用户名: 密码: 验证码:
CFB锅炉洁净燃烧福建无烟煤的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以一种典型福建无烟煤—龙岩煤为对象,从理论和试验两方面较为系统地研究了与影响福建无烟煤在CFB锅炉中洁净燃烧问题特别是燃尽问题有关的若干因素。全文的研究主要包括有五部分内容(1)研究背景及相关研究综述;(2)福建无烟煤及其燃烧性质测量;(3)锅炉飞灰及其含碳性质分析;(4)锅炉运行特性的影响研究;和(5)理论分析与计算模拟。
     首先介绍了研究背景。分析CFB锅炉燃烧无烟煤的特点,指出燃烧无烟煤CFB锅炉存在的问题与原因,综述了影响无烟煤在CFB锅炉中“燃尽”的煤质及其燃烧特性和锅炉运行特性等方面的研究情况,特别是关于无烟煤流化床燃烧中的破碎研究。
     关于福建无烟煤及其燃烧性质的研究方面。首先用浮选法对龙岩煤入炉煤进行分选,得到密度不同、能代表不同宏观煤岩的颗粒。利用工业分析、元素分析、煤岩分析、电子显微镜扫描分析、压汞仪测试、热天平分析、和小型流化床燃烧试验等手段研究了不同岩相颗粒的显微组分分布、颗粒表面形貌及内部孔隙结构、热天平着火温度及燃尽温度、反应性等颗粒性质及燃烧性质;并分别在热天平和自制小型流化床上研究了不同岩相龙岩煤颗粒的热破碎特性。分析了造成福建无烟煤燃烧中发生强烈热破碎的原因,归纳了不同岩相颗粒热破碎的特点,研究了影响福建无烟煤热破碎的因素,总结了热破碎随燃烧时间演化的规律。其次是研究福建无烟煤的反应动力学参数。利用热天平实验测试数据,分别采用Freeman-Carroll微分法、改良Coats-Redfern积分法和Flynn-Wall-Ozawa法等热分析手段求解4种无烟煤的燃烧动力学参数。研究不同热天平试验工况、不同处理方法和不同拟合区间等对求解结果的影响,分析用不同热分析方法求解反应动力学参数的可靠性并计算得到了几种典型福建无烟煤的燃烧反应动力学参数;再次是研究流化床燃烧中无烟煤焦的反应性随燃尽度的变化。提出了一个可用于比较煤焦反应性的通用判据——最大比失重速率,通过非等温热天平实验,采用最大比失重速率对不同煤种、同一煤种的不同宏观煤岩和同一种煤岩不同燃烧时间煤焦等的反应性进行了判断,并与用其它判据的比较结果作了对比;重点研究了流化床燃烧中不同燃尽度亮煤煤焦的反应性随时间变化情况。
     对锅炉的飞灰及其含碳性质的分析则以当前燃烧福建无烟煤的三台工业CFB锅炉的飞灰为对象,通过筛分、称重、灼烧等手段分析了飞灰的粒径和含碳量分布;利用场发射扫描电子显微镜(SEM)观察、电子探针能谱分析(EDX)、热天平测试、和小型流化床燃烧试验等手段研究了飞灰颗粒的表面形态及颗粒性质、比较了飞灰碳与相应入炉煤的反应性,讨论了飞灰碳的来源。
     针对于锅炉运行特性参数对福建无烟煤洁净燃烧的影响,则主要研究了入炉煤颗粒径分布、飞灰回燃、过量空气系数和二次风率调整、添加石灰石脱硫等几种情况:一是在一台20t/h的第一代循环流化床锅炉上测试了三种不同平均粒度分布入炉煤的燃烧情况,研究入炉煤粒度分布对福建无烟煤燃尽的影响。得到入炉煤平均颗粒径变化对CFB锅炉炉膛稀相区的燃烧情况、对炉膛内温度分布和煤燃尽效果等的影响规律;二是研究了飞灰回燃对锅炉运行特别是飞灰含碳量及燃烧效率的影响。理论分析了飞灰回燃对CFB锅炉燃烧效率的影响,并在一台75t/h采用两级飞灰分离装置的第三代工业循环流化床上测试了飞灰回燃对锅炉返料器运行温度、飞灰的粒度分布及其含碳量、和锅炉燃烧效率及其它运行参数的影响。得到飞灰回燃量与飞灰含碳量和锅炉燃烧
Taking Longyan coal-a typical Fujian anthracite as an example, these factors which effect on the clean combustion of Fujian anthracite , especially its burnout in CFB boiler, was experimentally and theoretically studied in this paper. The research includes the following five parts of contents: (1) An introduction on the research background and an overview of correlative studies; (2) Study on the particle of typical Fujian anthracite and its combustion characteristics ; (3) Fly ash of CFB boiler burning Fujian anthracite and its residual carbon analyzed; (4) Clean combustion of Fujian anthracite in CFB boiler-effect of running character & operating parameter; and (5) Char particle combustion -Theoretical analysis and simulation;
    The research background was introduced at the beginning of this paper. Character of CFB boiler burning Fujian anthracite and some of the related running problems were analyzed, an overview was cast on the study of these factors such as coal property, coal combustion characteristics and running character of boiler which can effect on the burnout of anthracite, specially, the research on the thermal fragmentation of anthracite during combustion in fluidized bed combustor was also summarized.
