用户名: 密码: 验证码:
含二氮嗪与1,6-二磷酸果糖心麻痹液对离体大鼠心脏低温保存的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脏移植作为终末期心脏疾病的治疗方法已被广泛接受,而高质量的心脏保存是提高手术成功率及远期生存率的重要环节。目前临床上普遍采用的单纯低温浸泡方法安全保存心脏的时限一般在4-6 h,因此心脏保存液及保存方法仍需不断改进。心脏保存必须解决两个问题,一是减少保存期间的能量消耗,增加能量供应,维持心肌能量储备;二是减轻移植后缺血再灌注损伤。
     研究发现,线粒体ATP敏感的K+通道(mitKATP)既是心肌保护的始动因素又是其效应器,MitKATP开放剂二氮嗪(DZ)对心肌缺血再灌注具有保护作用。1,6-二磷酸果糖(FDP)是细胞在糖酵解途径中产生的一个重要中间产物,可为缺氧的组织细胞提供能量来源,减轻缺氧对心肌细胞、血管内皮细胞的损害,有助于低温保存后心脏功能的恢复。目前移植器官的保存方法主要有单纯低温浸泡和持续微量灌注二种,实验证明,持续微量灌注较单纯低温浸泡能更有效地延长离体器官的保存时间。由此,我们推论附加DZ与FDP心麻痹液可能具有较好的心脏保存效果,若同时结合微量灌注方法,有可能更有效的延长心脏的保存时限。
     目的:观察含DZ与FDP心麻痹液对冷保存大鼠心脏能量代谢、心肌细胞凋亡、冠脉内皮细胞结构和功能的影响,探讨其心肌保护作用的机制。同时观察微量灌注在心脏保存中的作用,探讨心脏保存方法的改进。
     方法:本研究采用Langendorff离体心脏灌注模型和大鼠离体左心做功模型,分三部分进行。第一部分,SD大鼠48只,随机分为6组:STH组(St.Thomas II号液);D组(St.Thomas II号液+DZ100μmol/L);F组(St.Thomas II号液+FDP 10mmol/L);DF1组(St.Thomas II号液+DZ 25μmol/L + FDP 2.5 mmol/L);DF2组(St.Thomas II号液+DZ 50μmol/L + FDP 5 mmol/ L) ; DF3组(St.Thomas II号液+ DZ100μmol/L+ FDP 10mmol/L)。在4℃条件下保存离体心脏6h,记录保存前及保存后复灌30分钟的心率(HR)、左心室收缩压(LVSP)、左心室舒张末压(LVEDP)、左心室压力变化率最大值(±dp/dtmax)、冠脉流出量(CF)等指标的变化;并测定保存前及复灌30min时冠脉流出液中乳酸脱氢酶(LDH)及磷酸肌酸激酶(CK)的含量。第二部分:实验一,SD大鼠42只,随
Background: Heart transplantation is the most effective treatment for end-stage heart disease and has become a standard therapy in recent years. Successful heart transplantation depends on the high-quality preservation of donor hearts. Although many advances have been made in heart preservation, current hypothermic heart preservation still has many defects, one of the practical problems encountered in heart transplantation is the limited preservation time of the donor heart, which is usually 4-6 hours. How to maintain energy supply and to alleviate ischemic reperfusion injury is of great importance for heart preservation.
     Recent studies suggest that: opening mitochondrial ATP-sensitive potassium channel (mitoKATP) has cardioprotective effects on ischemia-reperfusion injury. As an important intermediate product of glycolytic pathway, Fructose-1,6-diphosphate(FDP) can increase energy supply of ischemic cells, alleviate ischemia injury, and improve function recovery of the heart. Microperfusion has been shown to be a promising technique for heart preservation. Therefore, we suppose that adding DZ and FDP to St.Thomas II solution, would improve the effects of heart preservation, and prolong the storage time limit combining with microperfusion technique.
     Objective: To investigate the protective effects of St. Thomas II solution supplemented with DZ and FDP on myocardial energy metabolism, myocardial apoptosis and endothelial cell injury of hypothermic preservative rat heart; To evaluate the effects of the new solution combining with microperfusion technique on prolonging the storage time.
     Methods: Isolated rat heart Langendorff model and working model were established. The study consisted of three parts: In the first part, 48 SD rats were divided into six groups randomly: STH group (St.Thomas II solution); D group (St.Thomas II solution +
引文
1. hard JH. Improving early graft function: role of preservation. Transplant Proc, 1997,29:3510-1.
    2. Ku K, Oku H, Alam MS, et al. Prolonged hypothermic cardiac storage with histidine- tryptophan-ketoglutarate solution: comparison with glucose-insulin-potassium and University of Wisconsin solutions. Transplantation, 1997,64:971-5.
