用户名: 密码: 验证码:
废水生物处理反应器的光谱定量分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在废水生物处理器中,反应器的运行状态与微生物代谢产物有着密切的联系。因此为了解反应器的运行状况,常需对反应器的出水及微生物胞内胞外代谢产物进行快速定量测定。由于废水生物处理反应器中复杂的样品环境,传统的化学分析方法操作费时、不易在线,不能满足反应器实时监测的需要。光谱法具有简便快速、不消耗试剂、能在线原位测定等优点,是具有应用前景的生物反应器监控方法。
     本文引入共振光散射法、近红外光谱法以及中红外光谱法,并结合相关的化学计量学方法,分别对反应器出水的成分、微生物胞外多聚物以及胞内储存物质的含量进行定量分析测定,建立了废水生物处理反应器的系统快速分析测定方法,可为反应器的运行状况实时监控提供一定的技术支持。本文的主要研究结果如下:
     1.在一定条件下,染料与生物大分子发生结合,生成的结合体可使染料的共振光散射强度增强,增加的强度与生物大分子浓度成正比,因而可以用于定量测定生物大分子含量。本文分别采用刚果红和中性红两种染料探针,建立了快速测定废水生物处理反应器出水中蛋白质和多糖成分的浓度的共振光散射分析方法。该方法对实际样品的测试结果,与传统比色法保持一致;
     2.通过近红外光谱法对废水厌氧发酵过程的底物和产物进行了监测分析,测定发酵不同阶段的上清液近红外光谱,采用正交信号校正方法对光谱数据进行了预处理,建立了厌氧发酵过程中蔗糖和挥发性脂肪酸浓度的定量校正模型,可对厌氧发酵过程中蔗糖以及挥发性脂肪酸各组分浓度的变化进行快速准确监测。
     3.通过测定厌氧产氢反应器出水的近红外光谱,建立了其中乙醇和挥发性脂肪酸的浓度的定量测定方法。首先采用数值一阶求导对产氢厌氧反应器出水的光谱数据进行预处理,消除了背景和噪声的影响,进而结合正交信号校正算法对出水中的乙醇和VFA类物质含量进行了建模预测,用于快速监测厌氧产氢反应器出水中乙醇和挥发性脂肪酸的浓度。
     4.采用近红外光谱方法,结合连续小波变换滤算法去除了近红外光谱中的噪声信息,并采用间隔偏最小二乘法建立了好氧序批式反应器中底物浓度预测模型。连续小波变化进行预处理后,光谱曲线变得更为光滑,同时模型的预测精度也有所提高,而且模型也相对简单。改进后的间隔偏最小二乘筛选法有效地减少了建模所用的变量数,而且有效地提高了模型的预测精度。试验结果证明了近红外光谱可以有效的监测好氧反应器中底物浓度。
     5.建立了快速定量测定活性污泥中胞内储存物质聚β-羟基丁酸酯(PHB)含量的中红外光谱法。以蛋白质的特征吸收峰作为内标,分别采用了PHB中红外特征峰1726 cm~(-1)与蛋白质酰胺Ⅰ峰1654 cm~(-1)的吸光度比值法,以及采用PLS算法对进行归一化处理之后的中红外光谱进行多元回归建模预测两种方法,测定了活性污泥中PHB的含量,测试结果和常规气相色谱法的测定结果保持一致。
     6.建立了近红外光谱法快速测定废水生物处理反应器中溶解性微生物产物及污泥胞外聚合物中主要成分的定量分析方法。首先对样品的近红外光谱进行净信号提取,并基于多模型共识的基本思想,建立了一种用于近红外光谱建模的多模型共识的偏最小二乘支持向量回归cLSSVR算法,与传统的建模方法相比,所建立的模型更加稳定、可靠,预测结果也得到了明显改善。
The biological reactor for wastewater treatment is a complex system because of the presence of various types of pollutants and microorganisms.Conventional chemical analytical methods can not to fulfil the requirement of real-time monitoring of bioreactors.However,spectral analysis technique,as a rapid,simple,non-invasive and reagent-free method,is recognized as one of the promising methods for on-line monitoring bioreactors.
