化特性和16S rDNA序列分析将菌株T3-1、T3-6和MEA3-1分别鉴定为Rhodococcus sp.、Delftia sp和Sphingobium sp.。
     四、乙草胺降解菌的降解特性研究及其对乙草胺的联合降解
     菌株T3-1可以乙草胺降解产物为碳源生长,其降解乙草胺的最适温度和pH分别为37℃和7.0。在该条件下,5%接种量的T3-1在14h对200mg·L-1乙草胺的降解率为95.5%。菌株T3-1还可以降解丁草胺,但不能降解丙草胺、异丙草胺和吡草胺。菌株T3-6不能以CMEPA降解产物MEA或氯乙酸为唯一碳源生长,其降解CMEAP的最适温度和pH分别为30℃和7.0;在该条件下,5%接种量的T3-6在10h内即可将500mg·L-1的CMEPA完全转化为MEA和氯乙酸。菌株T3-6还可以降解苯胺和邻苯二酚,并使对苯二酚发生部分转化。菌株MEA3-1可以MEA为唯一碳源进行生长,使MEA完全矿化,其降解MEA的最适温度和pH分别为30℃和7.0。在该条件下,5%接种量的MEA3-1在10h内即可将50mg·L-1的MEA降解完。菌株MEA3-1不能降解苯胺,并且只能使邻苯二酚和对苯二酚发生部分转化。
     在30℃和pH7.0条件下,菌株T3-1、T3-6和MEA3-1的共同作用可以在24h内将200mg·L-1的乙草胺完全矿化80%以上,其降解效果远远高于已报道的菌株。因此,由这三个菌株制成复合培养物,对乙草胺和丁草胺污染的生物修复有很大的应用价值。
The environmental pollution of extensive use of herbicides caused the people's growing concern. The means and methods to solve pollution continue to be made and updated, and microbial degradation of herbicides has become a research hotspot in recent years. Aryloxyphenoxypropionate herbicides and chloroacetanilide herbicides are two of the most used herbicides except glyphosate in China. The variety and extensive use of these two herbicides caused the serve environmental pollution as well as processed the weeds in the farmland. In this study, the fenoxaprop-ethyl and acetochlor were used as substrates and the aryloxyphenoxypropionate herbicides and chloroacetanilide herbicides degrading-microorganisms were isolated and identified in order to provide the theoretical basis and microbial resources for bioremendiation and research of herbicide resistant transgenic crops of these two type herbicides.
     1. Isolation, identification and degradation characteristics of fenoxaprop-ethyl (FE)-degrading bacteria
     An efficient FE-degrading strain T1was isolated from the long-term pesticide-contaminated soil and identified as Rhodococcus sp. based on morphology, physiological and biochemical characteristics as well as16S rDNA sequence analysis. The optimum growth temperature and pH of strain T1were25℃and7.0, aerobic growth and the cell growth is good when the NaCl concentration is less than3%.
     The metabolite fenoxaprop acid (FA) was identified by HPLC/MS analysis and this strain converted FE by cleavage of the ester bond, but it could not further degrade FA. Strain T1could utilize ethanol for growth, which produced during the degradation of FE and the optimum temperature and pH were30℃and8.0for FE degradation, respectively. Under these conditions, strain T1could degrade94%of100mg-L"1FE within24h at5% inoculation and it could also efficiently degrade a variety of aryloxyphenoxy propionate herbicides including quizalofop-p-ethyl, cyhalofop-butyl, clodinafop-propargyl and haloxyfop-R-methyl, the degradation spectrum is very wide.
     2. Cloning, expression and enzymatic properties of fenoxaprop-ethyl hydrolase gene feh
     Two positive clones containing the esterase gene were screened from the genomic library of Rhobococcus sp. T1, which constructed by shotgun and used trbutyrin as the substrate, and clones pTT2with fenoxaprop-ethyl hydrolysis activity. FE hydrolase gene feh was successfully amplified from the positive clone pTT2by using overlap extension PCR, and the gene expression vector pET29a-feh was successfully constructed. The feh could express in E.coli BL21(DE3) largely and the pure recombinant enzyme Feh was obtained after purifying by Ni-NTA.
     The optimum temperature and pH value of Feh is50℃and9.5, which with a good pH stability and thermal stability. Feh could also hydrolyze the p-nitrophenyl esters and the triglyceride substances, but the hydrolysis was affected by carbon chain length. Km and Vmax of Feh for fenoxaprop were0.37mmol·L-1and1.08mmol·min-1·mg-1, respectively.
     3. Isolation and identification of acetochlor-degrading bacteria
     The acetochlor-degrading enrichment culture T3and T4were obtained from the activated sludge of acetochlor plant by using acetochlor as sole carbon source in the mineral medium, which could completely degrade100mg-L"1acetochlor in six days. T3and T4could also degrade butachlor and transform propanil to new product, but they could not degrade metazachlor and pretilachlor. T3and T4were found with the rich diversity of bacteria by RFLP and plate culture medium.
     Acetochlor-degrading bacteria strain T3-1, T3-6, T4-7and MEA3-1were progressively isolated from the enrichment culture T3and T4, which could degrade acetochlor completely by the cooperation among them. The metabolic pathway of acetochlor by these bacteria is strain T3-1transforming acetochlor to2'-methyl-6'-ethyl-2-chloroacetanilide (CMEPA), and then CMEPA would be degrade to2-methyl-6-ethyl aniline (MEA) by strain T3-6and T4-7, and at last MEA could be completely degraded by strain MEA3-1. Strain T3-1, T3-6and MEA3-1were identified as Rhodococcus sp., Delftia sp. and Sphingobium sp. based on morphology, physiological and biochemical characteristics as well as16S rDNA sequence analysis, respectively.
