用户名: 密码: 验证码:
纳米WO_3气敏材料及NO_2气敏元件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NO_2气体为有毒有害气体,对人体呼吸系统损害大,同时是形成酸雨的主要物质。因而NO_2气体的监控和检测,对环境保护和健康保障十分重要,研究开发NO_2气敏传感器具有学术研究价值和实用应用意义。WO_3作为一种近10多年发展起来的半导体功能材料,在气敏传感器和光致变色等领域得到越来越广泛的应用,其对NO_2气体表现出良好的气敏性。
     本研究采用三种不同方法制备纳米WO_3气敏材料,利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等分析技术,研究了材料的微观结构、表面形貌以及材料组分等。使用所制备的纳米WO_3材料研制NO_2气敏元件,并检测其气敏性能,同时提出并设计二种新型电动势式半导体气敏传感器。
     采用钨酸铵热分解法并用溶胶—凝胶法掺杂二氧化硅的新工艺,在国内首次获得粒径小于10nm的WO_3材料,经XRD分析其粒径为8.5nm,TEM观察结果表明,分散均匀粒径大小仅为3nm-4nm,在WO_3材料制备工艺上取得突破。该纳米WO_3材料制备的NO_2气敏元件,对1×10-6NO_2气体的灵敏度达191,为目前国内固相法所制备气敏元件中,灵敏度最高的。
     以钨酸钠和盐酸为原料,采用溶胶-凝胶法制备纳米WO_3材料。材料平均粒径为17nm,呈片状结构,对100×10-9NO_2气体的灵敏度达60,可实现对ppb数量级低浓度NO_2气体的检测。
     提出了采用钨丝通电自燃法制备纳米WO_3气敏材料的新方法,并设计和试验了实验装置,获得具有独特形貌的纳米WO_3,进而制作了气敏元件。该方法设备简单,改进后可通过控制反应气氛、调节通电电压等,控制材料的生长过程,以获得特殊要求的纳米WO_3材料。
     以温差效应为基础,引入半导体载流子理论,推导出半导体材料的温差电动势,提出温差电动势气敏机理。根据上述理论,设计温差电动势气敏元件,并成功实现元件的气敏功能。该气敏元件的温差电动势工作机理,有利于提高元件的的稳定性,为一种新型电动势式气敏元件。
     以霍尔效应为基础,引入半导体载流子理论,推导出半导体材料的霍尔电动势,提出霍尔电动势气敏机理。根据上述理论,设计霍尔电动势气敏元件,并成功实现元件的气敏功能,为一种新型电动势式气敏元件。
     应用物理化学的吸附理论、半导体能带理论及吸收效应理论,解释元件的灵敏度与工作温度的关系,掺杂二氧化硅对WO_3材料制备的影响等。根据半导体缺陷理论,提出吸附氧及NO_2的吸附电子来源于WO_3材料缺陷这一机理假说,并以此机理解释元件的响应恢复过程。
NO_2gas, a kind of toxic and harmful gas, is harmful to humanrespiratory system and is the main matter of forming acid rain, too. It is veryimportant for the protection of both environment and human health tomonitor and detect the NO_2gas. Therefore, researches on NO_2gas sensorsare not only of academic research value but also of practical applicationsignificance. As a kind of semiconductor functioning material developed fornearly10years, WO_3is found to be sensitive to NO_2gas and has wider andwider application in fields of gas sensors and photochromism.
     In this study, three different methods of preparing nano-WO_3gassensing materials were carried out, respectively. The microstructure, surfacemorphology, and material composition of the nano-WO_3materials wererespectively analyzed by XRD, SEM and TEM. Then, the NO_2gas sensorswere developed using these nano-WO_3materials, and their sensitiveperformances were detected. Moreover, two new potential types ofsemiconductor gas sensor were proposed and designed.
     Firstly, nano-WO_3gas sensing material has been successfully preparedby thermal decomposition of APT and doped silica by sol–gel. The grainsize of the WO_3material is8.5nm by XRD analysis, and its mean dispersedparticle size is only3nm-4nm by TEM observation. It is a breakthrough inthe technology of preparing nano-WO_3materials, which is the first time inthe country reports to find less than10nm for WO_3particle size.Furthermore, sensitivity of the NO_2gas sensor made by this nano-WO_3material is up to191for1×10-6NO_2, which is believed to be the highestsensitivity to the NO_2about WO_3materials made by solid phase reactionmethod in China so far.