     In this thesis the utilization of three spectral analysis methods for the determination of the components in bioreactor effluents,extracellular polymeric substances(EPS) and the poly(β-hydroxybutyrate)(PHB) inside activated sludge have been proposed.The three methods included the resonance light scattering(RLS), the near-infrared spectroscopy and the mid-infrared spectroscopy.Chemometric methods were also used for the data analysis.The main contents and results of this work are as follows:
     1.The RLS method is based on the interactions between biomacromolecules and dyes,which cause a substantial increase in the resonance scattering signal of dyes. Two dyes,Congo red and Neutral red,were respectively used as the RLS probes for determining proteins and carbohydrates in the bioreactor effluents.Compared with the conventional colorimetric methods,the proposed methods were satisfactory applied to the measurement of proteins and carbohydrates in the effluents from ten bioreactors for wastewater treatments,and high sensitivitiese were also achieved.Results imply that the RLS method is a sensitive,selective method for the monitoring the quality of effluents from bioreactors.
     2.Fourier transform near-infrared(FT-NIR) technique was used for monitoring anaerobic fermentative reactors.Orthogonal signal correction(OSC) method was employed as NIR spectral preprocessing options.Calibration models were established and the validation of the method was performed with the sucrose,ethanol and volatile fatty acids(VFAs) contents determined by the anthrone and gas chromatography methods,respectively.Spectral range and the number of internal latent variables were optimized for the best correlation coefficient.The results show that the NIR spectroscopy technique was able to rapidly quantify the contents of both VFAs and sucrose in the anaerobic reactors.
     3.A quantifying method for measuring the concentrations of VFAs and ethanol in the effluent of an anaerobic H_2-producing bioreactor was proposed and validated using the FT-NIR spectroscopy.The first-derivative spectra calculated by a simple numerical difference,combined with the orthogonal signal correction method,were used as spectral preprocessing options.A calibration model was established and validated using gas chromatography measurement results.The number of internal latent variables was optimized based on the lowest root-mean-square error of calibration.The calibration model established shows the satisfactory results for the lowest root-mean-square errors of prediction compared to other preprocess methods. The method developed in this work was demonstrated to be more flexible,compared with other approaches to determine the effluents VFA and ethanol concentrations.
     4.The FT-NIR spectroscopy was also used for the determination of the substrate concentration and chemical oxygen demand(COD) in an aerobic bioreactor. The continuous wavelet transform method was used for reducing the influence of background and noise in NIR spectra.The internal partial least square method was then used for optimizing the spectra range and establishing the calibration model of substrate concentration and COD.The spectra ware smoothed and the latent variables of the calibration model were reduced for better prediction results with the integrated method.The NIR method could be used as a new analytical means in the determing substrate concentration and COD of aerobic bioreactors.
     5.Fourier transform infrared(FTIR) spectroscopy in combination with two data processing methods was used for quantitative analysis of the PHB contents of activated sludge.Because of the slight variation of protein content in cells compared with the variation of PHB content,the ratio of the PHB special absorbances in 1726 cm~(-1) to protein special absorbances 1654 cm~(-1) was calculated to establish the calibration curve of the PHB content.In another try the partial least squares(PLS) multivariative statistical technique was used for a quantitative analysis of sludge IR spectra.The results of both methods matched those of the gas chromatography method.For the FTIR technique,there are no solvent requirements,sample preparation is minimal and simple,and analysis time is greatly reduced.The results demonstrate the potential of FTIR spectroscopy as an alternative to the conventional methods used for analysis of PHB in activated sludge.
     6.An integrated method of the consensus least squares support vector regression combined net analysis signal was used for analyzing the NIR spectra data of the soluble microbial products(SMP) and EPS of sludge samples.The calibration models of measing the protein,carbohydrate and humic acid contents in the sludge samples were established.The prediction results of the calibration models were satisfied.The method developed in this work was demonstrated to be more flexible than other approaches.