     4. Degradation characteristics of acetochlor-degrading bacteria and the combined degradation of acetochlor
     Strain T3-1could use the metabolites of acetochlor as sole carbon source for growth. The optimum temperature and pH were37℃and7.0for acetochlor degradation, respectively. Under these conditions, strain T3-1could degrade95.5%of200mg-L-1acetochlor within14h at5%inoculation. Strain T3-1could also efficiently degrade butachlor, but could not degrade pretilachlor, propisochlor and metazachlor. Strain T3-6could not use MEA or chloroacetic acid as sole carbon source for growth, which generated from CMEPA degradation and the optimum temperature and pH were30℃and7.0for CMEPA degradation, respectively. Under these conditions, strain T3-6could completely transform500mg-L"1CMEPA to MEA and chloroacetic acid within10h at5%inoculation. Strain T3-6could also degrade aniline and catechol, and convert hydroquinone partially. Strain MEA3-1could use MEA as sole carbon source for growth and minerilize MEA completely. The optimum temperature and pH were also30℃and7.0for MEA degradation, respectively. Under these conditions, strain MEA3-1could completely degrade50mg·L-1MEA within10h at5%inoculation. Strain MEA3-1could not degrade aniline, and catechol and hydroquinone could only partially transformed by it.
     At temperature of30℃and pH7.0, more than80%of200mg-L-1acetochlor could be completely mineralize by the cooperation of strain T3-1, T3-6and MEA3-1within24h and the degradation rate is much higher than other reported strains. Therefore, the complex culture made by the three strains has great potential utility for the bioremediation of acetochlor and butachlor contaminated environment.
引文
1.秦永华.芳氧苯氧丙酸酯类除草剂的研究进展[J].宁波大学学报(理工版),2007,20(3):381-384.
    2.刘博宏,叶非芳.氧苯氧基丙酸酯类除草剂的应用进展[J].农药科学与管理,2011,32(2):20-25.
    3. Smith A. E. Persistenee and transformation of the herbieides [14C]fenoxaprop-ethyl and [14C]fenthiaprop-ethyl in two prairie soils under laboratory and field conditions [J]. J. Agric. Food Chem.,1985,33(3):483-488.
    4. Smith A. E., Grover R., Cessna A. J., et al. Fate of diclofop-methyl after application to a wheat Field [J].J Environ. Qual,1986,15(3):234-238.
    5. Hill B. D., Niller J. J., Harker K. N., et al. Estimating the relative leaching potential of herbieides in Alberta soil [J]. Water Pual. Res. J. Can.,2000,35(4):693-710.
    6. Larney F. J., Cessna A. J., Bullock M. S. Herbicide transport on wind-eroded sediment [J]. J Environ. Qual,1999,28(5):1412-1421.
    7.石晶波,施晓钟,韩才明.“骠马”对土壤微生物数量和酶活性的影响[J].上海农业科技,1995,1:29-30.
    8.汤富彬.精喹禾灵的土壤微生物降解[D].杭州:浙江大学,2002.
    9.黄帆,郭正元,徐珍.氰氟草酯和精噁唑禾草灵对三叶浮萍的毒性效应[J].中国农学通报,2006,22(11):406-409.
    10.蔡喜运.环糊精和腐殖酸对手性除草剂禾草灵的水生毒理和生物有效性影响研究[D].杭州:浙江大学,2006.
    11.张贵生,傅荣怒.除草剂精恶嗯唑禾草灵对鲦红细胞微核及核异常的影响[J].菏泽学院学报,2006,28(2):84-86,90.
    12. Palut D., Kostka G., Wiadrowska B., et al. Effect of diclofop on the activity of some drug-metabolizing enzymes in the liver of male wistar rats [J]. Rocz Panstw Zakl Hig,2002, 53(1):129.
    13.顾军,钟义红,环飞等.高效吡氟氯禾灵致突变性及大鼠亚慢性毒性研究[J].江苏预防医学,2006,17(4):58-61.
    14.陈日萍,陈彤,俞少勇等.芳氧苯氧丙酸类除草剂对大鼠睾丸生精细胞的损伤作用[J].浙江省医学科学院学报,2006,4:22-25.
    15. Betancoutt M., Resendiz A., Casas E., et al. Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assisted semen analysis (CASA) in vitro [J]. Reprod Toxicol,2006,22(3):508-512.
    16陈日萍,高明,蔡冬苗等.精喹禾灵亚慢性经口暴露对雄性大鼠的生殖毒性研究[J].毒理学杂志,2011,25(3):208-211.
    17. Toole A. P., Crosby D. G. Environmental persistence and fate of feoxaprop-ethyl [J]. Environ. Toxicol. Chem.,1989,8:1171-1176.
    18. Lin J., Chen J., Wang Y., et al. More toxic and photoresistant products from photodegradation of fenoxaprop-p-ethyl [J]. J. Agric. Food Chem.,2008,56:8226-8230.
    19. Pinna M.V., Pusino A. Direct and indirect photolysis of cyhalofop in aqueous systems [J]. Chemosphere,2011,82:817-821.
    20. Roy S., Singh S. B. Phototransformation of clodinafop-propargyl [J]. J. Environ. Sci. Health., part B,2005,40(4):525-34.
    21. Zablotowie, R. M., Hoagland, R. E., Steddon, W. J., et al. Effects of pH on chemical stability and de-esterification of fenoxaprop-ethyl by purified enzymes, bacterial extracts, and soils [J]. J. Agric. Food Chem.,2000,48(10):4711-4716.
    22.林晶.精嗯唑禾草灵和解草唑的水解、光解及对大型蚤的急性毒性变化[D].大连:大连理工大学,2008.