     Secondly, the mean dispersed particle size of WO_3materials made bysol-gel process is17nm. It shows a special layered structure. The sensitivityto100×10-9NO_2gas is60, therefore, it can be realized to detect ppb level with low density NO_2gas.
     Thirdly, a new method of making WO_3is proposed, using methods ofself-burning of electrified tungsten. By this method, unique morphology ofnano-WO_3can be obtained, and then, a gas sensor is developed. Theequipment of this method is very simple, and further, some specialnano-WO_3materials can be obtained by controlling reaction atmosphere oradjusting voltage to control the growing process of materials afterimprovement.
     On the basis of the thermo-electromotive effect and carrier theory, athermo-electromotive force of semi-conductor is deduced, and then the gassensing mechanism of thermo-electromotive force is proposed. Based onabove theory, a new thermo-electromotive force gas sensor is designed andits gas sensing function is successfully realized. It is favorable to improvethe stability of gas sensors by the thermo-electromotive force functioningmechanism.
     Moreover, on the basis of the Hall-effect and carrier theory, a Hallpotential of semi-conductor is deduced, and then the gas sensing mechanismof Hall potential is also proposed. Based on above theory, another new Hallpotential gas sensor is designed and its gas sensing function is successfullyrealized, too.
     The relationship between sensitivity and operating temperature of gassensing components, and the effect of WO_3material preparation by silicondioxide doped are explained by physics chemistry adsorption theory, thesemiconductor band theory and the absorption effect theory. Finally, a newhypothesis of tungsten trioxide on the nitrogen dioxide gas sensingmechanism is proposed according to semiconductor defect theory based onthe original traditional tungsten trioxide theory of sensing mechanisms.
引文
[1]李平,余萍,肖定全.气敏传感器的近期进展.功能材料,1999,30(2),126-128.
    [2]寇云起.气敏元件传感器发展状况及“十五”发展建议.中国电子商情,2002(10):17-20.
    [3]黄敏桐.气敏传感器.在工业和民用领域的应用.福建建材.2006(4):1-3.
    [4]刘新,李淑娥,气体传感器的应用与发展.中国西部科技,2008,07(14):13-18.
    [5]张中.大气污染监测与气敏传感器.中国建材科技,1997,6,4,10-14.
    [6]蔡晔,葛忠华,陈银飞.金属氧化物半导体气敏传感器的研究和开发进展.化工生产与技术,1997,29-31.
    [7]常剑.半导体金属氧化物气敏材料敏感机理概述.传感器世界,2003(8):14-18.
    [8]田敬民.金属氧化物半导体气敏机理探析.西安理工大学学报,2002,18(2):144-147.
    [9]刘海峰,彭同江,孙红娟等.气敏材料敏感机理研究进展.中国粉体技术,2007,(4):42-45.
    [10]李英建,肖林京,薛琳等,提高催化燃烧型瓦斯报警仪测量精度的有效方法.煤矿安全,2006,(10):7-10.
    [11]王文娟,吴能,杨清风. SnO2单晶体式气敏传感器制作方法.传感器世界,2008,(12):31-32.
    [12]祝柏林,谢长生. ZnO气敏材料的研究进展.传感技术学报,2002,(4):354-358.
    [13]王焕新,朱冬梅,徐甲强.纳米α-2Fe2O3的微波合成及其H2S敏感特性研究.传感技术学报,2006,19(4):947-949.
    [14]罗世钧. W03纳米粉体制备及其对VOC气体敏感特性研究.[硕士学位论文].广州:广州大学2006.
    [15]赵义芬,赵鹤云,吴兴惠.金属氧化物半导体气敏材料的研究进展.传感器世界,2009,(1):6-11.
    [16]张立德,牟季美.纳米材料学[M],辽宁科学出版社,1994.
    [17]韩兵强,李楠.高能球磨法在纳米材料研究中的应.耐火材料,2002,36(4):240-242.
    [18]徐甲强,李金凤,陈玉萍等.纳米气敏粉体的制备技术.传感器世界,1999,(1):33-35.
    [19]李彬.溶胶-凝胶科学技术的现状和发展前景.仪表材料,1990,21(5):290-293.
    [20]罗菊,丁星兆,程黎放等.用溶胶-凝胶法制备的纳米TiO2粉末的结构.材料科学进展,1993,7(1):52-56.