引文
[1]高廷耀,顾国维。水污染控制工程(第二版)。高等教育出版社,1999.
    [2]Shon H.K.,Vigneswaran S.,Snyder S.A.Effluent organic matter(EfOM) in wastewater:Constituents,effects,and treatment.Crit.Rev.Environ.Sci.Technol.2006,36:327-374.
    [3]Sirivedhin T.,Gray K.A.Part Ⅰ.Identifying anthropogenic markers in surface waters influenced by treated effluents:a tool in potable water reuses.Water Res.2005,39:1154-1164.
    [4]Jarusutthirak C.,Amy G.,Crou(?) J.P.Fouling characteristics of wastewater effluent organic matter(EfOM) isolates on NF and UF membranes.Desalination 2002,145:247-255.
    [5]张大伦,pH滴定法应用研究-蛋白质总量测定。武汉化工学院学报,1995,17:5-8.
    [6]厉朝龙,陈枢青,刘子贻,生物化学与分子生物学实验技术。浙江大学出版社,1999.
    [7]刘玉国,络合物光谱探针法定量测定蛋白质的研究。南开大学化学系,1995.
    [8]Lowry O.H.,Rosebrough N.J.,Farr A.L.,et al.Protein measurement with the Folin phenol reagent.J.Biol.Chem.1951,193:265-275.
    [9]Smith P.K.,Krohn R.I.,Hermanson G.T.,et al.Measurement of protein using bicinchoninic acid.Anal.Biochem.1985,150:76-85.
    [10]Bradford M.M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal.Biochem.1976,72:248-254.
    [11]魏永巨,李克安,童沈阳,溴甲酚绿与血清白蛋白的结合反应。分析化学, 1996,24:387-391
    [12]胡庆红,刘绍璞,范莉,蛋白质对铬蓝SE的褪色及其分析应用。分析化学,2002,30:42-45.
    [13]Tong S.Y.Spectrophotometric study of the interaction of tetraphenylporphyrintetrasulfonate(TPPS4) with proteins Talanta 1994,41:1657-1662.
    [14]刘希东,兰觉明,伊红Y分光光度法测定血清白蛋白。分析科学学报,2002,18:61-63.
    [15]郑洪,李东辉,吴敏,等,合成的近红外花菁染料测定痕量血清蛋白质。高等学校化学学报,1999,20:555-557.
    [16]Fujita Y.,Mori I.,Kitano S.Color reaction between pyrogallol redmo -lybdenum(Ⅵ) complex and protein.Bunseki Kagaku,1983,32:379-386.
    [17]俞英,黄发德,高庆,牛血清白蛋白与偶氮胂Ⅲ-镱(Ⅲ)结合反应及其应用。分析化学,2001,299:1205-1208.
    [18]王守业,余华明,张祖德,等,荧光探针在蛋白质研究中的应用。大学化学,1998,13:5-10.
    [19]徐永源,赵永刚,激光时间分辨荧光免疫分析法测定人尿中免疫球蛋白G。化学通报,1992,6:38-40.
    [20]张海容,郭杞远,李琳,等,磷光探针技术(蛋白质研究的新方法)。生命化学,2001,21:231-233.
    [21]张海容,晋卫军,董川,等,磷光探针研究溶剂对碱性磷酸酶结构揉性变化的影响。福州大学学报(自然科学版),1999,27:129-130.
    [22]朱晓囡,苏志国,反相液相色谱在蛋白质及多肽分离分析中的应用。分析化学,2004,32:248-254.
    [23]唐萍,田晶,佘振宝,等,奶制品中蛋白质测定的毛细管电泳法研究。分析科学学报,2006,22:5-8.
    [24]Raunkjer K.,Jacobsen T.H.,Nielsen P.H.Measurement of pools of protein,carbohydrate and lipid in domestic wastewater.Water Res.1994,28:251-262.