    For the study of the combustion characteristics of Longyan coal, the flotation method was used to separate the different lithotypes from feeding coal, and particles with different size and density were obtained. By proximate and ultimate analysis, petrographical analysis, Scanning Electronic Microscope analysis, Mercury Porosimeter analysis, TG analysis and pilot scale fluidized bed combustion experiment, the combustion characteristics and particle properties of Longyan coal with different lithotype were studied, including the surface figure and pore structure of particle, the maceral content, the ignition and burnout temperature, and the reactivity, ect. Furthermore, the thermal fragmentation properties of Longyan anthracite particle with different lithotypes during pyrolysis and combustion were measured respectively in a thermobalance and pilot-scale fluidized bed reactor, the reason of fragmentation during combustion in CFB was analyzed, the fragmentation characteristics and those factors which influence the result of fragmentation were studied, and the variation of fragmentation with combustion time was also discussed.
    Using dates obtained from TGA experiment, the reaction kinetics parameters of Fujian anthracite was studied. These thermoanalysis tools such as Freeman-Carroll differential method, improved Coats-Redfern integral method and Flynn-Wall-Ozawa method were introduced to calculate the kinetic parameters of reaction. The effect of these factors such as the thermoanalysis method used, the heating rate in TGA experiment chosen, and the correlative reaction area selected on the kinetics parameters correlated were discussed, the authenticity of the kinetic parameters calculated from these different thermoanalysis method was analyzed and the kinetics parameters of 3 kinds of Fujian anthracite were correlated.
    Variation of the reactivity of char with time for Fujian anthracite during
引文
[1] 杜梅芳,张忠孝.典型中国无烟煤燃烧特性研究.热能动力工程.1994,9(6):336-340
    [2] 蒋昌盛.燃用福建无烟煤的循环流化床锅炉之设计问题.洁净煤技术国际研讨会论文集.北京:煤炭工业岀版社.1997,195—200.
    [3] Nowak W. Clean Coal fluidized-bed technology in Poland. Applied Energy. 2003, 74 : 405-413
    [4] Rajaram S. Next generation CFBC[J]. Chemical Engineering Science, 1999, 54: 5565-5571
    [5] 浙江大学热能工程研究所.循环流化床燃烧福建无烟煤的试验研究.1995年10月.
    [6] 王智微,孙献斌,吕怀安,等.循环流化床燃烧无烟煤的试验研究.发电设备.2001,4:5-8
    [7] Basu P., Fraser S. A.. Circulating Fluidized Bed Boilers: Design and Operations. Butterworth-Heinemann Press, 1991
    [8] 何宏舟,苏建民.燃烧福建无烟煤的循环流化床锅炉的设计特点及运行性能分析.华东电力.2003,31(4):4-7
    [9] 熊正德.提高我省循环流化床锅炉热效率探讨.福建能源开发与节约.1999增刊.9-13
    [10] 肖平,蒋敏华.循环流化床锅炉的发展前景.热力发电.2004(1):2—5
    [11] 黎永,岳光溪,吕俊复.循环流化床锅炉飞灰碳损失研究.热电技术.2002,75:3-6
    [12] 于龙,吕俊复,王智微,等.循环流化床燃烧技术的研究展望.热能动力工程.2004,19(4):336-342
    [13] Varey J.E, Bottrell S. H., Thomas K.M.. Source determination and reactivity of unburnt carbon in fly ash. Coal Science and Technology. 1995, 24(1): 643-646
    [14] Hurt R.H, Gibbins J.R. Residual carbon from pulverized coal fired boilers: l. Size distribution and combustion reactivity. Fuel. 1995, 74 (4): 471-480
    [15] Brown R.C., Ahrens J, Christofides N.. The Contributions of Attrition and Fragmentation to Char Elutriation from Fluidized Beds. Combustion and Flame. 1992, 89:95-102
    [16] Li Y, Zhang J., Liu Q. ,et al. A study of the reactivity and formation of the unburnt carbon in CFB fly ashes. The 4th International Symposium on coal combustion. Development in Chemical Engineering and Mineral Processing. 2001, 9:301-312
    [17] 陈旭,路霁鸽,杨小勇.煤焦晶格结构变化对流化床锅炉飞灰残碳生成影响.煤炭科学技术.27(1):49-51
    [18] Cloke M., Lester E., Gibb W.. Characterization of coal with respect to carbon burnout in p.f.-fired boiler. Fuel. 1997, 76: 1257-1267;
    [19] Bratek K., Bratek W., Piasecka I.G., et.al. Properties and structure of different rank anthracite. Fuel. 2002, 81:97-108
    [20] Nandi B N, Brown T D, Lee G K. Inert coal macerals in combustion. Fuel. 1977, 56:125-130
    [21] Lee J. M., Kim J.S., Kim J.J, et al. Combustion and Fragmentation Characteristics of Korean Anthracite. In: Donald W, Geiling PE, editors. Sixteenth International Conference on Fluidized Bed Combustion. Nevada, USA; 2001. P: 889-898
    [22] 阮传德,张蓬洲,王岩国.无烟煤结构的高分辨电镜研究.燃料化学学报.1995,23(1):75-79
    [23] 范宏丽,徐旭常,王世昌.煤粉的煤岩和燃烧特性研究.工程热物理学报.1999,20(4):515-519
    [24] Chirone R., Massimilla L., Salatino P.. Comminution of Carbons in Fluidized Bed Combustion. Progress of Energy Combustion Science. 1991, 17:297-326
    [25] Stubington J.F., Linjewile T.M.. The effects of fragmentation on devolatilization of large coal particles. Fuel. 1989, 68:155-160
    [26] Dakic D., van der Honing G., Valk M.. Fragmentation and swelling of various coals during devolatilization in a fluidized bed. Fuel. 1989, 68:911-916.