    [21]潘素瑛,梅森.溶胶-凝胶法制倍的ZnO气敏薄膜.传感器技术,1993,3:18-20.
    [22]范新会,林贺,马雪红等. Ag掺杂对ZnO纳米线气敏性能的影响.纳米科技,2009,6(2):61-65.
    [23]廉舒,卢忠仁,史桂梅等.直流电弧法制备金属铁、镍纳米粉体.石油化工高等学校学报,2007,20(2):30-33.
    [24]徐毓龙.氧化物与化合物半导体基础.西安:西安电子科技大学出版社,1991.44-54.
    [25]张立德.超微粉体制备与应用技术.北京:中国石化出版社,2001.447-448.
    [26]夏晓东,刘艳丽,蒋健晖等,由白钨酸制备WO3纳米颗粒薄膜NO2传感器,传感技术学报.2005,18(1):28-31.
    [27] Akiyama M,Tamaki J,Miura N,et a1.Tungsten Oxide-Based SemiconductorSensor Highly Sensitive to NO and NO2.Chemistry Letters,1991,20(9):1611-1614.
    [28]徐甲强,闫冬良,王国庆,等.WO3基H2S气敏材料的研究.硅酸盐学报,1999,27(5):591-596.
    [29]陈东初,韩冰,雷施,等.热分解法制备纳米WO3的结构特征及其分散行为研究,精细化工.2007,24(11):1047-1050.
    [30]黄世震,林伟,陈伟,等.纳米WO3-ZnS系H2S气敏元件的研究.传感器技术,2001,20(1):2l一22.
    [31]黄世震,林伟,黄清明,等.纳米三氧化钨材料的制备及其结构分析.功能材料与器件学报,2008,14(1):201—204.
    [32]魏少红,牛新书,蒋凯.WO3纳米材料的NO2气敏特性.传感器技术,2002,21(11):11-13(17).
    [33] Helena I S N,Ana MV.Cavaleiro,Joao Rocha,et a1.Synthesis and characterizationof tungsten trioxide powders prepared from tungstic acids.Materials ResearchBulletin,2004,39(4-5):683—693.
    [34] Tamaki J,Zhang Z,Fujimori K,et a1.Gain-Size Effects in Tungsten Oxide-BasedSensor for Nitrogen Oxides.Journal of Electrochemical Society,1994,141(8):2207—2210.
    [35] Lee D S,Dohan S,Huh J S,et a1.Nitrogen Oxides—Sensing Characteristics ofWO3-Based Nanocrystalline Thin Films Gas Sensor.Sensors and Actuators:Chemical,1999.60(1):57-63.
    [36]魏少红,石蔚云,牛新书.TiO2/WO3纳米粉体的制备及氨敏性能研究.电子元件与材料,2003,22(1O):26—28.
    [37]魏少红,张岩,牛新书.WO3纳米材料的H2S气敏特性.化学研究与应用,2004,16(3):377-378.
    [38]蒋凯,许亚杰,牛新书.纳米WO3气敏材料的制备与表征.河南师范大学学报,2003,31(1):58—60.
    [39]牛新书,孙静霞,邓伟娜.掺Sm3+的WO3纳米粉体的制备及其NO2气敏性能.电子元件与材料,2009,28(9)5-7.
    [40]钟铁钢,梁喜双,刘凤敏等. NiO基厚膜NO2传感器的研制.仪表技术与传感器.2009增刊:143-145.
    [41]娄向东,彭传云,吴春来等.Na+对WO3气敏性能的影响.电子元件与材料,2007,26(11):8—11.
    [42]魏少红,牛晓玉,成战胜,等.溶胶一凝胶法WO3纳米粉体的气敏性能研究.电子元件与材料,2004,23(10):12-l6.
    [43]魏少红,行春丽,牛新书,等.溶胶-凝胶法纳米WO3材料的合成、表征及气敏性能.功能材料,2005,9(36):1401-1403.
    [44]魏少红,张岩,朱会敏等.掺SiO2的WO3纳米粉体的合成及其NO2气敏特性.电子元件与材料.2006(9):16-18.
    [45]王旭升,张良莹,姚熹,等.溶胶-凝胶法制备W03-SiO2材料的氨敏特性研究.功能材料,1998,29(3):276-280.
    [46]李芳柏,古国榜,黎永津.WO3/TiO2复合半导体的光催化性能研究.环境科学,1999,20(4):75-78.