    [25]Koehier L.H.Differentiation of carbohydrates by anthrone reaction rate and color intensity.Anal.Chem.1952,24:1576-1579.
    [26]Bailey R.W.The reaction of pentoses with anthrone.J.Biochem.1958,68:669-672.
    [27]Dubois M.,Gilles K.A.,Hamilton J.K.,Rebers P.A.and Smith F.Colorimetric method for determination of sugars and related substances.Anal.Chem.1956,28,350-356.
    [28]Pasternack R.F.,Bustamante C.,Collings P.J.Porphyrin assemblies on DNA as studied by a resonance light-scattering technique.J.Am.Chem.Soc.1993,115:5393-5399.
    [29]Pasternack R.F.,Collings P.J.Resonance light scattering:A new technique for studying chromophore aggregation.Science 1995,269:935-939.
    [30]Huang C.Z,Li K.A.,Tong S.Y.Determination of nucleic acids by a resonance light-scattering technique with α,β,γ,δ-Tetra-[4-(trimethylammoniumyl)phenyl]porphine.Anal.Chem.1996,68:2259-2263.
    [31]Huang C.Z.,Li K.A.,Tong S.Y.determination of nanograms of nucleic acids by their enhancement effect on resonance light scattering of the cobalt(ⅱ)/4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene complex.Anal.Chem.1997,69:514-520.
    [32]Huang C.Z,Li Y.F.,Liu X.D.Determination of nucleic acids at nanogram levels with safraninet by a resonance light scattering technique.Anal.Chim.Acta.1998,375:89-97.
    [33]刘绍璞,胡小莉,罗红群,等,阳离子表面活性剂与核酸反应的共振Rayleigh 散射特性及其分析应用。中国科学B辑,2002,32:18-26.
    [34]Ma C.Q.,Li K.A.,Tong S.Y.Enhancement of rayleigh light scattering of acid chrom blue k by proteins and protein assay by the scattering technique.Analyst 1997,122:361-364.
    [35]Li S.P.,Liu Q.Resonance rayleigh light scattering method for the determination of proteins with some monazo dyes chromo tropic acid.Anal.Sci.2001,17:239-242.
    [36]Liu S.P.,Luo H.Q.,Li N.B.,et al.Resonance rayleigh light scattering study of the interaction of heparin with some basic diphenyl naphthylmethane dyes.Anal.Chem.2001,73:3907-3914.
    [37]Li N.B.,Luo H.Q.,Liu S.P.,et al.Resonance rayleigh scattering techniques a new method for the determination of inclusion constant of b-cyclodextrine.Spectro.Chim.Acta 2002,58:501-507.
    [38]Lahav O.,Morgan B.E.,Loewenthalre R.E.X.Rapid,simple,and accurate method for measurement of VFAS and carbonate alkalinity in anaerobic reactors.Environ.Sci.Technol.2002,36:2736-2741.
    [39]Pind P.F.,Angelidaki I.,Ahring B.K.Dynamics of the anaerobic process:effects of volatile fatty acids.Biotechnol.Bioeng.2002,82:791-801.
    [40]Feitkenhauer H.,Sachs J.V.,Meyer U.On-line titration of volatile fatty acids for the process control of anaerobic digestion plants.Water.Res.2002,36:212-218.
    [41]Steyer J.P.,Bouvier J.C.,Conte T.,Gras P.,et al.On-line measurements of COD,TOC,VFA,total and partial alkalinity in anaerobic digestion processes using infra-red spectrometry Water Sci.Technol.2002,45:133-138.
    [42]Jens B.H.N.,Carina J.L.,Piotr O.P.,et al.On-line near infrared monitoring of glycerol-boosted anaerobic digestion processes:evaluation of process analytical technologies.Biotechnol.Bioeng.2008,99:302-313.
    [43]Shenk J.S.,Westerhaus M.O.Monograph analysis of agriculture and food products by near infrared reflectance spectroscopy.NIR Syst.,Inc.,1993:1-21.