    3. 鲁可权. 心脏保存液研究进展. 山东医药, 2004,44:68-69
    4. Asano G, Takashi E, Ishiwata T, et al. Pathogenesis and protection of ischemia and reperfusion injury in myocardium. J Nippon Med Sch, 2003,70:384-92.
    5. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res, 2004,61:372-85.
    6. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986,74:1124-36.
    7. Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res, 1999,84:973-9.
    8. Holmuhamedov EL, Jovanovic S, Dzeja PP, et al. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol, 1998,275:H1567-76.
    9. Holmuhamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol, 1999,519 Pt 2:347-60.
    10. 李寒,范士志,陈建明. 开放线粒体敏感性 ATP 钾通道对缺血再灌注心肌内皮细胞保护作用研究. 医学临床研究, 2005:196-198.
    11. Kevelaitis E, Oubenaissa A, Mouas C, et al. Opening of mitochondrial potassium channels: a new target for graft preservation strategies?. Transplantation, 2000,70: 576-8.
    12. Chien S, Zhang F, Niu W, et al. Fructose-1,6-diphosphate and a glucose-free solution enhances functional recovery in hypothermic heart preservation. J Heart Lung Transplant, 2000,19:277-85.
    13. Stein DG, Drinkwater DC Jr, Laks H, et al. Cardiac preservation in patients undergoing transplantation. A clinical trial comparing University of Wisconsin solution andStanford solution. J Thorac Cardiovasc Surg, 1991,102:657-65.
    14. Mankad PS, Chester AH, Yacoub MH. Role of potassium concentration in cardioplegic solutions in mediating endothelial damage. Ann Thorac Surg, 1991,51:89-93.
    15. Fremes SE, Guo LR, Furukawa RD, et al. Cardiac storage with UW solution and glucose. Ann Thorac Surg, 1994,58:1368-72; discussion 1372-3.
    16. Saitoh Y, Hashimoto M, Ku K, et al. Heart preservation in HTK solution: role of coronary vasculature in recovery of cardiac function. Ann Thorac Surg, 2000,69: 107-12.
    17. Neely JR, Liebermeister H, Battersby EJ, et al. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol, 1967,212:804-14.
    18. Cooper DK. The donor heart. The present position with regard to resuscitation, storage, and assessment of viability. J Surg Res, 1976,21:363-81.
    19. Hoenicke EM, Peterseim DS, Ducko CT, et al. Donor heart preservation with the potassium channel opener pinacidil: comparison with University of Wisconsin and St. Thomas' solution. J Heart Lung Transplant, 2000,19:286-97.
    20. Hoenicke EM, Damiano RJ Jr. Superior 12-hour heart preservation with pinacidil hyperpolarizing solution compared to University of Wisconsin solution. J Heart Lung Transplant, 2001,20:1106-14.
    21. Lopukhin SY, Peek DF, Southard JH, et al. Cold storage of the heart with University of Wisconsin solution and 2,3-butanedione monoxime: Langendorff vs isolated working rabbit heart model. Cryobiology, 1996,33:178-85.
    22. Ozcan C, Holmuhamedov EL, Jahangir A, et al. Diazoxide protects mitochondria from anoxic injury: implications for myopreservation. J Thorac Cardiovasc Surg, 2001,121: 298-306.
    23. 郭炜,沈岳良,陈莹莹,等. 二氮嗪在长时程心脏低温保存中的作用. 生理学报, 2004, 56: 632-638
    24. 曹西南,杨远和. 二磷酸果糖对心脏作用及机制研究进展. 医药导报, 2004, 23:246-247
    25. Plin C, Haddad PS, Tillement JP, et al. Protection by cyclosporin A of mitochondrial and cellular functions during a cold preservation-warm reperfusion of rat liver. Eur J Pharmacol, 2004,495:111-8.
    26. Faulk EA, McCully JD, Tsukube T, et al. Myocardial mitochondrial calciumaccumulation modulates nuclear calcium accumulation and DNA fragmentation. Ann Thorac Surg, 1995,60:338-44.
    27. Poderoso JJ, Fernandez S, Carreras MC, et al. Liver oxygen uptake dependence and mitochondrial function in septic rats. Circ Shock, 1994,44:175-82.
    28. Biagioli B, Scolletta S, Marchetti L, et al. Relationships between hemodynamic parameters and myocardial energy and antioxidant status in heart transplantation. Biomed Pharmacother, 2003,57:156-62.
    29. Rousou AJ, Ericsson M, Federman M, et al. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am J Physiol Heart Circ Physiol, 2004, 287: H1967-76.
    30. Dzeja PP, Bast P, Ozcan C, et al. Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J Physiol Heart Circ Physiol, 2003,284: H1048-56.