    [47]李芳柏,古国榜,李新军,等.WO3/TiO2纳米材料的制备及光催化性能.物理化学学报,2000,16(11):997-1002.
    [48]成英之,张渊明,唐渝.WO3-TiO2薄膜型复合光催化剂的制备和性能.催化学报,2001,22(2):203—205.
    [49] Chiorino A,Ghiotti G,Prinetto F,et a1.Preparation and Characterization of SnO2and WOX-SnO2Nanosized Powders and Think Films for Gas Sensing.Sensorsand Actuators,B:Chemical,2001,8(30):89—97.
    [50]鞠剑峰,施磊,李澄俊,等.纳米TiO2-WO3的制备及对甲醛的光催化降解.精细化工,2004,21(3):181-184.
    [51] Balazsi C,Wang L S,Zayim E O,et a1. Nanosize hexagonal tungsten oxidefor gas sensing applications.Journal of the European Ceramic Society,2008,28(5):913-917.
    [52] Kengo Shimanoe,Aya Nishiyama,Masayoshi Yuasa.,Microstructure control ofWO3film by adding nano-particles of SnO2for NO2detection in ppb level,Procedia Chemistry,2009(1):212–215.
    [53] Huijuan Xia,YanWang,Fanhong Kong,ShurongWang. Au-dopedWO3-basedsensor for NO2detection at low operating temperature. Sensors and Actuators B2008,134:133–139.
    [54] M. Blo,M.C. Carotta,S. Galliera,S. Gherardi,A. Giberti,V. Guidi,C. Malagù.Synthesis of pure and loaded powders of WO3for NO2detection through thickfilm technology. Sensors and Actuators B2004,103:213–218.
    [55] Shih-Han Wang,Tse-Chuan Chou,Chung-Chiun Liu. Nano-crystalline tungstenoxide NO2sensor. Sensors and Actuators B,2003,94:343–351.
    [56] L.G. Teoh,Y.M. Hon,J. Shieh,W.H. Lai,M.H. Hon. Sensitivity properties ofa novel NO2gas sensor based on mesoporous WO3thin film. Sensors andActuators B2003,96:219–225.
    [57]饶国华,柯勇,杨沂凤等.超细WO3粉体的制备及表征.有金属.2004,28(4):643—647.
    [58]娄向东,安娜,赵晓华等.纳米WO3粉体的制备及其气敏性能研究.传感器与微系统.2008,27(6):73—76.
    [59]曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨,哈尔滨工业大学出版社,2001:36-37.
    [60]徐英明,程晓丽,高山,等.焦绿石型WO3超细粉体的水热合成与表征.哈尔滨理工大学学报,2002,7(6):72—74.
    [61]徐英明,霍丽华,赵辉,等.介稳态氧化钨超微粉体的水热合成与光致变色性质研究.无机化学学报,2005,2l(4):538—542.
    [62]黎先财,汪文娟,杨沂凤,等.H202氧化-水热结晶法合成纳米WO3的研究.稀有金属,2005,29(3):377—380.
    [63]黎先财,汪文娟,柯勇.H2O2氧化水热法制备超细WO3的研究.中国钨业,2005,20(3):27—30.
    [64]Li Xiaoxia,Zhang Guoying,Cheng Fangyi,et a1.Synthesis,Characterization,and Gas-Sensor Application of WO3Nanocuboids.Journal of the ElectrochemicalSociety,2006,l53(7):133-137.
    [65] Mo Ruofei,Jin Guoqiang,Guo Xiangyun.Morphology evolution of tungstentrioxide nanorods prepared by an additive—free hydrothermal route.MaterialsLetters,2007,61(18):3787—3790.
    [66] Huirache-Acuna R,Paraguay—Delgado F,Albiter M A,et a1. Synthesis andcharacterization of W O3nanostruetures prepared by an aged-hydrothermalmethod.Materials Characterization,2009,60(9):932—937.
    [67] Csaba Bal′azsi,Katar′na Sedl′ackov′,Eduard Llobet,Radu Ionescu. Novelhexagonal WO3nanopowder with metal decorated carbon nanotubes as NO2gassensor. Sensors and Actuators B,2008,133:151–155.
    [68]陈志刚,苏静.纳米三氧化钨的制备与应用.江苏大学学报(自然科学版),2005,26(1):57-61.