    23.赵莉, 樊晓青, 朱国念.氰氟草酯水解动力学研究[J].农药学学报,2009,11(2):274-278.
    24. Smith A. E., Aubin A. J. Degradation studies with 14C fenoxaprop in prairie soils [J]. Can. J. Soil Sci.,1990,70:343-350.
    25. Jilisa K. M., Zhu G. N., Zhao Li., et al. Degradation of cyhalofop-butyl (XDE-537) in soil [J]. Acta Agriculturae Zhejiangensis,2002,14(4):205-209.
    26. Smith-Grenier L. L., Adkins A. Isolation and characterization of soil microorganisms capable of utilizing herbicide diclofop-methyl as a sole source of carbon and energy [J]. Can. J. Microbiol. 1996a,42:221-226.
    27. Smith-Grenier L. L., Adkins A. Degradation of diclofop-methyl by pure cultures of bacteria isolated from Manitoban soils [J]. Can. J. Microbiol.,1996b,42:227-233.
    28. Gennari M., Vincenti M., Negre M., et al. Microbial metabolism of fenoxaprop-ethyl [J]. Pestic. Sci.,1995,44:299-303.
    29. Hoagland R. E., Zablotowie, R. M. Biotransformations of fenoxaprop-ethyl by fluorescent Pseudomonas strains [J]. J. Agric. Food Chem.,1998,46(11):4759-4766.
    30. Song L. Y., Hua R. M., Zhao Y. C. Biodegradation of fenoxaprop-p-ethyl by bacteria isolated from sludge [J]. J. Hazard. Mater.,2005a, B118:247-251.
    31. Song L. Y., Zhao Y. C., Hua R. M. Separation of fenoxaprop-p-ethyl biodegradation products by HPTLC [J]. J. Planar Chromatogr.,2005b,18:85-88.
    32.周丽兴,万树青,陈泽鹏等.短小芽孢杆菌(Bacillus pumilis)对精喹禾灵的降解特性[J].农药,2006,45(9):627-629.
    33. Nie Z. J., Hang B. J., Cai S., et al. Degradation of cyhalofop-butyl (CyB) by Pseudomonas azotoformans strain QDZ-1, and cloning of a novel gene encoding CyB-hydrolyzing esterase [J]. J. Agric. Food Chem.,2011,59:6040-6046.
    34.刘惠君.酰胺类除草剂的生物化学行为以及手性选择性行为研究[D].杭州:浙江大学,2005.
    35.张一宾.酰胺类除草剂的全球市场、品种及发展趋向[J].现代农药,2011,10(1):41-43,50.
    36.秦瑞香,于世涛,刘福胜等.酰胺类除草剂的研究进展[J].青岛科技大学学报,2003,24(9):21-23.
    37.苏少泉.酰胺类除草剂评述[J].农药,2002,42(11):1-5.
    38. Walker A., Welch S. J. Enhanced degradation of some soil- applied herbicides [J]. Weed Res, 1991,31(1):49-57.
    39. U. S. Environment Protection Agency. Question and answers. Conditional registration of acetochlor. U. S. EPA, Washington, DC.,1994,18.
    40.郑和辉,叶常明.乙草胺和丁草胺的水解及其动力学[J].环境化学,2001,20(2):168-171.
    41.党永富,邱银芝,卢奎等.除草剂药害与残留防治剂奈安1号的研制生产与应用.2008.http://www.hnkjt.gov.cn/infoNode/showkjcg.eiip?dataId=MjAwODAwMDAwMQ=&dp=S 17
    42.陈国参,张玉聚,石红霞等.酰胺类除草剂的药害表现与安全应用田.农药,2002,43(9):32-33.
    43.黄春艳,陈铁保,王宇等.土壤湿度对乙草胺药害的影响[J].中国农学通报,2006,8:393-396.
    44.侯任昭.丁草胺对撒播水稻安全性的研究[J].农药,1988,27(5):36.
    45.朱九生,乔雄梧,王静等.土壤中乙草胺的微生物降解及其对防除稗草持效性的影响[J].应用生态学报,2006,17(3):489-492.
    46. Das A. C., Debnath A. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal [J]. Chemosphere,2006,65(6):1082-1086.
    47. Seghers D., Verthe K., Reheul D., et al. Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil [J]. FEMS Microbiol Ecol., 2003,46(2):139-146.
    48. Su Z. C., Zhang H. W, Li X. Y., et al. Toxic effects of acetochlor, methamidophos and their combination on nifH gene in soil [J]. J. Environ. Sci.,2007,19(7):864-873.
    49. Xiao N. W., Jing B. B., Ge F., et al. The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions [J]. Chemosphere,2006,62:1366-1373.
    50. Zafeiridou G., Geronikaki A., Papaefthimiou C., et al. Assessing the effects of the three herbicides acetochlor,2,4,5-trichlorophenoxyaceticacid (2,4,5-T) and 2,4-dichlorophenoxyacetic acid on the compound action potential of the sciatic nerve of the frog (Rana ridibunda) [J]. Chemosphere,2006,65:1040-1048.
    51.李贤宾.三种酰胺类除草剂对热带爪蟾(Xenopus tropicalis)早期发育致畸效应及DNA损伤研究[D].杭州:浙江大学,2010.
    52. Bagchid D., Bhattacharya G., Stohs S. J. In virto and in vivo induction of heat shock (srtess) protein (Hsp) gene expression by selected pesticides [J]. Toxicol,1996,112 (1):57-68.
    53. Ribas G Genotoxity of humic acid in cultured human lymphocytes and its interaction with the herbicides alachlor and maleic hydrazide [J]. Environ. Molec. Mut.,1997,29 (3):272-276.