    31. Hua D, Zhuang X, Ye J, et al. Using fructose-1,6-diphosphate during hypothermic rabbit-heart preservation: a high-energy phosphate study. J Heart Lung Transplant, 2003,22:574-82.
    32. 程晓峰,景华. 1,6-二磷酸果糖心肌保护的研究进展. 医学研究生学报, 2005, 18:369-372
    33. Hardin CD, Roberts TM. Metabolism of exogenously applied fructose 1,6-bisphosphate in hypoxic vascular smooth muscle. Am J Physiol, 1994,267:H2325-32.
    34. Hardin CD, Lazzarino G, Tavazzi B, et al. Myocardial metabolism of exogenous FDP is consistent with transport by a dicarboxylate transporter. Am J Physiol Heart Circ Physiol, 2001,281:H2654-60.
    35. Dos Santos P, Kowaltowski AJ, Laclau MN, et al. Mechanisms by which opening the mitochondrial ATP- sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol, 2002,283:H284-95.
    36. McCully JD, Wakiyama H, Hsieh YJ, et al. Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol, 2004,286:H1923-35.
    37. Eefting F, Rensing B, Wigman J, et al. Role of apoptosis in reperfusion injury.Cardiovasc Res, 2004,61:414-26.
    38. Nicolini F, Beghi C, Muscari C, et al. Myocardial protection in adult cardiac surgery: current options and future challenges. Eur J Cardiothorac Surg, 2003,24:986-93.
    39. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 1992,119:493-501.
    40. Sparagna GC, Hickson-Bick DL, Buja LM, et al. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol, 2000,279:H2124-32.
    41. Borutaite V, Budriunaite A, Morkuniene R, et al. Release of mitochondrial cytochrome c and activation of cytosolic Caspases induced by myocardial ischaemia. Biochim Biophys Acta, 2001,1537:101-9.
    42. Vanden Hoek TL, Shao Z, Li C, et al. Mitochondrial electron transport can become a significant source of oxidative injury in cardiomyocytes. J Mol Cell Cardiol, 1997,29:2441-50.
    43. Hayashi A, Ito H, Shomori K, et al. Frequent occurrence of hepatocytic apoptosis in acute rejection of the grafted rat liver. Pathol Int, 1997,47:518-24.
    44. Ilan Y, Roy-Chowdhury N, Prakash R, et al. Massive repopulation of rat liver by transplantation of hepatocytes into specific lobes of the liver and ligation of portal vein branches to other lobes. Transplantation, 1997,64:8-13.
    45. Chu SJ, Chang DM, Wang D, et al. Fructose-1,6-diphosphate attenuates acute lung injury induced by ischemia-reperfusion in rats. Crit Care Med, 2002,30:1605-9.
    46. Markov AK, Payment MF, Hume AS, et al. Fructose-1,6-diphosphate in the treatment of oleander toxicity in dogs. Vet Hum Toxicol, 1999,41:9-15.
    47. Yue Y, Qin Q, Cohen MV, et al. The relative order of mK(ATP) channels, free radicals and p38 MAPK in preconditioning's protective pathway in rat heart. Cardiovasc Res, 2002,55:681-9.
    48. Toyoda Y, Friehs I, Parker RA, et al. Differential role of sarcolemmal and mitochondrial K(ATP) channels in adenosine-enhanced ischemic preconditioning. Am J Physiol Heart Circ Physiol, 2000,279:H2694-703.
    49. Stowe DF, Kevin LG. Cardiac preconditioning by volatile anesthetic agents: a defining role for altered mitochondrial bioenergetics. Antioxid Redox Signal, 2004,6:439-48.
    50. Akao M, O'Rourke B, Teshima Y, et al. Mechanistically distinct steps in the mitochondrial death pathway triggered by oxidative stress in cardiac myocytes. Circ Res, 2003,92:186-94.
    51. 范作文,王均志,黄从新,等. 线粒体与心肌细胞凋亡的研究进展. 中华心血管病杂志, 2002. 30:317-318
    52. Bernardi P, Petronilli V, Di Lisa F, et al. A mitochondrial perspective on cell death. Trends Biochem Sci, 2001,26:112-7.
    53. Borutaite V, Jekabsone A, Morkuniene R, et al. Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. J Mol Cell Cardiol, 2003,35:357-66.
    54. Valantine HA. Cardiac allograft vasculopathy: central role of endothelial injury leading to transplant "atheroma". Transplantation, 2003,76:891-9.
    55. Mankad PS, Amrani M, Rothery S, et al. Relative susceptibility of endothelium and myocardial cells to ischaemia-reperfusion injury. Acta Physiol Scand, 1997,161: 103-12.