    [27] Marban G., Pis J.J., Fuertes A.B.. Characterizing Fuels for atmospheric Fluidized Bed Combustion. Combustion and Flame. 1995, 103:41-58
    [28] Lee J.M., Kim J.S., Kim J.J.. Comminution characteristics of Korean anthracite in a CFB reactor. Fuel. 2003, 82: 1349-1357.
    [29] Lee S.H., Kim S.D., Lee D.H.. Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor. Fuel. 2002, 81: 1633-1639.
    [30] Zhang H.T., Cen K.F., Yah J.H., et al. The fragmentation of coal particles during the coal combustion in a fluidized bed. Fuel. 2002.81:1835-1840
    [31] 马利强,路霁钨,岳光溪.流化床条件下煤的一次爆裂特性的实验研究.燃料化学学报,2000,28(1):44-48
    [32] 吴正舜,刘欣,吴创之,等.煤在燃烧过程中的破碎.电站系统工程.2003,19(2):4-7
    [33] Andrei M. A., Sarofim A.F., Beer J.M.. Time—resolved Burnout of Coal Particles in a Fluidized Bed. Combustion and Flame. 1985, 61: 17-27
    [34] Ezra Bar-ziv, Isaac I. Kantorovich. Mutual effects of porosity and reactivity in char oxidation. Progress in Energy and Combustion Science. 2001, 27 : 667-697.
    [35] 顾蕃,许晋源,沈红梅.煤颗粒燃烧的孔隙特性研究.燃料化学学报.1993,21(4):425-429
    [36] Sφrensen L.H., Gjernes E., Jessen T., et al. Determination of reactivity parameters of model carbons, cokes and flame-chars. Fuel. 1996, 75(1): 31-38;
    [37] Alonso M.J.G., Borrego A.G., Alvarez D., et al. A reactivity study of chars obtained at different temperatures in relation to their petrographic characteristics. Fuel Processing Technology. 2001, 69: 257-272;
    [38] Lu Junfu, Wang Qimin, Li Yong, et · al. Unburned carbon loss in fly ash of CFB boilers burning hard coal. Tsinghua Science and Technology. 2003, 8 (6): 687-691
    [39] Fuertes A.B., Marban G., J.J. Pis. Combustion kinetics of coke particles in a fluidized bed. Fuel Proceeding Technology. 1994, 38:193-210
    [40] Talukdar J., Basu P.. The effect of fuel parameters on the performance of a circulating fluidized bed boiler. Proceedings of the Fifth International Conference on Circulating Fluidized Beds. M.Kwauk & J.H.Li (Ed.), Beijing: Science Press. 1996. 307-312
    [41] Lester E., Cloke M.. The characteristisation of coals and their respective chars formed at 1300℃ in a drop tube furnace. Fuel. 1999, 78:1645-1658
    [42] Su S., Pohl J.H., Holcombe D., et al. A proposed maceral index to predict combustion behavior of coal[J]. Fuel. 2001, 80:699-706
    [43] 吕俊复,张守玉,刘青,等.循环流化床锅炉的飞灰含碳量问题.动力工程.2004,24(2):170-174
    [44] He R., Xu X.C., Chen C.H., et al. Evolution of pore fractal dimensions for burning porous chars. Fuel. 1998, 77(12): 1291-1295.
    [45] 路继根,邱建荣,沙兴中,等.用热重法研究我国四种煤显微组分的燃烧特性.燃料化学学报.1996,24(4):329-334
    [46] 路丕思,于梅,邢力华,等.煤岩显微组分燃烧动力学特性及燃烬特性试验研究.电站系统工程.1994,10(2):48-54
    [47] Zheng Y.S., Wang Z.J.. Distribution and burning modes of char particles during combustion. Fuel. 1996, 75(12): 1434-1440
    [48] 郑雨寿,全锡爱,张景云.残炭颗粒的形态、结构及其在燃烧过程中的分布.燃料化学学报.20(3):225-231
    [49] 郑雨寿.煤岩成分对炭颗粒微结构及其燃烬特性的影响.煤炭学报.1990,15(2):80-85
    [50] Cloke M., Lester E., Thompson A.W.. combustion characteristics of coals using a drop-tube furnace. Fuel, 2002, 81:727-735
    [51] Lee S. H., Shon E. K.. Effect of molten caustic leaching on the combustion characteristics of anthracite. Fuel, 1997, 76(3): 241-246
    [52] Van der Lans, R.P., Glarborg P., Kim D. J., et al. Influence of coal quality on combustion performance. Fuel. 1998, 77(12): 1317-1328
    [53] 岑可法,倪明江,骆仲泱,等.循环流化床锅炉的理论、设计与运行.中国电力出版社.1998.