    54. Nelson G. B., Ross A. J. DNA adduct formation by the pesticide alachlor and its metabolite 2-chloro-N-(2,6-diethylphenyl) acetamide (CDEPA) [J]. Bull Environ. Contamon. Toxicol,1998, 60 (3):387-394.
    55. Osano O., Adimiraal W., Klamer H. J. C., et al. Comparative toxic and genotoxic effects of chloroacetamides formamidines and their degradation products on Vibrio fischeri and Chironomus riparius [J]. Environ. Pollut.,2002,119 (2):195-202.
    56.王琪全,刘维屏.除草剂乙草胺、异丙甲草胺的光降解及其致突变性[J].中国环境科学,1999,19(1):1-4.
    57. Coleman S. Comparative metabolism of chloroacetamid herbicides and selected metabolites in human and rat liver microsomes [J]. Envir. Health. Perspect,2000,108:1151-1159.
    58.郑和辉,叶常明,刘国辉.乙草胺在水中的光化学降解动态研究[J].农药科学与管理,2001,22(6):12-13.
    59.王一茹,刘长武,牛成玉等.丁草胺在水体中的光解和稻田中归趋的研究[J].环境科学学报,1996,16(4):475-481.
    60. Brezonik P. L., Jennifer F. B. Nitrate-induced photolysis in natural waters:controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents [J]. Environ. Sci. Technol.,1998,32:3004-3010.
    61. Chen Y. L., Wu T. C. Degradation of herbicide butachlor by soil microbes [J]. J. Pestic. Sci., 1978,3:411-417.
    62. Gustavo A. P., Damia B. Comparative degradation kinetics of alachlor in water by photocatalysis with FeCl3, TiO2 and photolysis, studied by solid-phase disk extraction followed by gas chromatographic techniques [J]. J. Chromatogr. A,1996,754(1-2):187-195.
    63. Chiron S., Barcelo D., Abian J., et al. Comparative photodegradation rates of alachlor and bentazone in natural water and determination of breakdown products [J]. Environ. Toxicol. Chem., 1995,14(8):1287-1298.
    64.程燕.丙草胺在水体中的光化学降解研究[D].合肥:安徽农业大学,2004.
    65. Sharma K. K. Degradation of alachlor in water and tropical soils of India [J]. Bull Environ Contam Toxicol,2002,68:394-399.
    66.花日茂,李湘琼,李学德等.丁草胺在不同类型水中的光化学降解[J].应用生态学报,1999,10(1):57-59.
    67.宋伟,陈猛.自然条件下三种酰胺类农药在水中的非生物降解初步研究[C].第五界全国环境化学大会摘要集.大连:大连理工大学出版社,2009:57.
    68.郑和辉,叶常明.乙草胺和丁草胺在土壤中的紫外光化学降解[J].环境化学,2002,21(2):117-122.
    69.花日茂.酰胺类除草剂乙草胺、丁草胺在水中的光化学降解研究[D].杭州:浙江大学,1999.
    70. Beetman G. B., Deming J. M. Dissipation of acetanilide herbicide from soil [J]. J. Agron., 1974,66 (2):308-311.
    71.黄欣,韩农.六价铬对土壤中丁草胺降解作用的影响[J].农药,1989,28(3):25,42.
    72.朱九生,乔雄梧,王静等.土壤中乙草胺的微生物降解及其对防除稗草持效性的影响[J].应用生态学报,2006,17(3):489-492.
    73.冯慧敏,何红波,白震等.乙草胺的微生物降解及其对土壤磷脂脂肪酸特性的影响[J].应用生态学报,2008,19(7):1585-1590.
    74. Chen Y. L., Wu T. C. Degradation of herbicide butachlor by soil microbes [J]. J. Pestic. Sci., 1978,3:411-417.
    75.吴新杰,岳永德,花日茂等.丁草胺高效降解细菌的分离[J].应用与环境生物学报,2000,6(6):593-596.
    76.楚小强.一株丁草胺降解菌及其在废水处理和土壤污染修复中的应用基础[D].杭州:浙江大学,2009.
    77.陈莹莹.丁草胺降解菌的筛选、鉴定及降解特性研究[D].上海:上海交通大学,2007.
    78. Wang J. H., Lu Y. T., Chen Y. Y. Comparative proteome analysis of butachlor-degrading bacteri [J]. Environ. Geol.,2008,53(6):1339-1344.
    79.谭文捷,李发生,杜晓明等.解淀粉芽孢杆菌对水中丁草胺的降解及影响[J].环境科学研究,2005,18(3):71-74.
    80. Dwivedi S., Singh B. R., Al-Khedhairy A. A., et al. Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential [J]. Lett Appl Microbiol.,2010,51(1):54-60.
    81. Chakraborty S. K., Bhattacharyya A. Degradation of butachlor by two soil fungi [J]. Chemosphere,1991,23(1):99-105.
    82. Zhang J., Zheng J. W., Liang B., et al. Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8 in vitro [J]. J. Agric. Food Chem.,2011,59:4614-4621.
    83. Zeng W. A., Zhao S. Y., Li H. et al. Isolation and screening of acetochlor-degrading strain and its degradation characteristics [J].Appl. Mecha. Mater.,2011,79:318-323.
    84. Xu J., Qiu X. H., Dai J. Y., et al. Isolation and characterization of a. Pseudomonas oleovorans degrading the chloroacetamide herbicide acetochlor [J]. Biodegradation,2006,17:219-225.
    85.赵野.土壤中乙草胺降解菌的筛选和主要影响因子研究[D].重庆:西南大学,2008.