    56. 黄 福 华 , 王 坚 刚 , 郑 斯 宏 , 等 . 血 管 内 皮 细 胞 与 心 脏 保 护 . 中 国 医 师 杂 志 , 2005,7:141-142
    57. Haddad P, Cabrillac JC, Piche D, et al. Changes in intracellular calcium induced by acute hypothermia in parenchymal, endothelial, and Kupffer cells of the rat liver. Cryobiology, 1999,39:69-79.
    58. He GW, Yang CQ. Impaired endothelium-derived hyperpolarizing factor-mediated relaxation in coronary arteries by cold storage with University of Wisconsin solution. J Thorac Cardiovasc Surg, 1998,116:122-30.
    59. Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol, 2001,12:383-9.
    60. Wever RM, Luscher TF, Cosentino F, et al. Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation, 1998,97:108-12.
    61. 苏健,陈朝红. 内皮细胞功能障碍. 肾脏病与透析肾移植杂志, 2005, 14:259-262
    62. Loscalzo J, Welch G. Nitric oxide and its role in the cardiovascular system. Prog Cardiovasc Dis, 1995,38:87-104.
    63. Zhang JM, Orihashi K, Sueda T, et al. Cardioprotective effects of FK409, a nitric oxide donor, after isolated rat heart preservation for 16 hours. Ann Thorac Surg, 2000, 70:1601-6.
    64. de Klaver MJ, Buckingham MG, Rich GF. Lidocaine attenuates cytokine-induced cell injury in endothelial and vascular smooth muscle cells. Anesth Analg, 2003,97:465-70, table of contents.
    65. Nakae Y, Kwok WM, Bosnjak ZJ, et al. Isoflurane activates rat mitochondrial ATP-sensitive K+ channels reconstituted in lipid bilayers. Am J Physiol Heart Circ Physiol, 2003,284:H1865-71.
    66. de Klaver MJ, Buckingham MG, Rich GF. Isoflurane pretreatment has immediate and delayed protective effects against cytokine-induced injury in endothelial and vascular smooth muscle cells. Anesthesiology, 2003,99:896-903.
    67. Beresewicz A, Maczewski M, Duda M. Effect of classic preconditioning and diazoxide on endothelial function and O2- and NO generation in the post-ischemic guinea-pig heart. Cardiovasc Res, 2004,63:118-29.
    68. Maczewski M, Duda M, Pawlak W, et al. Endothelial protection from reperfusion injury by ischemic preconditioning and diazoxide involves a SOD-like anti-O2- mechanism. J Physiol Pharmacol, 2004, 55:537-50.
    69. Nunes FB, Simoes Pires MG, Farias Alves Filho JC, et al. Physiopathological studies in septic rats and the use of fructose 1,6-bisphosphate as cellular protection. Crit Care Med, 2002,30:2069-74.
    70. Rajesh KG, Sasaguri S, Tian ZZ, et al. Potential role of mitochondrial permeability transition pore following long-time hypothermic heart preservation. Transplant Proc, 2002,34:2645-6.
    71. Hill DJ, Wicomb WN, Avery GJ, et al. Evaluation of a portable hypothermic microperfusion system for storage of the donor heart: clinical experience. Transplant Proc, 1997,29:3530-1.
    72. Okada K, Yamashita C, Okada M, et al. Successful 24-hour rabbit heart preservation by hypothermic continuous coronary microperfusion with oxygenated University of Wisconsin Solution. Ann Thorac Surg, 1995,60:1723-8.
    73. Wicomb WN, Novitzky D, Cooper DK, et al. Forty-eight hours hypothermic perfusion storage of pig and baboon hearts. J Surg Res, 1986,40:276-84.
    74. Ferrera R, Michel P, Hadour G, et al. Microperfusion techniques for long-termhypothermic preservation. J Heart Lung Transplant, 2000,19:792-800.
    75. Masters TN, Fokin AA, Schaper J, et al. Changes in the preserved heart that limit the length of preservation. J Heart Lung Transplant, 2002,21:590-9.
    76. 刘永锋,刘浩. 不同器官的保存方法. 见: 夏穗生主编. 临床移植医学. 第 1 版. 浙江: 浙江科学技术出版社, 1998: 110-114
    1. Ku K, Oku H, Alam MS, et al. Prolonged hypothermic cardiac storage with histidine- tryptophan-ketoglutarate solution: comparison with glucose-insulin-potassium and University of Wisconsin solutions. Transplantation, 1997,64:971-5.
    2. 鲁可权. 心脏保存液研究进展. 山东医药, 2004,44:68-69
    3. Jahania MS, Sanchez JA, Narayan P, et al. Heart preservation for transplantation: principles and strategies. Ann Thorac Surg, 1999,68:1983-7.
    4. Mankad P, Slavik Z, Yacoub M. Endothelial dysfunction caused by University of Wisconsin preservation solution in the rat heart. The importance of temperature. J Thorac Cardiovasc Surg, 1992,104:1618-24.