    [54] 苏建民.福建无烟煤的优化燃烧.福建能源开发与节约.1999增刊.28-32
    [55] 吴炬,李玉刚,丛达.循环流化床锅炉飞灰含碳量运行调整浅析.全国电力行业CFB机组技术交流服务协作网第三届年会技术交流论文集.乌鲁木齐,2004.182-185
    [56] 陈念祖,朱云鹏,李红兵,等.首台国产化410t/h循环流化床锅炉特性试验研究简介.全国电力行业CFB机组技术交流服务协作网第三届年会技术交流论文集.乌鲁木齐,2004.79-90
    [57] 金涌,祝京旭,汪展文.流态化工程原理.北京:清华大学出版社.2001.
    [58] Lee J. M., Kim J.S., Kim J. J.. CCT experience of Tong-Hae CFB boiler using Korean anthracite. 03 APEC-Clean Fossil Energy Technical & Policy Seminar. 2003
    [59] 刘德昌,吴正舜,陈汉平,等.煤的颗粒粒径分布对循环流化床锅炉设计和运行的影响.中国粉体技术.1999,5(4):
    [60] Tang M.S., Li X., Liu D.C.. Operating Experience of 75t/h Two Stage Circulating Fluidized Bed Boiler.15th International Conference on Fluidized Bed Combustion, ASME, 1999
    [61] Li S., Liu D.C.. Zhang S.H., et al. Measures to reduce carbon content of fly ash in CFB boilers. In Proceedings of the 7th International Conference on Circulating Fluidized Beds, J.R. Grace(Ed.), Ontario, Canada,2002. 725-729
    [62] 申莉,刘德昌,张世红,等.影响循环流化床锅炉燃烧效率的因素分析及改善措施.动力工程.2002,22(6):2054-2058
    [63] 沈引根,倪晓辉,邵国桢.135MW级CFB锅炉启动调试和燃烧调整实验.全国电力行业CFB机组技术交流服务协作网第三届年会技术交流论文集.乌鲁木齐,2004.171-181
    [64] 蔡爱民,石波,余武高.国产首台410t/h CFBB运行现状分析.全国电力行业CFB机组技术交流服务协作网第三届年会技术交流论文集.乌鲁木齐,2004.236-241
    [65] 步学朋,邓一英,陈家仁,等.影响无烟煤热爆裂的因素研究.煤炭转化.2000,23(4):42-45
    [66] Campbell E.K., Davidson J.F.. The Combustion of Coal in Fluidized Bed. Inst. Of Fuel Syrup. Ser. No.l, Fluidized Combustion. 1975, P: A2-1
    [67] 顾璠,许晋源,沈红梅.煤颗粒燃烧的形貌特性和表面平度理论.燃料化学学报.1995,13(2):127-135
    [68] Dacombe E, Pourkashanian M., Williams A., et al. Combustion-induced fragmentation behavior of isolated coal particles [J]. Fuel. 1999, 78:1847-1857
    [69] R. C. Brown, J Ahrens, N Christofides. The Contributions of Attrition and Fragmentation to Char Elutriation from Fluidized Beds. Combustion and Flame. 1992, 89:95-102
    [70] G. Donsi, L. Massimilla, M. Miccio. Carbon fines Production and elutriation from the bed of a fluidized coal combustor. Combustion & Flame. 1981, 41:57-69
    [71] Merrick D, Highley J. Particle size Reduction and Elutriation in a Fluidized Bed Process. AIChE symposium series, 1972, 70 (137): 366-378
    [72] Ray Y., Jiang T., Wen C.Y.. Particle attrition phenomena in a fluidized bed. Powder Technology. 1987, 49: 193-206
    [73] Arena U., Massimilla L., Cammarota S., et al. Carbon Attrition During the Combustion of a Char in a Circulating Fluidized Bed. Combustion Science and Technology. 73:383-394
    [74] 骆仲泱.燃煤循环流化床锅炉技术研究.浙江大学博士学位论文.1990.
    [75] 杨海瑞,肖显斌,Wirsum.A,等.循环流化床锅炉内的灰平衡模型研究.煤炭转化.2002,25(3):59-64.
    [76] Bursi J.M., Lafanechere L.. Jestin L.. Basic design studies for a 600MW FBC boiler (270b,2x600℃). B.R. Robert (Ed.), In Proceeding of the 15th International Conference of CFB. Georgia: Savannah, 1999:16-19.
    [77] Diet P.W.. Collection efficiency of cyclone separators. AIChE, 1981, 27(6): 125-176
    [78] 岑可法,骆仲泱,倪明江,等.低倍率中温分离型循环流化床锅炉的设计.动力工程.1991,11(5):1-11.