    86. Xu J., Yang M., Dai J.Y., et al. Degradation of acetochlor by four microbial communities [J]. Bioresour. Technol.,2008,99:7797-7802.
    87.倪俊,沈维亮,闫新等.乙草胺降解菌Y-4的分离鉴定及降解特性研究[J].农业环境科学学报,2011,30(5):946-951.
    88.董滨,王凤花,林爱军等.乙草胺降解菌A-3的筛选及其降解特性[J].环境科学,2011,32(2):542-547.
    89. Lara D. S., Valeria M. de O., Gilson P. M. Isolation and characterization of alachlor-degrading actinomycetes from soil [J]. Anton. Leeuw.,2005,87:81-89.
    90. Munoz A., Koskinen C. W., Cox L., et al. Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii [J]. J. Agric. Food Chem.,2011,59 (2):619-627.
    91. Martin M., Mengs G., Allende J. L., et al. Characterization of two novel propachlor degradation pathways in two species of soil bacteria [J]. Appl. Environ. Microbiol.,1999, 65(2):802-806.
    92. Hone L. S., Thomas J. S., Frederick T. C. Transformation of alachlor by microbial communities [J]. Weed Sci.,1990,38(4):416-420.
    93. Ferrey M. L., Koskinen W. C., Blanchette R. A., et al. Mineralization of alachlor by lignin-degrading fungi [J]. Can. J. Microbiol.,1994,40:795-800.
    94. Wang Y. S., Liu J. C., Chen W. C., et al. Characterization of acetanilide herbicides degrading bacteria isolated from tea garden [J]. Soil Microb Ecol,2008,55:435-443.
    95.强胜,宋小玲,戴伟民.抗除草剂转基因作物面临的机遇与挑战及其发展策略[J].农业生物技术学报,2010,18(1):114-125.
    96. James C. Global Status of Commercialized Biotech/GM Crops:2010. ISAAA Brief No.42. 2010. ISAAA:Ithaca, NY.
    97.卢信,赵炳梓,张佳宝等。除草剂草甘膦的性质及环境行为综述[J].土壤通报,2005,36(5):785-790.
    98. Comai L., Facciotti D., Hiatt W. R., et al. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate [J]. Nature,1985,317:741-744.
    99. Dill G M. Glyphosate-resistant crops:history, status and future [J]. Pest Manag Sci,2005, 61:219-224.
    100.朱玉,于中连,林敏.草甘膦生物抗性和生物降解及其转基因研究[J].分子植物育种,2003,1(4):435-441.
    101.任江萍,王爱萍,王智琴等.植物抗除草剂基因研究进展[J].山西农业大学学报,2001,21(2):168-172.
    102. Penaloza-Vazquez A., Mena G. L., Herrera-Estrella L., et al. Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei [J]. Appl Environ Microbiol.,1995,61(2):538-43.
    103.王秀君,郎志宏,单安山等.氨基酸生物合成抑制剂类除草剂作用机理及耐除草剂转基因植物研究进展[J].中国生物工程杂志,2008,28(2):110-116.
    104.杨逢玉,张宏军,倪汉文.灭生性除草剂草铵膦的作用机理及其应用[J].北京农学院学报,2002,17(4):100-105.
    105. Thompson C. J., Movva N. R., Tizard R., et al. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus [J]. EMBOJ.,1987,6(9):2519-2523.
    106. Bottermean J., Leemans J. Biotechnology and genetic engineering reviews [J].1988, 6:321-340.
    107.王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998.
    108.张晓冬.用基因枪将除草剂Basta抗性基因与小麦HMW谷蛋白亚基基因导入小麦获得转基因植株[J].1995,12(1):133-136.
    109.于澄宇,何蓓如.植物乙酰乳酸合成酶抑制剂作用方式及机理研究进展[J].农药学学报,2011,13(3):221-227.
    110. Michael J. C., Vuay K. N., Kirk A. H., et al. Target site resistance to acetolactate synthase in wild mustard(Sinapis arvensis) [J]. Weed Sci,2006,54(2):191-197.
    111.朱剑,余潮,阎新等.细胞色素P450与除草剂代谢[J].植物生理学通讯,2007,43(1):9-15.
    112. O'Keefe D. P., Tepperman J. M., Dean C., et al. Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide [J]. Plant Physiol.1994, 105:473-482.
    113. Mandelbaum R. T., Allan D. L., Wackett L. P. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine [J]. Appl. Environ. Microbiol., 1995,61(4):1451-1457.
    114.王松文,施利利,孙宗修等.农杆菌介导的细菌阿特拉津氯水解酶基因对水稻的遗传转 化[J].中国农业科学,2004,37(8):1093-1098.
    115. Miki B. L., Labbe H., Hattori J., et al. Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance [J]. Theor Appl Genet,1990,80(4):449-458.
    116. Perkins E. J., Lurquin P. F. Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134(pJP4) [J]. JBacteriol.,1988,170(12):5669-5672.
    117.华苟根,郭坚华.红球菌属的分类及应用研究进展[J].微生物学通报,2003,30(4):107-111.
    118.陈军伟,唐欣昀,花日茂.红球菌在环保领域的应用研究进展[J].环境科学与技术,2009,32(12D):162-165.
    119. Uza I., Duana Y. P., Ogram A. Characterization of the naphthalene-degrading bacterium Rhodococcus opacus M213 [J]. FEMS Microbiol. Lett,2000,185(2):231-238.
    120. Sorkhoha N. A., Ghannouma M. A., Ibrahima A. S., et al.Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait [J]. Environ. Pollut,1990,65(1):1-17.
    121. Bernstein A., Adar E., Nejidat A., et al. Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer [J]. Biodegradation,2011,22 (5):997-1005.