    [69] Schwuger M J,Stickdorn K,schomacker R. Microemulsions in TechnicalProcesses.Chemical Reviews,1995,95(4):849—864.
    [70]尹荔松,沈辉.微乳技术制备纳米微粒的研究进展.功能材料,2001,32(6):580-582.
    [71]刘德峥.微乳液技术制备纳米微粒的研究进展.化工进展,2002,21(7):466-470.
    [72]何天平,彭子飞.微乳法制备纳米级WO3粉体.合成化学,1997,5(1):4-6.
    [73]刁显珍,侯长军.微乳液法制备纳米WO3粉体.传感技术学报,2006,19(5):2362-2364.
    [74]侯长军,范小花,霍丹群,等.CTAB反相微乳液的稳定条件与纳米WO3的制备.应用化学,2007,24(4):401-405.
    [75] Asim N,Radiman S,Yarmo M A B.Synthesis of WO3in nanoscale with theusage of sucrose ester microemulsion and CTAB micelle solution.MaterialsLetters,2007,61(13):2652—2657.
    [76]沈毅,吴国友,张青龙,等.超细WO3粉体的制备现状及表征方法.光谱实验室,2005,22(6):l121-l126.
    [77] Giulio M D,Manno D,Micocci G,et a1.Sputter Deposition of Tungsten Trioxidefor Gas Sensing Applications.Journal of Materials Science:Materials inElectronics,1998,9(4):317-322.
    [78] Niktasson G A,Klasson J,Olsson E.Polaron absorption in tungsten oxidenanoparticle aggregates.Electrochimica Acat,2001,46(13—14):1967—1971.
    [79] Zhifu Liu,Toshinai Yamazaki,Yanbai Shen,Influence of annealing onmicrostructure and NO2-sensing properties of sputtered WO3thin films,Sensorsand Actuators B,2007,128:173–178.
    [80] Dan Meng,Toshinari Yamazaki,Yanbai Shen, Preparation of WO3nanoparticles and application to NO2sensor,Applied Surface Science.2009,256:1050–1053.
    [81] L.E. Depero,M. Ferroni,V. Guidi b,G. Marca,G. Martinelli,P. Nelli.Preparation and micro-structural characterization of nanosized thin filmof TiO2-WO3as a novel material with high sensitivity towards NO2.Sensors and Actuators B35-36(1996):381-383.
    [82] Chao Zhanga,Marc Debliquy,Abdelhamid Boudiba,Hanlin Liao,ChristianCoddet. Sensing properties of atmospheric plasma-sprayedWO3coating forsub-ppm NO2detection. Sensors and Actuators B,2010,144:280–288.
    [83] Dae-Sik Lee,Ki-Hong Nam,Duk-Dong LeeU. Effect of substrate on NO-sensing properties of WO thin film gas sensors. Thin Solid Films,2000,375:142-146.
    [84] Cheng-Ji Jina,Toshinari Yamazaki,Yashuyoshi Shirai,ToshioYoshizawa. Dependence of NO2gas sensitivity of WO3sputtered films on filmdensity. Thin Solid Films,2005,474:255–260.
    [85]徐进龙,张丽英,林涛,等.纳米级WO3-CuO复合氧化物粉末的制备.北京科技大学学报,2004,26(3):293-296.
    [86]赵放,张丽英,林涛,等.纳米级WO3粉末制备工艺的研究.粉末冶金技术,2004,22(5):289-292.
    [87]吴玉琪,吕功煊,李树本.纳米WO3粉体的制备与光催化活性研究.化学学报,2004,62(12):1134—1138.
    [88] Shao Gangqin,Guo Jingkun,Xie Jiren,et a1.The Preparation of CoWO4/WO3Nanocomposite Powder.Journal of Wuhan University of Technology,Material Science Edition,2004,19(2):1-3.
    [89]邹丽霞,钟秦,刘庆成.微孔纳米三氧化钨的制备、表征及掺稀土后光催化活性研究.中国稀土学报,2005,23(5):602—608.
    [90] Elham Kamali Heidari,Cyrus Zamani,Ehsan Marzbanrada,Babak Raissi,Soroush Nazarpour. WO3-based NO2sensors fabricated through low frequencyAC electrophoretic deposition. Sensors and Actuators B,2010,146:165–170.