    [79] Zhu X.F., Mao J.H., Qian G. The influence of separator's position to the characteristic of CFB boiler. J.Werther(Ed.), In Proceedings of the 6th International Conference on Circulating Fluidized Beds, Wuerzburg, Germany, 1999. 997-1002
    [80] 孙献斌,蒋敏华,李光华,等.国产化100MW CFB锅炉的设计研究.中国电力.2000,33(2):14-17
    [81] Bis Z., Nowak W.. Operating experience of 315MWth CFB boiler at Zeran Plant in Poland. J.Werther(Ed.), In Proceedings of the 6th International Conference on Circulating Fluidized Beds, Wuerzburg, Germany,1999. 1015-1020
    [82] Wang Y., Li W.Q., Lv J.F., et al. Modeling research on char particle combustion behavior in CFB condition. The 5th International Symposium on coal combustion. 2003, Nanjing, China. 120-124
    [83] Belin F., Babichov L.A., Yu A.. Maystrenko. CFB boiler for low-Grade Ukrainian Anthracite. 5th International CFB conference. Beijing, China. 1996
    [84] 李俊,田子平,熊天柱,等.降低循环流化床飞灰可燃物.锅炉技术.2004,35(4):32-36
    [85] Brereton C.. End effects in circulating fluidized bed hydrodynamics. In Proceedings of the 4th International Conference on Circulating Fluidized Beds, Pittsburgh, U.S.A. 1993
    [86] 金燕,郑洽余.一种改善循环流化床锅炉性能的方法.动力工程.1999,19(1):12-16
    [87] 段钰锋,赵长遂,徐益谦.漩涡流化床旋风燃烧的动力学研究.热能动力工程.1994,9(4):206-209
    [88] 王怀彬,张子栋,曹勇,等.内循环流化床锅炉技术及发展.热能动力工程.1996,11(2):95-100
    [89] 刘坤磊,金保升,赵长遂.加旋流化床颗粒扬析规律的试验研究.热能动力工程.1995,10(3):162-167
    [90] Nieh S., Yang G.. Particle flow pattern in the freeboard ofa vortexing fluidized bed. Powder Technology. 1987,50:121-131
    [91] Korenberg J. Integrated fluidized bed / cyclone combustor with internal solids recirculation. J.P Mustonen(Ed.), In Proceeding of 9th International Conference on FBC. New York: ASME, 1987:1061-1065
    [92] 岑可法.循环流化床中加入切向二次风后气固多相流动的研究.工程热物理学报.1990,11(4):444-447
    [93] 金保升,刘坤磊,赵长遂,等.燃煤漩涡流化床燃烧特性研究.工程热物理学报.1994,15(1):104-107
    [94] 于龙.宽筛分粗颗粒循环流化床流体动力学的试验研究.清华大学学位论文. 1989
    [95] 赵长遂,陈小平,段钰锋,等.飞灰底饲回燃技术应用于循环流化床锅炉的机理和实例分析.全国电力行业CFB机组技术交流服务协作网第三届年会技术交流论文集.乌鲁木齐,2004.105-115
    [96] 王智微,孙献斌,吕怀安,等.循环流化床锅炉飞灰再循环与燃烧效率关系的分析.电站系统工程.2001,17(6):337-339
    [97] Brunello S., Flour I., Malssa P.. Kinetic study of char combustion in a fluidized. Fuel, 1996, 75(5): 536-544
    [98] J. Adanez, L.F. de Diego, P. Gayan, et al. A model for prediction of carbon combustion efficiency in circulating fluidized bed combustors. Fuel. 1995, 74(7): 1049-1056.
    [99] 王智微,孙宝洪,王立双,张缦.循环流化床燃烧室内细焦碳颗粒的燃烬特性分析.动力工程.2002,22(2):1697-1699
    [100] Lv J.F., Jin X.Z., Yang H.R., et al. Coal combustion efficiency in circulation fluidized Bed. Journal of basic science and engineering. 2000, 8(1): 97-104
    [101] 蒋敏华,孙献斌,张敏,等.NERC在循环流化床燃烧技术领域的研究与开发.热力发电.1999,2:10-14
    [102] Dang L.J., Jiang M.H., Lou Z.Q., et al. Economic ways to improve CFB boiler efficiency. In Proceedings of the 8th International Conference on Circulating Fluidized Beds, K.F. Cen (Ed.), Hangzhou, China, 2005. 602-608
    [103] 毛玉如.循环流化床富氧燃烧技术的试验和理论研究.浙江大学博士学位论文.2003年6月.
    [104] Gulyurtlu I.. Combustion of high ash Portugal anthracite in a fluidized bed. In the Proceedings of International Conference on Coal Science. 1989. Tokyo. 309-312
    [105] Arena U., Chirone R., D'Amore M., et al. Some issues in modeling bubbling and circulating fluidized-bed coal combustors. Powder Technology. 1995, 82:301-316.
    [106] Adanez J., Gayan P., Grasa G., et al. Circulating fluidized bed combustion in the turbulent regime: modeling of carbon combustion efficiency and sulphur retention. Fuel. 2001, 80:1405-1414
    [107] 刘坤磊,金保升,赵长遂,等.旋涡流化床燃烧特性的试验研究.东南大学学报.1992,22(S):69-75
    [108] Zhang W.N., Johnsson F., Leckner B.. Fluid-dynaraic boundary layers in CFB boilers. Chemical Engineering Science. 1995, 50(2): 201-210
    [109] 刘青,陈科宇,张守玉,等.循环流化床锅炉炉膛内气体浓度的分布.应用基础与工程科学学报.2003,11(1):71-76
    [110] 王勤辉,骆仲泱,方梦祥,等.循环流化床锅炉炉内流动和燃烧特性的试验研究.动力工程.1999,19(3):11-17
    [111] Jin xiao-zhong, Lu jun-fu, Yue Guang-xi, et al. Gas concentration profiles in the furnace of large CFB boilers with watercooled square separator. Proceeding of the Ist international conference of Engineering thermophysics. Beijing. P. R. China, 1999, 286—275.