    122. Lee E. H., Ch K. S. Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1[J]. Chemosphere,2008,71:1738-1744.
    123.沈锡辉,刘志培,王保军等.苯酚降解菌红球菌PNAN5菌株(Rhodococcus sp. strain PNAN5)的分离鉴定、降解特性及其开环双加氧酶性质研究[J].环境科学学报,2004,24(3):482-486.
    124. Kitagawa W., Kimura N., Kamagata Y. A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101 [J]. J. Bacteriol.,2004, 186(15):4894-4902.
    125. Xu J. L., He J., Wang Z. C., et al. Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium [J]. Int JSyst Evol Microbiol.2007,57(12):2754-2757.
    126. Yabuueh E. Y, Takichi K., Ikuya Y, et al. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov, and Flavobacterium indologenes sp. nov.:glucose-nonfermenting gram-negative rods in CDC groups ⅡK-2 and Ⅱb [J]. Int J Syst Baeterlol,1983,33(3):580-598.
    127. Garg N., Bala K., Lal R. Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil [J]. Int J Syst Evol Microbiol. 2011,online.
    128. Guo P., Wang B. Z., Hang B. J., et al. Sphingobium faniae sp. nov., a pyrethroiddegrading bacterium isolated from activated sludge treating wastewater from pyrethroid manufacture [J]. Int J Syst Evol Microbiol.,2010,60:408-412.
    129.何丽娟,李正华,洪青等.一株菲降解菌的特性及相关降解基因的克隆[J].应用与环境生物学报,2009,15(5):682-685.
    130. Ushiba Y., Takahara Y., Ohta H. Sphingobium amiense sp nov., a novel nonylphenol-degrading bacterium isolated from a river sediment [J]. Int J Syst Evol Microbiol., 2003,53(6):2045-2048.
    131. Hong Y., Zhou J., Hong Q., et al. Characterization of a fenpropathrin-degrading strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin [J]. J Environ Manage.2010,91(11):2295-2300.
    132. Tiirola A. M.; Mannisto K. M.; Puhakka A. J., et al. Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system [J]. Appl. Environ. Microbiol.,2002,68(l):173-180.133.李金钟,刘利平.代夫特菌属的研究进展[J].中国热带医学,2008,8(12):2254-2255,2262.
    134. Sheludchenko M. S., Kolomytseva M. P., Travkin V. M., et al. Degradation of aniline by Delftia tsuruhatensis 14S in batch and continuous processes [J]. Prikl Biokhim Mikrobiol,2005, 41(5):530-534.
    135.武洪杰,谭周亮,刘庆华等.一株高浓度苯胺、苯酚降解菌的分离鉴定及降解特性[J].应用与环境生物学报,2010,16(2):252-255.
    136. Zhang J., Zheng J. W., Liang B., et al. Biodegradation of chloroacetamide herbicides by Paracoccus sp. FLY-8 in vitro [J]. J. Agric. Food Chem.,2011,59 (9):4614-4621.
    137.梁泉峰.生物降解菌株Delftia tsuruhatensis AD9中染色体编码的苯胺代谢基因簇的克隆和功能研究[D].北京:中国农业科学院,2005.
    138.耿立召,梁泉峰,张维等.Delftia tsuruhatensis AD9苯胺双加氧酶基因的过量表达及多功能降解工程菌的构建[J].中国农业科技导报,2008,10(4):95-99.
    139.景岳龙,朱凤晓,王军玲等.联苯菊酯降解菌的筛选、鉴定及其降解特性[J].西北农林科技大学学报(自然科学版),2010,38(10):98-102.
    140.沈雨佳,洪源范,洪青等.辛硫磷降解菌XSP-1的分离、鉴定及其降解特性研究[J].环境科学,2007,28(12):2833-2837.
    141.王欢,汪苹,张海波.一株戴尔福特菌的异养硝化与好氧反硝化性能研究[J].北京工商大学学报(自然科学版),2008,26(2):1-5.
    142.宾丽英.砷污染土壤植物修复的微生物强化作用研究[D].北京:中国科学院,2008.
    1. Bieringer H., Hoerlein G., Langeliiddeke P., et al. HOE 33171-a new selective herbicide for control of annual and perennial warm climate grass weeds in broadleaf crops [J]. Proc. Brighton Crop Prot. Conf.-Weeds,1982,1:11-17.
    2.宋立岩,花日茂,岳永德.精嗯唑禾草灵高效降解菌的分离与鉴定[J].安徽农业大学学报,2005,32(1):26-30.
    3.贾福艳.精噁唑禾草灵在土壤及甘蓝中残留动态及在土壤中吸附特性研究[D].长春:吉林农业大学,2004.
    4. Gennari M., Vincenti M., Negre M., et al. Microbial metabolism of fenoxaprop-ethyl [J]. Pestic. Sci.,1995,44:299-303.
    5. Robert E. H., Robert M. Z. Biotransformations of fenoxaprop-ethyl by fluorescent Pseudomonas strains [J]. J. Agric. Food Chem.,1998,46:4759-4765.
    6. Song L. Y., Hua R. M., Zhao Y. C. Biodegradation of fenoxaprop-p-ethyl by bacteria isolated from sludge [J]. J. Hazard. Mater.,2005, B118:247-251.
    7. Nie Z. J., Hang B. J., Cai S., et al. Degradation of cyhalofop-butyl (CyB) by Pseudomonas azotoformans strain QDZ-1, and cloning of a novel gene encoding CyB-hydrolyzing esterase [J]. J. Agric. Food Chem.,2011,59:6040-6046.
    8.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    9. Holt J. G., Krieg N. R., Sneath PHA, et al. Bergey's manual of determinative bacteriology 9 ed [M]. Baltimore, MD, Lippincott Williams and Wilkins,1994,626-640.