    [44]Larrechi M.S.and Callao M.P.Strategy for introducing NIR spectroscopy and multivariate calibration techniques in industry.Trend.Anal.Chem.2003,22:634-640.
    [45]陆婉珍,袁洪福,徐广通,现代近红外光谱分析技术。中国石化出版社.2000.
    [46]McKelvy M.L.,Britt T.R.,Davis B.L,et al.Infrared spectroscopy.Anal.Chem.,1998,70:119R.
    [47]严衍禄,赵龙莲,李军会,等,现代近红外光谱分析的信息处理技术。光谱与光谱学分析,2000,20:777-781.
    [48]刘国珍,陈祖刚,李丹,等,近红外光谱分析技术进展及其在烟草行业中的应用。烟草科技/烟草化学,200l,11:15-19.
    [49]徐广通,袁洪福,陆婉珍,CCD近红外光谱谱图预处理方法研究。光谱学与光谱分析,2000,20:619-623.
    [50]徐广通,袁洪福,陆婉珍,现代近红外光谱技术及应用进展。光谱与光谱学分析,2000,2:134-148.
    [51]刘树深,易忠胜,基础化学计量学。科学出版社,1999。
    [52]褚小立,袁洪福,陆婉珍,近红外分析中光谱预处理及波长选择方法进展与应用。化学进展,2004,16:528-533.
    [53]Seasholtz M.B.,Kowalski B.R.The parsimony principle applied to multivariate calibration.Anal.Chim.Acta 1993,277:165-177.
    [54]Lu J.,McClure W.F.,Barton F.E.,et al.Effect of random noise on the performance of NIR calibrations.J.Near Infrared Spectrosc.1998,6:77-87.
    [55]Chen D.,Shao X.G.,Hu B.,et al.A Background and noise elimination method for quantitative calibration of near infrared spectra.Anal.Chim.Acta.2004,511:37-42.
    [56]Barclay V.J.,Bonner R.F.,Hamilton I.P.Application of wavelet transforms to experimental spectra:smoothing,denoising,and Data Set Compression.Anal.Chem.1997,69:78-90.
    [57]Arnold M.A.,Small G.W.Determination of physiological levels of glucose in an aqueous matrix with digitally filtered Fourier transform near-infrared spectra.Anal.Chem.1990,62:1457-1464.
    [58]张友民,焦凌云,陈洪亮,等,基于奇异值分解的固定区间平滑新方法。控制理论与应用,1997,14:579-581.
    [59]Brown S.,Sum S.T.,Despagne F.Chemometrics.Anal.Chem.1996,68:21-62.
    [60]Gorry P.A.General least-squares smoothing and differentiation by the convolution(Savitzky-Golay) method.Anal.Chem.1990,62:570-573.
    [61]Andreev V.P.,Rejtar T.,Chen H.S.,et al.A universal denoising and peak picking algorithm for lc-ms based on matched filtration in the chromatographic time domain.Anal.Chem.,2003,75:6314-6326.
    [62]Savitzky A.,Golay M.J.E.Smoothing and Differentiation of Data by Simplified Least Squares Procedures.Anal.Chem.1964,36:1627-1639.
    [63]Ehrentreich F.,Summchen L.Spike Removal and Denoising of raman spectra by wavelet transform methods.Anal.Chem.2001,73:4364-4373.
    [64]Shao X.G.,Cai W.S.Wavelet analysis in analytical analytical chemistry.Rev.Anal.Chem.1998,17:235-285.
    [65]Walczak B.,vandenBogaert B.,Massart D.L.Application of wavelet packet transform in pattern recognition of near-ir data.Anal.Chem.1996,68:1742-1747.
    [66]Liu Y.,Brown S.D.,Wavelet multiscale regression from the perspective of data fusion:new conceptual approaches.Anal.Bioanal.Chem.2004,380:445-452.
    [67]Daubechies I(Ed.),Ten Lectures on Wavelets,SIAM Press,Philadelphia,1992.