    5. 张 素 清 , 施 雪 筠 . 心 脏 保 存 液 的 研 究 进 展 ( 综 述 ). 北 京 中 医 药 大 学 学 报 , 2002,25:38-40
    6. Masters TN, Fokin AA, Schaper J, et al. Changes in the preserved heart that limit the length of preservation. J Heart Lung Transplant, 2002,21:590-9.
    7. 李忠东. 离体心脏低温保存的研究进展. 中华胸心血管外科杂志, 1994,10:361-364
    8. Demmy TL, Turpin TA, Wagner-Mann CC. Laboratory confirmation of clinical heart allograft preservation variability. Ann Thorac Surg, 2001,71:1312-9.
    9. Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation, 1988,45:673-6.
    10. Alamanni F, Parolari A, Visigalli R, et al. Endothelial cell injury induced by preservation solutions: a confocal microscopy study. Ann Thorac Surg, 2002, 73: 1606-14; discussion 1614-5.
    11. Wang T, Batty PR, Hicks GL Jr, et al. Long-term hypothermic storage of the cardiac explant. Comparison of four solutions. J Cardiovasc Surg (Torino), 1991,32:21-5.
    12. Saitoh Y, Hashimoto M, Ku K, et al. Heart preservation in HTK solution: role of coronary vasculature in recovery of cardiac function. Ann Thorac Surg, 2000, 69: 107-12.
    13. Mohara J, Morishita Y, Takahashi T, et al. A comparative study of Celsior and University of Wisconsin solutions based on 12-hr preservation followed by transplantation in canine models. J Heart Lung Transplant, 1999,18:1202-10.
    14. Desrois M, Sciaky M, Lan C, et al. Metabolic and functional effects of low-potassium cardioplegic solutions for long-term heart preservation. MAGMA, 1999,8:77-82.
    15. 高文波,朱有华. 心脏保存液的研究现状. 国外医学.外科学分册, 2005,32:307-309
    16. 曹 西 南 , 杨 远 和 . 二 磷 酸 果 糖 对 心 脏 作 用 及 机 制 研 究 进 展 . 医 药 导 报 , 2004,23:246-247
    17. Chien S, Zhang F, Niu W, et al. Fructose-1,6-diphosphate and a glucose-free solution enhances functional recovery in hypothermic heart preservation. J Heart Lung Transplant, 2000,19:277-85.
    18. 杨远和,曹西南. 1,6-二磷酸果醣对兔心肌细胞中 LDH 漏出和 ATP 含量的影响. 昆明医学院学报, 2002,23:8-12
    19. Niu W, Zhang F, Ehringer W, et al. Enhancement of hypothermic heart preservation with fructose 1, 6-diphosphate. J Surg Res, 1999,85:120-9.
    20. Wheeler TJ, McCurdy JM, denDekker A, et al. Permeability of fructose-1,
    6-bisphosphate in liposomes and cardiac myocytes. Mol Cell Biochem, 2004, 259: 105-14.
    21. Hua D, Zhuang X, Ye J, et al. Using fructose-1,6-diphosphate during hypothermic rabbit-heart preservation: a high-energy phosphate study. J Heart Lung Transplant, 2003, 22:574-82.
    22. Michel P, Vial R, Rodriguez C, et al. A comparative study of the most widely used solutions for cardiac graft preservation during hypothermia. J Heart Lung Transplant, 2002,21:1030-9.
    23. Michel P, Hadour G, Rodriguez C, et al. Evaluation of a new preservative solution for cardiac graft during hypothermia. J Heart Lung Transplant, 2000,19:1089-97.
    24. Hulsmann WC. Morphological changes of heart muscle caused by successive perfusion with calcium-free and calcium-containing solutions (calcium paradox). Cardiovasc Res, 2000,45:119-20, 122.
    25. 裴德安 . 心肌钾通道的研究进展 . 国外医学 . 生理 . 病理科学与临床分册 , 1997,17:78-81
    26. Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res, 1999,84:973-9.
    27. Holmuhamedov EL, Jovanovic S, Dzeja PP, et al. Mitochondrial ATP-sensitive K+channels modulate cardiac mitochondrial function. Am J Physiol, 1998,275:H1567-76.
    28. Holmuhamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol, 1999,519 Pt 2:347-60.
    29. Korge P, Honda HM, Weiss JN. Regulation of the mitochondrial permeability transition by matrix Ca(2+) and voltage during anoxia/reoxygenation. Am J Physiol Cell Physiol, 2001,280:C517-26.
    30. Miura T, Liu Y, Goto M, et al. Mitochondrial ATP-sensitive K+ channels play a role in cardioprotection by Na+-H+ exchange inhibition against ischemia/reperfusion injury. J Am Coll Cardiol, 2001,37:957-63.