    10. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells [J]. Nucleic Acids Res.,1988,16:1215.
    11.奥斯伯F.,布伦特 R.,金斯顿R.E.等.精编分子生物学指南[M].北京:科学技术出版社,1999.
    12. Altschul S. F., Gish W., Miller W., et al. Basic local alignment search tool [J]. J. Mol. Biol., 1990,215:403-410.
    13. Smith-Grenier L. L., Adkins A. Isolation and characterization of soil microorganisms capable of utilizing herbicide diclofop-methyl as a sole source of carbon and energy [J]. Can. J. Microbiol., 1996,42:221-226.
    14.周丽兴,万树青,陈泽鹏等.短小芽孢杆菌(Bacillus pumilis)对精喹禾灵的降解特性[J].农药,2006,45(9):627-629.
    15. Rehfuss M., Urban J. Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources [J]. Syst. Appl. Microbiol.,2005,28:695-701.
    16. Xu J. L., Gu X. Y., Shen B., et al. Isolation and characterization of a carbendazim-degrading Rhodococcus sp. djl-6 [J]. Curr. Microbiol.,2006,53:72-76.
    17. Kitagawa W., Kimura N., Kamagata Y. A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101 [J].J. Bacteriol.,2004,186:4894-4902.
    18. Shao Z. Q., Seffens W., Mulbry W., et al. Cloning and expression of the s-triazine hydrolase gene(trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine [J]. J. Bacteriol.,1995,177: 5748-5755.
    1. Robert E. H., Robert M. Z. Biotransformations of fenoxaprop-ethyl by fluorescent Pseudomonas strains [J]. J. Agric. Food Chem.,1998,46:4759-4765.
    2. Song L. Y., Hua R. M., Zhao Y. C. Biodegradation of fenoxaprop-p-ethyl by bacteria isolated from sludge [J]. J. Hazard. Mater.,2005, B118:247-251.
    3. Nie Z. J., Hang B. J., Cai S., et al. Degradation of cyhalofop-butyl (CyB) by Pseudomonas azotoformans strain QDZ-1, and cloning of a novel gene encoding CyB-hydrolyzing esterase [J]. J. Agric. Food Chem.,2011,59:6040-6046.
    4. Smith-Grenier L. L., Adkins A. Isolation and characterization of soil microorganisms capable of utilizing herbicide diclofop-methyl as a sole source of carbon and energy [J]. Can. J. Microbiol., 1996,42:221-226.
    5. Li J. X., Gu J. D., Yao J. H. Degradation of dimethyl terephthalate by Pasteurella multocida Sa and Sphingomonas paucimobilis Sy isolated from mangrove sediment [J]. Int. Biodeterior. Biodegrad.,2005,56:158-165.
    6. Li J. X., Gu J. D. Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr isolated from wetland sediment [J]. Sei. Total Environ.,2007,380:181-187.
    1. Nie Z. J., Hang B. J., Cai S., et al. Degradation of cyhalofop-butyl (CyB) by Pseudomonas azotoformans strain QDZ-1, and cloning of a novel gene encoding CyB-hydrolyzing esterase [J]. J. Agric. Food Chem.,2011,59:6040-6046.
    2.汪家政.蛋白质技术手册[M].北京:科学技术出版社,2002.
    3. Zhou X. G., Michael E. S., Gautam S. Partial purification and characterization of a methyl-parathion resistance-associated general esterase in Diabrotica virgifera virgifera (Coleoptera:Chrysomelidae) [J]. Pestic. Biochem. Physiol.,2004,78:114-125.
    4.萨姆布鲁克J.,拉塞尔D.W.分子克隆实验指南(第三版)[M].北京:科学出版社,2002.
    5.徐士庆,胡永飞,袁爱花等.深海沉积物微生物元基因组文库来源的新的酯酶基因的克隆、表达及酶学性质[J].微生物学报,2010,50(7):891-896.
    6. Altschul S. F., Gish W., Miller W., et al. Basic local alignment search tool[J]. J. Mol. Biol. 1990,215:403-410.
    7.郑伟娟.实用分子生物学实验指南[M].北京:高等教育出版社,2010.
    8. Sekine M., Tanikawa S., Omata S., et al. Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4 [J]. Environ. Microbiol.,2006,8:334-346.
    9. Fernandez J., Mohedano F. A., Fernandez-Garcia E., et al. Purification and characterization of an extracellular tributyrin esterase produced by a cheese isolate, Micrococcus sp. INIA 528 [J]. Int. Dairy J.,2004,14:135-142.
    10. Pandey G, Dorrian J. S., Russell J. R., et al. Cloning and biochemical characterization of a novel carbendazim(methyl-lh-benzimidazol-2-ylcarbamate)-hydrolyzing esterase from the newly isolated Nocardioides sp. strain SG-4G and its potential for use in enzymatic bioremediation[J]. Appl. Environ. Microbiol.,2010,76(9):2940-2945.
    11. Fucinos P., Abadin C. M., Sanroman A., et al. Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27:partial purification and preliminary biochemical characterization[J]. J. Biotechnol.,2005,117:233-241.
    1. Elend C., Schmeisser C., Leggewie C. Isolation and biochemical characterization of two novel metagenome-derived esterases [J].Appl. Environ. Microbiol.,2006,72(5):3637-3645.
    2. Rashamuse K., Magomani V., Ronneburg T., et al. A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous β-lactamase activity on nitrocefin [J]. Appl Microbiol Biotechnol,2009,83:491-500.
    3. Peerzada K., Chand R., Rajinder P. A novel esterase from Bacillus subtilis (RRL 1789): Purification and characterization of the enzyme [J]. Protein Expres Purif,2006,45:262-268.