    [68]Chen D.,Shao X.G.,Su Q.D.Removal of major interference sources in aqueous near-infrared spectroscopy techniques.Anal.Bioanal.Chem.2004,379: 143-148.
    [69]Alsberg B.K.,Woodward A.M.and Kell D.B.An introduction to wavelet transforms for chemometricians:A time-frequency approach.Chemometr.Intell.Lab.Syst.1997,37:215-239.
    [70]田高友,袁洪福,刘慧颖,等,小波变换在近红外光谱分析中的应用进展。光谱学与光谱分析,2003,23:1111-1117.
    [71]邵学广,庞春艳,孙莉,小波变换与分析化学信号处理。化学进展,2000,12:233-237.
    [72]Chen D.,Shao X.G.,Hu B.,et al.Simultaneous wavelength selection and outlier detection in multivariate regression of near-infrared spectra.Anal.Sci.2005,21:161-166.
    [73]Tan H.W.,Brown S.D.Multivariate calibration of spectral data using dual-domain regression analysis.Anal.Chim.Acta 2003,490:291-301.
    [74]Isaksson T.,Kowalski B.R.Piece-wise multiplicative scatter correcton applied to near-infrared diffuse transmittance data from meat products.Appl.Spectrosc.1993,47:702-709.
    [75]Helland I.S.,Naes T.,Isaksson T.Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data.Chemometr.Intell.Lab.Syst.1995.29:233-241.
    [76]梁逸曾,俞汝勤,分析化学手册(10)—化学计量学。化工出版社,2001.
    [77]Leung A.K.,Chau F.T.,Gao J.B.Wavelet transform:a method for derivative calculation in analytical chemistry.Anal.Chem.1998,70:5222-5229.
    [78]Shao X.G.,Pang C.Y.,Su Q.D.A novel method to calculate the approximate derivative photoacoustic spectrum using continuous wavelet transform.Fresenius' J.Anal.Chem.2000,367:525-529.
    [79]芦永军,曲艳玲,朴仁官,分立波长型近红外光谱分析仪定标模型的优化。光谱学与光谱分析,2004,24:158-164.
    [80]Honigs D.E.,Hieftje G.M.,Mark H.L.,et al.Unique-sample selection via near-infrared spectral subtraction.Anal.Chem.1985,57:2299-2303.
    [81]Mark H.L,Tunnell D.Qualitative near-infrared reflectance analysis using Mahalanobis distances.Anal.Chem.1985,57:1449-1456.
    [82]Puchwein G.Selection of calibration samples for near-infrared spectrometry by factor analysis of spectra.Anal.Chem.1988,60:569-573.
    [83]Ferr(?) J.,Rius F.X.Selection of the best calibration sample subset for multivariate regression.Anal.Chem.1996,68:1565-1571.
    [84]Thomas E.V.A primer on multivariate calibration.Anal.Chem.1994,66:795A-804A.
    [85]Williams P.C.,Preston K.P.,Norris K.H.,et al.Determination of Amino Acids in Wheat and Barley by Near Infrared Reflectance Spectroscopy,J.Food Sci.1984,49:17-20.
    [86]Centner V.,Massart D.L.,de Noord O.E.,et al.Elimination of uninformative variables for multivariate calibration.Anal.Chem.1996,68:3851-3858.
    [87]Ding Q.,Small G.W.,Arnold M.A.Genetic algorithm-based wavelength selection for the near-infrared determination of glucose in biological matrixes:initialization strategies and effects of spectral resolution.Anal.Chem.1998,70:4472.
    [88]朱尔一,杨梵原,化学计量学技术与应用。北京:科学出版社,2001.
    [89]Sun J.A correlation principal component regression analysis of NIR data J.Chemometr.1995,9:21-29.
    [90]Brown P.J.Graphics for linearity and selectivity and prediction diagnostics for multicomponent spectra.J.Chemometr.1993,7:255-265.
    [91]Lin J.,Brown C.W.Simultaneous determination of physical and chemical properties of sodium chloride solutions by near infrared spectroscopy.J.Near Infrared Spectrosc.1993,1:109-120.