    [91] Yong-Gyu Choi,Go Sakai,Kengo Shimanoe,Norio Miura,NoboruYamazoe. Wet process-prepared thick films of WO3for NO2sensing. Sensorsand Actuators B,2003,95:258–265.
    [92] Yong-Gyu Choi,Go Sakai,Kengo Shimanoe,Noboru Yamazoe. Wetprocess-based fabrication of WO3thin film for NO2detection. Sensors andActuators B,2004,101:107–111.
    [93]柳学芳,牛秀红. WO3纳米晶体的制备工艺研究进展.石油化工应用,2009,28(9):1-5.
    [94]夏立江.环境化学[M].北京:中国环境科学出版社,2003:159-163.
    [95] JENKIN M E. Analysis of sources and portioning of oxidant in the UK-Part1:the NOx-dependence of annual mean concentration of nitrogen dioxide andozone. Atmospheric Environment,2004,38:5117-5129.
    [96] HEUSS J M,KAHLBUM D F,WOLFF G T.Weekday/weekend ozonedifferences: what can we learn from them?.Journal of the Air WasteManagement Association,2003,53:772-788.
    [97]李宁,张本延,彭晓武.大气污染与儿科呼吸系统疾病住院人数关系.中国公共卫生,200925(12):1504-1505.
    [98] MAZZEO N A,VENEGAS L E,CHOREN H. Analysis of NO,NO2,O3and NOxconcentration measured at a green area of Buenos Aires City during wintertime.Atmospheric Environment,2005,39:3055-3068.
    [99]谭强,宋宏,陈穗梅等.机动车尾气污染对学龄儿童肺功能及炎症因子水平的影响.环境与健康杂志.2009,26(9):766-769.
    [100] FuentesM,Song H R,Ghosh S K,et al. Spatial association betw een speciatedfine particles and mortality. Biometrics,2006,62(5):855-863.
    [101]顾宇辉,古宏晨,徐宏,韩哲文.正硅酸乙酯水解过程的半经验量子化学研究.无机化学学报,2003,19(12):1301-1306.
    [102]隋学叶,刘世权,程新.正硅酸乙酯的水解缩聚反应及多孔SiO2粉体的制备.中国粉体技术,2006(3):35-39.
    [103]曲绪平,王兆伦,陈娅如.正硅酸乙酯水解-聚合的工艺参数研究及纳米SiO2的合成.玻璃与搪瓷.2005,33(3):20-23.
    [104]汪斌华,黄婉霞,刘雪峰,涂铭旌.纳米Si O2的光学特性研究[J].材料科学与工程学报,2003,21(4):514-517.
    [105]朱伯仲,李新生.钨酸铵的热分解机理研究.郑州大学学报,1995,27(4):58-88.
    [106]左演声,陈文哲等.材料现代分析方法,北京工业大学出版社.2000,168-185.
    [107]余华梁,黄世震,林伟,等.用气相反应法制备纳米WO3气敏材料,传感技术学报,2005,2.
    [108]钱佑华,徐至中.半导体物理学.高等教育出版社.1999,177-184.
    [109]刘思科,朱秉升,罗晋生.半导体物理学.国防工业出版社.1994,286-289.
    [110]余华梁.基于塞贝克效应的气敏传感器的研制:[硕士学位论文].福州,福州大学,2005.
    [111]余华梁,黄世震,林伟.基于塞贝克效应的半导体气敏传感器的研制.功能材料与器件学报,2005,11(3):386-388.
    [112]林金阳.基于霍耳效应的气敏传感器的研制:[硕士学位论文].福州,福州大学,2006.
    [113]刘恩科,朱秉升,罗晋生等.半导体物理学.北京:国防工业出版社,1994.375-383.
    [114]王利伟,平面旁热式甲烷气敏元件的研制:[硕士学位论文].沈阳,沈阳工业大学,2002.
    [115] Mauro Epifani,Aniola Forleo,Simonetta Capone.et al,Hall Effect measurementsin gas sensors based on nanosized Os-doped sol-sel derived SnO2thin fils. IEEESensors Journal,2003,3(6),827-833.
    [116]丘思畴.半导体表面与界面物理.武汉:华中理工大学出版,1995,66-73,92-112.
    [117]莫以豪等.半导体陶瓷及其敏感元件.上海:上海科学技术出版,1983,269-273.
    [118]宋世谟,王正烈,李文斌.物理化学.北京:高等教育出版社,1993,182-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700