    [112] 雷英,刘志永.循环流化床锅炉采用四角切圆送配二次风设计探讨.长沙电力学院学报.2002,17(1):55-58
    [113] Chirone R.. La Frammentazione del carbone in corso di combustione in letto fluido, Thesis in Chemical Engineering. Universita di Napoli, Napoli, Italy, 1980
    [114] Chirone R., Massimilla L.. Primary fragmentation of a coal in fluidized bed combustion, 22th Symposium on combustion, The combustion Institute. 1988, 267-279
    [115] Chirone R., Salatino P., Massimilla L.. Secondary Fragmentation of Char Particles During Combustion in a Fluidized Bed. Combustion and Flame. 1989, 77:79-90
    [116] Stubington J.F., Wang A.L.T.. Unburnt carbon elutriation from pressurized fluidized bed combustion of Australian black coals. Fuel. 2000, 79:1155-1160
    [117] 张宏焘.煤在流化床燃烧过程中的破碎特性及焦炭表面灰层扩散传质特性的研究.浙江大学学位论文.1990.
    [118] Winter F., Liu X.. Ash formation during CFB coal combustion - a laboratory study. In: J.R. Grace, J. Zhu, D.H. Lasa, Editors. Proceedings of the 7th International Conference on Circulating Fluidized Beds, Ontario, Canada; 2002, P:653-660
    [119] Van Dyk J.C.. Development of an alternative laboratory method to determine thermal fragmentation of coal sources during pyrolysis in the gasification process. Fuel. 2001, 80:245-249
    [120] Cui Y.B., Stubington J.F.. In-bed char combustion of Australian coals in PFBC .3. Secondary fragmentation. Fuel. 2001, 80:2245-2251
    [121] Sundback, C. A., Beer, J.M., Sarofim, A.F.. Fragmentation behavior of single coal particle in a fluidized bed. 20th Symposium on Coal Combustion. London, 1984,1495-1520
    [122] Stubington J.F., Sasongko D.. On the heating rate and volatile yield for coal particles injected into fluidized bed combustors. Fuel. 1998, 77:1021-1025
    [123] 李爱民,池涌,严建华,等.大颗粒碳在流化床中燃烧的热应力破碎理论.煤炭学报.1998,23(2):208-211
    [124] Chirone R, Massimilla L.. The Application of Weibull Theory to Primary Fragmentation of a Coal During Devolatilization. Power Technology. 1989, 57:197-212
    [125] 吴正舜,张春林,陈汉平,等.煤在燃烧过程中破碎模型的建立.燃料化学学报.2003,31(1):17-21
    [126] Fuertes A.B., Marban G.. Modelling Gasfication Reactions Including The Percolation Phenomenon. Chemical Engineering Science. 1994, 49 (22): 3813-3821
    [127] Liu G., Wu H., Gupta R.P., et al. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel. 2000, 79: 627-633;
    [128] Chen W.Y., Chen X.Y., Tavlin R.F., et al. Randomness of primary coal fragmentation. International Conference on Coal Science. Alberta Canada, Edited by K.H. Michaelian. 1993, 355-359.
    [129] Chen W.Y., Nagarajan G., Zhang Z.P.. Stochastic modeling of devolatilization-induced coal fragmentation during fluidized-bed combustion. Ind. Eng. Chem. Res.. 1994, 33(1): 137-145
    [130] Chen W.Y., Zhang Z.P., Shen B.C., et al. Stochastic modeling of tar molecular weight distribution during coal pyrolysis. Chemical Engineering Science. 1994, 49(22): 3687-3698
    [131] Cui Y.B., Stubington J.F.. A mathematical model of in-bed char combustion of Australian coals in PFBC. Fuel. 2001, 80:2049-2056
    [132] Marban G., Pis J.J., Fuertes A.B.. Simulation of secondary fragmentation during fluidized bed combustion. Powder Technology. 1996, 89:71-78
    [133] Berbau-Forschung Co. Rapid pyrolysis of bituminous coal in air. Essen; Germany, 1976.
    [134] Hanson S., Patrick J.W., Walker A.. The effect of coal particle size on pyrolysis and steam gasification. Fuel. 2002, 81:531-537
    [135] 陈鹏.中国煤炭性质、分类和利用.北京:化学工业出版社,2001年.
    [136] Helle S., Gordon A., Alfaro G., et al. Coal blend combustion: link between unburnt carbon in fly ashes and maceral composition. Fuel Processing Technology. 2003, 80:209-223
    [137] Das T.K. Thermogravimetric characterization of maceral concentrates of Russian coking coals. Fuel. 2001, 80: 97-106
    [138] 吴春来主编.煤炭标准及说明汇编.北京:中国标准出版社.1997年9月.442-498
    [139] Russell N.V., Beeley T.J., Man C.-K., et al. Development of TG measurements of intrinsic char combustion reactivity for industrial and research purposes. Fuel Processing Technology. 1998, 57:113-130
    [140] Morgan P. A., Robertson S. D., Unsworth J. F.. Combustion studies by thermogravimetric analysis. Fuel. 1986, 65: 1546-1551.