    [92]Geladi P.,Kowalski B.R.Partial least-squares regression:a tutorial.Anal.Chim.Acta 1986,185:1-5.
    [93]Oman S.D.,Naes T.,Zube A.Detecting and adjusting for non-linearities in calibration of near-infrared data using principal components.J.Chemometr.1993,7:195-212.
    [94]Wold H.Research paper in statistics festschrift for neyman.J,Wiley,New Yord,1966.
    [95]Lindberg W.,Perssonch J.,Wolds A.Partial least-squares method for spectrofluorimetric analysis of mixtures of humic acid and lignin sulfonate.Anal.Chem.1983,55:643-648.
    [96]Geladi P.,Kowalski B.R.Partial least-squares regression:a tutorial Anal.Chim.Acta 1986.185:1-17.
    [97]瞿海斌,刘晓宣,程翼宇,中药材三七提取液近红外光谱的支持向量机回归校正方法。高等学校化学学报,2004,25:39-43.
    [98]Thissen U.,van Brakel R.,de Weijer A.R.,et al.Using support vector machines for time series prediction.Chemom.Intell.Lab.Syst.2003,69:35-49.
    [99]Thissen U.,Ustun B.,Melssen W.J.,et al.Multivariate calibration with least-squares support vector machines.Anal.Chem.2004,76:3099-3105.
    [100]但德忠,COD测定的新方法——微波消解法。理化检验-化学分册,1997,33:27-31.
    [101]陈晓青,张磊,流动注射停流法快速测定环境水样中COD。理化检验-化学分册,2001,37:11-13.
    [102]陈克局,王素芳,化学需氧量测定改进方法研究进展,水科学与工程技术2008.1:59-62.
    [103]杨泽玉,胡涌刚,化学发光-化学需氧量测定新方法。分析化学,2003,31:35-39.
    [104]Kim Y.C.,Lee K.H.,Sasaki S.,et al.Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode.Anal.Chem.2000,72:102-111.
    [105]Zhao H.J.,Jiang D.L.,Zhang,S.Q.,et al.Development of a direct photoelectrochemical method for determination of chemical oxygen demand.Anal.Chem.2004,76:87-94.
    [106]Steinbuchel A.,Valenttn H.E.Diversity of bacterial polyhydroxyalkanoic acids.FEMS Microbiol.Lett.1995,128:219-228.
    [107]Sudesh K.,Abe H.,Doi Y.Synthesis,structure and properties of polyhydroxyalkanoates:biological polyesters.Prog.Polym.Sci.2000,25:1503-1555.
    [108]许保玖,龙腾锐。当代给水与废水处理原理。北京:高等教育出版社,2000
    [109]沈忠耀,尹进,李红旗,从微生物细胞中分离提取PHB的方法的综述。化工时刊,1997,11:40-45.
    [110]Riis V.,Mai W.Gas chromatographic determination of poly-bhydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis.J.Chromatogr.1988,445:285-289.
    [111]Sudesh K.,Maehara A.,Gan Z.H.,et al.Direct observation of polyhydroxyalkanoate granule-associated-proteins on native granules and on poly(3-hydroxybutyrate) single crystals by atomic force microscopy.Polym.Degrad.Stabil.2004,83:281-287.
    [112]Ward A.C.,Dawes E.A.A disk assay poly-β-Hydroxybutyrate.Anal.Biochem.1973,52:607-613.
    [113]Hong K.,Sun S.,Tian W.,et al.A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transform infrared spectroscopy.Appl.Microbiol.Biotechnol.1999,51:523-526.
    [114]Randriamahefa S.,Renard E.,Guerin P.,et al.Fourier transform infrared spectroscopy for screening and quantifying production of PHAs by pseudomonas grown on sodium octanoate.Biomacromolecules 2003,4:1092-1097.
    [115]Gunta J.,Alexander K.,Gerhard S.,et al.On-line determination of the intracellular poly((?)-hydroxybutyric acid) content in transformed escherichia coli and glucose during PHB production using stopped-flow attenuated total reflection FT-IR spectrometry.Anal.Chem.2004,76:6353-6358.