    31. Asano G, Takashi E, Ishiwata T, et al. Pathogenesis and protection of ischemia and reperfusion injury in myocardium. J Nippon Med Sch, 2003,70:384-92.
    32. Dos Santos P, Laclau MN, Boudina S, et al. Alterations of the bioenergetics systems of the cell in acute and chronic myocardial ischemia. Mol Cell Biochem, 2004, 256-257:157-66.
    33. Grover GJ, Dzwonczyk S, Parham CS, et al. The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs. Cardiovasc Drugs Ther, 1990,4:465-74.
    34. O'Rourke B. Myocardial K(ATP) channels in preconditioning. Circ Res, 2000, 87:845-55.
    35. 李寒,范士志,陈建明. 开放线粒体敏感性 ATP 钾通道对缺血再灌注心肌内皮细胞保护作用研究. 医学临床研究, 2005:196-198.
    36. Iwai T, Tanonaka K, Koshimizu M, et al. Preservation of mitochondrial function by diazoxide during sustained ischaemia in the rat heart. Br J Pharmacol, 2000, 129: 1219-27.
    37. Kevelaitis E, Oubenaissa A, Mouas C, et al. Ischemic preconditioning with opening of mitochondrial adenosine triphosphate-sensitive potassium channels or Na/H exchange inhibition: which is the best protective strategy for heart transplants?. J Thorac Cardiovasc Surg, 2001,121:155-62.
    38. Kevelaitis E, Oubenaissa A, Mouas C, et al. Opening of mitochondrial potassium channels: a new target for graft preservation strategies?. Transplantation, 2000,70: 576-8.
    39. Dzeja PP, Bast P, Ozcan C, et al. Targeting nucleotide-requiring enzymes: implicationsfor diazoxide-induced cardioprotection. Am J Physiol Heart Circ Physiol, 2003, 284: H1048-56.
    40. Dos Santos P, Kowaltowski AJ, Laclau MN, et al. Mechanisms by which opening the mitochondrial ATP- sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol, 2002,283:H284-95.
    41. Rousou AJ, Ericsson M, Federman M, et al. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am J Physiol Heart Circ Physiol, 2004, 287: H1967-76.
    42. Hachida M, Lu H, Ohkado A, et al. Effect of ATP-potassium channel opener nicorandil on long-term cardiac preservation. J Cardiovasc Surg (Torino), 2000,41:533-9.
    43. 郭炜,沈岳良,陈莹莹,等. 二氮嗪在长时程心脏低温保存中的作用. 生理学报, 2004,56:632-638
    44. 杨双强,谭松涛,杨朝坤,等. 极化停搏液用于离体大鼠心脏保存的实验研究. 重庆医科大学学报, 2005,30:438-441
    45. 胡志斌,严志尡. 三磷酸腺苷敏感性钾通道开放剂与心脏保存液. 中国体外循环杂志, 2004,2:251-253
    46. Cohen NM, Wise RM, Wechsler AS, et al. Elective cardiac arrest with a hyperpolarizing adenosine triphosphate-sensitive potassium channel opener. A novel form of myocardial protection?. J Thorac Cardiovasc Surg, 1993,106:317-28.
    47. Fukuda H, Luo CS, Gu X, et al. The effect of K(atp)channel activation on myocardial cationic and energetic status during ischemia and reperfusion: role in cardioprotection. J Mol Cell Cardiol, 2001,33:545-60.
    48. Scholz W, Albus U, Counillon L, et al. Protective effects of HOE642, a selective sodium-hydrogen exchange subtype 1 inhibitor, on cardiac ischaemia and reperfusion. Cardiovasc Res, 1995,29:260-8.
    49. Scheule AM, Jost D, Beierlein W, et al. Sodium-hydrogen inhibitor cariporide (HOE 642) improves in situ protection of hearts from non-heart-beating donors. J Heart Lung Transplant, 2003,22:1335-42.
    50. Ryan JB, Hicks M, Cropper JR, et al. The initial rate of troponin I release post-reperfusion reflects the effectiveness of myocardial protection during cardiacallograft preservation. Eur J Cardiothorac Surg, 2003,23:898-906.
    51. Cropper JR, Hicks M, Ryan JB, et al. Cardioprotection by cariporide after prolonged hypothermic storage of the isolated working rat heart. J Heart Lung Transplant, 2003,22:929-36.
    1. 鲁可权. 心脏保存液研究进展. 山东医药, 2004,44:68-69
    2. Ku K, Oku H, Alam MS, et al. Prolonged hypothermic cardiac storage with histidine-tryptophan-ketoglutarate solution: comparison with glucose-insulin-potassium and University of Wisconsin solutions. Transplantation, 1997,64:971-5.