    [141] Serio M. A., Solomon P. R., Charpenay S., et al. Kinetics of volatile product evolution from the Argonne premium coals. Preprint am Chem Soc, Div Fuel Chem. 1990, 35(4): 808-815
    [142] Mahajan O. P., Yarzab R., Walker Jr P. L.. Unification of coal-char gasification reaction mechanisms. Fuel, 1978, 57:643-646
    [143] Russell N. V., Gibbins J. R., Wiiliamson J.. Structural ordering in high temperature coal char and the effect on reactivity. Fuel. 1999. 78:803-807
    [144] 刘彦鹏.流化床燃烧过程中煤颗粒特性对灰渣形成特性的影响.浙江大学学位论文.2004.2
    [145] 刘德昌,阎维平,主编.流化床燃烧技术.北京:中国电力出版社.1995
    [146] Young B.C., Smith LW.. The combustion of Loy Yang brown coal char. Combustion and Flame. 1989, 76:29-35
    [147] Tourunen A., Saastamoinen J., Hamalainen J., et ai. Dynamic measurements and analysis of fuel reactivity in a laboratory scale circulating fluidized bed combustor. In proceeding of the 7 th International Conference of Circulating fluidized Beds. J.R Grace (Ed.) Ontario, Canada, 2002.
    [148] 张百立.碳/炭粒燃烧速率及其反应动力学研究.清华大学学位论文.1992.
    [149] 徐跃年.煤裂解的反应动力学研究.热能动力工程.1995,10(3):154-157
    [150] John C.C., Eduin J. N., Bruce A.W.. Combustion characteristics of coal maceral and selected coals. Fuel. 1992, 71 (2): 151-158
    [151] 高正阳,方立军,周健,等.混煤燃烧特性的热重试验研究.动力工程.2002(3):1764-1767
    [152] 胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001.
    [153] 陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985年.
    [154] 郑明东,何孝军.动力煤的燃烧性能.化工学报.2003(3):374-378.
    [155] Zhang S.Y., Lv J.F.,Zhang J.M., et al. The transition of the activation energy of the char from raw and de-mineralized coal. In Proceeding of the 8 th International Conference of Circulating fluidized Beds. K.F. Cen (Ed.), Hangzhou, China, 2005. 439-445.
    [156] 肖三霞,方庆艳,傅培肪,等.煤的热天平燃烧反应动力学特性的研究.工程热物理学报.2004,25(5):891-893
    [157] Jenkins R.G, Nandi S.P., Walker EL., et al. Reactivity of heat-treated coals in air at 500℃. Fuel. 1973, 52:288-293
    [158] Tsai C.Y., Scaroni A. W.. Reactivity of bituminous coal chars during the initial stage of pulverized-coal combustion. Fuel. 1987, 66:1400-1406
    [159] Cai H.Y., Guell A.J., Chatzakis J. -Y., et al. Combustion reactivity and morphological change in coal chars: effect of pyrolysis temperature, heating rate and pressure. Fuel, 1996, 75(1): 15-24
    [160] Davini P., Ghetti P., Bonfanti L., et al. Investigation of the combustion of particles of coal. Fuel. 1996, 75:1083-1088
    [161] Best P. E., Solomon P. R., Serio M. A.. The relationship between char reactivity and physical and chemical structural features. Preprint am Chem Soc, Div Fuel Chem, 1987, 32(4): 138-146
    [162] Zhang D.K., Wall T.F., Tate A.G. The reactivity of pulverized coal char particles: experiment using ignition,burnout and DTG technique and partly burnt chars. Fuel. 1992, 71: 1247-1255.
    [163] Cumming J. W. Reactivity assessment of coal via a weighted mean activation energy. Fuel. 1984, 63 (10): 1436-1440
    [164] Smith S. E., Neavel R.C., Hippo E. J., et al. DTGA combustion of coal in the Exxon coal library. Fuel. 1981, 60 (3): 458-462
    [165] 陈晓平,谷小兵,段钰锋,等.半焦加压燃烧特性研究.工程热物理学报.2004,25(2):345-347
    [166] 吕俊复,候祥松,任维,等.循环流化床锅炉灰渣可燃物测试方法研究.热力发电.2003(10):14-17
    [167] 吕太,张墨,毕春丽,等.循环流化床锅炉飞灰含碳量的测定方法探讨.粉煤灰综合利用.2004 (1):17-19
    [168] Indrek K, Hurt R. H, Eric M. S, Size distribution of unburned carbon in coal fly ash and its implications. Fuel, 2004, 83:223-230
    [169] 金燕,郑洽余,刘信刚.循环流化床锅炉焦炭粒子的燃烧特性及其改进措施.中国电机工程学报.1998,18(4):234-236
    [170] 黎永.循环流化床燃烧条件下煤焦反应性的实验研究.清华大学学位论文.2002
    [171] 曹鹏飞,张喜文.路丕思,等.无烟煤粉燃烧特性研究及燃烬预示.电站系统工程.1992, 8(3):33-38
    [172] Senneca O., Russo E, Salatino P., et al. The relevance of thermal annealing to the evolution of coal char gasification reactivity. Carbon. 1997, 35(1): 141-151
    [173] 于广辉.循环流化床锅炉飞灰残碳生成机理研究.煤炭转化.2000,23(3):19-25
    [174] Turnbull E., Davidson J.F.. Fluidized combustion of char and volatiles from coal. AIChE Journal. 1984, 30(6):881-889
    [175] 杨世铭.传热学(第二版).高等教育出版社.1995年10月:432-435
    [176] 王勤辉.循环流化床锅炉总体数学模型及性能试验.浙江大学博士论文.1997年:63-65
    [177] 金晓钟.循环流化床锅炉热量释放规律的实验及模型研究.清华大学博士学位论文.1999.6
    [178] Ross I.B., Patel M.S., Davidson J.F.. The temperature of burning carbon particles in fluidized beds. Trans. Inst. Chem. Eng. 1981, 59:83-88
    [179] Kunni Daizo. Fluidization Engineering. Butterworth-Heinemann Press. 1991
    [180] 岑可法,姚强.骆仲泱.李绚天.高等燃烧学.浙江大学岀版社,2002.