    4. Nie Z. J., Hang B. J., Cai S., et al. Degradation of cyhalofop-butyl (CyB) by Pseudomonas azotoformans strain QDZ-1, and cloning of a novel gene encoding CyB-hydrolyzing esterase [J]. J. Agric. Food Chem.,2011,59:6040-6046.
    5. Fernandez J., Mohedano F. A., Fernandez-Garcia E., et al. Purification and characterization of an extracellular tributyrin esterase produced by a cheese isolate, Micrococcus sp. INIA 528[J]. Int Dairy J.,2004,14:135-142.
    6. Finn R. D., Mistry J., Tate J., et al. The Pfam protein families database [J]. Nucleic Acids Res., 2010,38:211-222.
    7. Petersen I. E., Valingera G., Solknera B., et al. A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to (3-lactamases and dd-peptidases [J]. J. Biotechnol,2001,89(1):11-25.
    8. Uwe T. Bornscheuer. Microbial carboxyl esterases:classification, properties and application in biocatalysis[J]. FEMS Microbiol. Rev.,2002,26:73-81.
    9. Arpigny J. L., Jaeger K. E. Bacterial lipolytic enzymes:classification and properties [J]. Biochem. J.,1999,343:177-183.
    10. Heath C., Hu X. P., Cary S. C., et al. Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from Antarctic desert soil[J]. Appl. Environ. Microbiol.,2009,4657-4659.
    11. Choi Y. J., Miguez C. B., Lee B. H. Characterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96 [J]. Appl. Environ. Microbiol.,2004, 70(6):3213-3221.
    12. Gudelj M., Valinger G., Faber K., et al. Novel Rhodococcus esterases by genetic engineering [J]. J. Mol. Catal. B:Enzym.,1998,5(1-4):261-266.
    1.郭华,杨红.乙草胺及其它酰胺类除草剂在环境中的降解与迁移[J].农药,2006,45(2):87-91.
    2.赵野.土壤中乙草胺降解菌的筛选和主要影响因子研究[D].重庆:西南大学,2008.
    3. Xu J., Qiu X. H., Dai J. Y, et al. Isolation and characterization of a Pseudomonas oleovorans degrading the chloroacetamide herbicide acetochlor [J]. Biodegradation,2006,17:219-225.
    4. Xu J., Yang M., Dai J. Y., et al. Degradation of acetochlor by four microbial communities [J]. Bioresour. Technol.,2008,99:7797-7802.
    5.倪俊,沈维亮,闫新等.乙草胺降解菌Y-4的分离鉴定及降解特性研究[J].农业环境科学学报,2011,30(5):946-951.
    6.董滨,王凤花,林爱军.乙草胺降解菌A-3的筛选及其降解特性[J].环境科学,2011,32(2):542-547.
    7.萨姆布鲁克J.D.,拉塞尔W.分子克隆实验指南(第三版)[M].北京:科学出版社,2002.
    8.夏北成,Zhou J, Tiedje J. M.土壤细菌类克隆群落及其结构的生态学特征[J].生态学报, 2001,21:574-578.
    9. Hill T. C. J., Walsh K., Harris J. A., et al. Using ecological diversity measures with bacterial communities [J]. FEMS Microbiol. Ecol.,2003,43:1-11.
    10. Chen Q., Ni J. Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria [J]. J. Ind. Microbiol. Biotechnol.,2010,38(9):1305-1310.
    11. Blumel S., Mark B., Busse H. J., et al. Pigmentiphaga kullae gen. nov., sp. nov., a novel member of the family Alcaligenaceae with the ability to decolorize azo dyes aerobically [J]. Int. J. Syst. Evol. Microbiol.,2001,51:1867-1871.
    12. Huong N. L., Itoh K., Suyama K. Diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading bacteria in Vietnamese soils [J]. Microbes Environ.,2007,22:243-256.
    13. Prakash O., Lal R. Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. Nov [J]. Int. J. Syst. Evol. Microbiol.,2006, 56:2147-2152.
    14. Li X., He J., Li S. P. Isolation of a methyl-parathion degrading-bacterium. Unpublissed.
    15.徐军,邱星辉,曹宏等.氯乙酰胺类除草剂微生物降解研究进展[J].应用与环境生物学报,2004,10(3):389-393.
    1. Holt J. G., Krieg N. R., Sneath PHA, et al. Bergey's manual of determinative bacteriology 9 ed [M]. Baltimore; MD, Lippincott Williams and Wilkins,1994,626-640.
    2. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells[J]. Nucleic Acids Res.,1988,16:1215.
    3.NY/T1155.1-2006,农药室内生物测定试验准则:除草剂[S].北京:中华人民共和国农业部,2006.
    4. Xu J., Yang M., Dai J. Y, et al. Degradation of acetochlor by four microbial communities [J]. Bioresour. Technol.,2008,99:7797-7802.
    1.国家技术监督局.工业循环冷却水中氯离子的测定:硝酸银滴定法.GB/T15453-95.中华人民共和国国家标准.
    2.徐军,邱星辉,曹宏等.氯乙酰胺类除草剂微生物降解研究进展[J].应用与环境生物学报,2004,10(3):389-393.
    3. Sheludchenko M. S., Kolomytseva M. P., Travkin V. M., et al. Degradation of aniline by Delftia tsuruhatensis 14S in batch and continuous processes [J]. Prikl Biokhim Mikrobiol,2005, 41(5):530-534.
    4.梁泉峰.生物降解菌株Delftia tsuruhatensis AD9中染色体编码的苯胺代谢基因簇的克隆和功能研究[D].北京:中国农业科学院,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700