    3. Masters TN, Fokin AA, Schaper J, et al. Changes in the preserved heart that limit the length of preservation. J Heart Lung Transplant, 2002,21:590-9.
    4. 李忠东. 离体心脏低温保存的研究进展. 中华胸心血管外科杂志, 1994,10:361-364.
    5. Demmy TL, Turpin TA, Wagner-Mann CC. Laboratory confirmation of clinical heart allograft preservation variability. Ann Thorac Surg, 2001,71:1312-9.
    6. Jahania MS, Sanchez JA, Narayan P, et al. Heart preservation for transplantation: principles and strategies. Ann Thorac Surg, 1999,68:1983-7.
    7. 张 素 清 , 施 雪 筠 . 心 脏 保 存 液 的 研 究 进 展 ( 综 述 ). 北 京 中 医 药 大 学 学 报 , 2002,25,38-40.
    8. Mankad P, Slavik Z, Yacoub M. Endothelial dysfunction caused by University of Wisconsin preservation solution in the rat heart. The importance of temperature. J Thorac Cardiovasc Surg, 1992,104:1618-24.
    9. Saitoh Y, Hashimoto M, Ku K, et al. Heart preservation in HTK solution: role of coronary vasculature in recovery of cardiac function. Ann Thorac Surg, 2000, 69: 107-12.
    10. 孙备,曲欣,姜洪池,等. HTK 器官保存液及其研究近况. 中华器官移植杂志, 2000,21:377-378.
    11. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature, 1983,305:147-8.
    12. Ashcroft SJ, Ashcroft FM. Properties and functions of ATP-sensitive K-channels. Cell Signal, 1990,2:197-214.
    13. Inoue I, Nagase H, Kishi K, et al. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature, 1991,352:244-7.
    14. Inagaki N, Gonoi T, Clement JP 4th, et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science, 1995,270:1166-70.
    15. Li L, Wu J, Jiang C. Differential expression of Kir6.1 and SUR2B mRNAs in thevasculature of various tissues in rats. J Membr Biol, 2003,196:61-9.
    16. Aguilar-Bryan L, Nichols CG, Wechsler SW, et al. Cloning of the beta cell high- affinity sulfonylurea receptor: a regulator of insulin secretion. Science, 1995, 268: 423-6.
    17. Terzic A, Jahangir A, Kurachi Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am J Physiol, 1995,269: C525-45.
    18. Fozard JR, Carruthers AM. The cardiovascular effects of selective adenosine A1 and A2 receptor agonists in the pithed rat: no role for glibenclamide-sensitive potassium channels. Naunyn Schmiedebergs Arch Pharmacol, 1993,347:192-6.
    19. Nakaya H, Miki T, Seino S, et al. [Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets]. Nippon Yakurigaku Zasshi, 2003,122:243-50.
    20. Noma A. Gating properties of ATP-sensitive K+ channels in the heart. Cardiovasc Drugs Ther, 1993,7 Suppl 3:515-20.
    21. Grover GJ, Garlid KD. ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol, 2000,32:677-95.
    22. Robertson DW, Steinberg MI. Potassium channel modulators: scientific applications and therapeutic promise. J Med Chem, 1990,33:1529-41.
    23. Grover GJ, Dzwonczyk S, Parham CS, et al. The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs. Cardiovasc Drugs Ther, 1990,4:465-74.
    24. Cohen NM, Wise RM, Wechsler AS, et al. Elective cardiac arrest with a hyperpolarizing adenosine triphosphate-sensitive potassium channel opener. A novel form of myocardial protection?. J Thorac Cardiovasc Surg, 1993,106:317-28.
    25. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986,74:1124-36.
    26. Yao Z, Gross GJ. A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation, 1994,89:1229-36.
    27. Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide andits interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res, 1997,81:1072-82.
    28. Toyoda Y, Friehs I, Parker RA, et al. Differential role of sarcolemmal and mitochondrial K(ATP) channels in adenosine-enhanced ischemic preconditioning. Am J Physiol Heart Circ Physiol, 2000,279:H2694-703.
    29. Holmuhamedov EL, Jovanovic S, Dzeja PP, et al. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol, 1998,275:H1567-76.
    30. Holmuhamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol, 1999,519 Pt 2:347-60.
    31. Korge P, Honda HM, Weiss JN. Regulation of the mitochondrial permeability transition by matrix Ca(2+) and voltage during anoxia/reoxygenation. Am J Physiol Cell Physiol, 2001,280:C517-26.
    32. Miura T, Liu Y, Goto M, et al. Mitochondrial ATP-sensitive K+ channels play a role in cardioprotection by Na+-H+ exchange inhibition against ischemia/reperfusion injury. J Am Coll Cardiol, 2001,37:957-63.