    [181] Kulasekaran S., Linjewile T. M., Agarwal P. K., et al. Combustion of a porous char particle in an incipiently fluidized bed. Fuel. 1998, 77(14): 1549-1560
    [182] Young B.C., Smith I.W.. The Combustion of Loy Yang Brown coal char. Combustion and Flame. 1989, 76: 29-35.
    [183] N. La, R.D. Fundamentals of coal combustion in fluidized beds. Chemical Engineering Research and Developments. 1985, 63: 3-33.
    [184] Clicksman L.R.. Heat transfer in fluidized bed combustion. Fluidized bed boiler: Pergamon Press. 1995
    [185] 冯伯华(主编).化学工程手册(V).化工出版社.1989
    [186] Davidson J.F.. Circulating fluidized bed hydrodynamics. Powder Technology. 2000, 113:249-260
    [187] Grace J.R., Avidan A.A., Knowiton T. M.. Circulating Fluidized Beds. Blackie Academic & Professional, London. 1997.
    [188] 黎强,邱宽嵘,丁玉.流态化原理及其应用.中国矿业大学出版社.1994.12
    [189] 赵长遂,段钰锋,陈晓平,等。飞灰底饲回燃技术在无烟煤循环流化床锅炉中应用的机理和实绩.能源研究与利用.2001年第6期.12-13
    [190] McHale E.T., Scheffer R. S., Rossmeisse N.P.. Combustion of coal/water slurry. Combustion and Flame. 1982. 45:121-135
    [191] 骆仲泱,何宏舟,王勤辉,等.循环流化床锅炉技术的现状及发展前景.动力工程.2004,24(6):761-767
    [192] 王勤辉,骆仲泱,李绚天,等.循环流化床锅炉氮氧化物的生成与分解模型.燃料化学学报.1998,26(2):108-113.
    [193] Li Y.H., Lu GQ., Rudolph V.. The kinetics of NO and N_2O reduction over coal char in fluidized-bed combustion. Chemical Engineering Science. 1998, 53:1~26
    [194] Johnsson A., Leckner B.. Vertical distribution of solids in a CFB furnace. Proc. Of the 1995 Int. Conf. On FBC, 1995,671~679
    [195] 王智微.循环流化床燃烧室内煤自脱硫效率的试验研究.洁净煤技术.2001,7(2):35-37
    [196] Fernandez M.J., Lyngfelt A.. Concentration of sulphur compounds in the combustion chamber of a circulating fluidized-bed boiler. Fuel. 2001,80:321~326
    [197] 杨海瑞,吕俊复,邢兴等.循环流化床锅炉污染物排放规律的热态研究.电站系统工程.2001,16(3):131-134
    [198] 李绚天.循环流化床脱硫脱硝及灰渣冷却余热利用研究.浙江大学博士学位论文.1992
    [199] Basak A.K., Koskinen J., Issaksson J., et al. Sulfur capture in Ahlstrom Pyroflow PFBC. Proceeding of the. 4th International. Conference on CFBC. San Diego, Cal. USA. Ed. Rubow L N and Commonwealth G ASME Press. 1993:266-271
    [200] NARUSE Ichiro, SAITO Katsuhiro, MURAKAMI Takahiro, Application of Wasted Sea-Shell to Desulfurizer in Fluidized Bed Coal Combustion. Proceedings of the 15th International Conference on Fluidized Bed Combustion. 1999
    [201] 中华人民共和国国家标准(GB13223-2003)
    [202] 韩道汶,徐国荣.循环流化床锅炉脱硫试验分析.锅炉技术.2001,32(12):31-32
    [203] Bhatia S.K, Perlmutter, D.D, Effect of Pore Structure on Fluid-Solid Reactions: Application to the SO_2-Lime Reaction. AIChe Journal. 1981, 27(2):226-234.
    [204] 陈波.钙基吸收剂的固硫性能评价和优化研究.浙江大学学位论文.2004.
    [205] 周一工,陆明.循环流化床锅炉添加石灰石脱硫对锅炉效率的影响.环境技术 2001,19(1):27-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700