    33. Asano G, Takashi E, Ishiwata T, et al. Pathogenesis and protection of ischemia and reperfusion injury in myocardium. J Nippon Med Sch, 2003,70:384-92.
    34. Dos Santos P, Laclau MN, Boudina S, et al. Alterations of the bioenergetics systems of the cell in acute and chronic myocardial ischemia. Mol Cell Biochem, 2004, 256-257:157-66.
    35. O'Rourke B. Myocardial K(ATP) channels in preconditioning. Circ Res, 2000, 87:
    845-55.
    36. 李寒,范士志,陈建明. 开放线粒体敏感性 ATP 钾通道对缺血再灌注心肌内皮细胞保护作用研究. 医学临床研究, 2005:196-198.
    37. Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation, 1988,45:673-6.
    38. Ducko CT, Stephenson ER Jr, Jayawant AM, et al. Potassium channel openers: are they effective as pretreatment or additives to cardioplegic?. Ann Thorac Surg, 2000,69: 1363-8.
    39. Chambers DJ, Hearse DJ. Developments in cardioprotection: "polarized" arrest as an alternative to "depolarized" arrest. Ann Thorac Surg, 1999,68:1960-6.
    40. Gu K, Kin S, Saitoh Y, et al. The HTK solution with nicorandil can improve cardiac function after simple cold storage. Transplant Proc, 1996,28:77-9.
    41. Dorman BH, Hebbar L, Hinton RB, et al. Preservation of myocyte contractile function after hyperthermic cardioplegic arrest by activation of ATP-sensitive potassium channels. Circulation, 1997,96:2376-84.
    42. Hoenicke EM, Peterseim DS, Ducko CT, et al. Donor heart preservation with the potassium channel opener pinacidil: comparison with University of Wisconsin and St. Thomas' solution. J Heart Lung Transplant, 2000,19:286-97.
    43. Jayawant AM, Lawton JS, Hsia PW, et al. Hyperpolarized cardioplegic arrest with nicorandil: advantages over other potassium channel openers. Circulation, 1997, 96:II-240-6.
    44. Lawton JS, Hsia PW, Damiano RJ Jr. The adenosine-triphosphate-sensitive potassium- channel opener pinacidil is effective in blood cardioplegic. Ann Thorac Surg, 1998,66: 768-73.
    45. Jayawant AM, Damiano RJ Jr. The superiority of pinacidil over adenosine cardioplegic in blood-perfused isolated hearts. Ann Thorac Surg, 1998,66:1329-35; discussion 1335-6.
    46. 王克学,梁志强,刘志永,等. 尼可地尔超极化心脏保存液保存兔心的效果. 中华器官移植杂志, 2002,23:21-23.
    47. Iwai T, Tanonaka K, Koshimizu M, et al. Preservation of mitochondrial function by diazoxide during sustained ischaemia in the rat heart. Br J Pharmacol, 2000,129: 1219-27.
    48. Kevelaitis E, Oubenaissa A, Mouas C, et al. Opening of mitochondrial potassium channels: a new target for graft preservation strategies?. Transplantation, 2000,70: 576-8.
    49. Kevelaitis E, Oubenaissa A, Mouas C, et al. Ischemic preconditioning with opening of mitochondrial adenosine triphosphate-sensitive potassium channels or Na/H exchange inhibition: which is the best protective strategy for heart transplants?. J Thorac Cardiovasc Surg, 2001,121:155-62.
    50. Dzeja PP, Bast P, Ozcan C, et al. Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J Physiol Heart Circ Physiol, 2003, 284:H1048-56.
    51. Dos Santos P, Kowaltowski AJ, Laclau MN, et al. Mechanisms by which opening the mitochondrial ATP- sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol, 2002,283:H284-95.
    52. Rousou AJ, Ericsson M, Federman M, et al. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am J Physiol Heart Circ Physiol, 2004, 287: H1967-76.
    53. Hachida M, Lu H, Ohkado A, et al. Effect of ATP-potassium channel opener nicorandil on long-term cardiac preservation. J Cardiovasc Surg (Torino), 2000,41:533-9.
    54. 郭炜,沈岳良,陈莹莹,等. 二氮嗪在长时程心脏低温保存中的作用. 生理学报, 2004,56:632-638.
    55. 杨双强,谭松涛,杨朝坤,等. 极化停搏液用于离体大鼠心脏保存的实验研究. 重庆医科大学学报, 2005,30:438-441.
    56. 胡志斌,严志尡. 三磷酸腺苷敏感性钾通道开放剂与心脏保存液. 中国体外循环杂志, 2004,2:251-253.
    57. Fukuda H, Luo CS, Gu X, et al. The effect of K(atp)channel activation on myocardial cationic and energetic status during ischemia and reperfusion: role in cardioprotection. J Mol Cell Cardiol, 2001,33:545-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700