    [116]Mustafa K.,Helen B.J.,Don M.Quantitative determination of the biodegradable polymer poly(β-hydroxybutyrate) in a recombinant escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics.Appl.Environ.Microbiol.2000,66:3415-3420.
    [117]Zhao L.,He Y.,Inoue Y.Quantitative analysis of compositional distribution in biodegradable poly(ethylene oxide)/poly(3-hydroxybutyrate) blend film with compositional gradient by FT-IR microspectroscopy.Macromol.Chem.Phys.2005,206:841-849.
    [118]Hu Y.,Zhang J.M.,Sato H.,et al.C-H-O=C hydrogen bonding and isothermal crystallization kinetics of poly(3-hydroxybutyrate) investigated by near-infrared spectroscopy.Macromolecules 2006,39:3841-3847.
    [119]Wingender J.,Neu T.R.,Flemming H.C.Microbial extracellular polymeric substances:characterization,structures and function.Springer-Verlag,Berlin Heidelberg,1999.
    [120]Urbain V.,Block J.C.,Manem J.Bioflocculation in activated sludge:analytical approach.Water.Res.1993,27:829-838.
    [121]Frolund B.,Palmgren R.,Keiding K.,et al.Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water.Res.1996,30:1749-1758.
    [122]Veiga M.C.,Jain M.K.,Wu W.M.,et al.Composition and role of extracellar polymers in methanogenic granules.Appl.Environ.Microbiol.1997,63:403-407.
    [123]Dignac M.F.,Urbain V.,Rybacki D.,et al.Chemical description of extracellular polymeric substances:implication on activated sludge floe structure.Water Sci. Technol.1998,38:45-53.
    [124]Liss S.N.,Droppo I.G.,Flannigan D.T.,et al.Floc architecture in wastewater and natural riverine systems.Environ.Sci.Technol.1996,30:680-686.
    [125]Bura R.,Cheung M,Liao B.,et al.Composition of extracellular polymeric substances in the activated sludge floc matrix.Water Sci.Technol.1998,37:325-333.
    [126]Kawaguchi T.,Decho A.W.In situ analysis of carboxyl and sulfhydryl groups of extracellular polymeric secretions by confocal laser scanning microscopy.Anal.Biochem.2002,304:266-267.
    [127]Liu H.,Fang H.H.P.Extraction of extracellular polymeric substances(EPS) of sludges.J.Biotechnol.2002,95:249-256.
    [128]Staudt C,Horn H.,Hempel D.C,et al.Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms.Biotechnol.Bioeng.2004,88:585-592.
    [129]Frolund B.,Griebe T.,Nielsen P.H.Enzymatic activity in the activated-sludge floc matrix.Appl.Microbiol.Biotechnol.1995,43:755-761.
    [130]Barker D.J.,Stuckey D.C.A review of soluble microbial products(SMP) in wastewater treatment systems.Water Res.1999,33,3063-3082.
    [1]Aquino S.F.,Stuckey D.C.Characterization of soluble microbial products(SMP)in effluents from anaerobic reactors.Water Sci.Technol.2002,45:127-132.
    [2]Labbs C.,Amy G.,Jekel M.Understanding the size and character of fouling-causing substances from effluent organic matter(EfOM) in low-pressure membrane filtration.Environ.Sci.Technol.2006,40:4495-4499.
    [3]Grunheid S.,Amy G.,Jekela M.Removal of bulk dissolved organic carbon(DOC) and trace organic compounds by bank filtration and artificial recharge.Water Res.2005,39:3219-3228.
    [4]Shon H.K.,Vigneswaran S.,Kim I.S.,et al.The effect of pretreatment to ultrafiltration of biologically treated sewage effluent:a detailed effluent organic matter(EfOM) characterization.Water Res.2004,38:1933-1939.
    [5]Sirivedhin T.,Gray K.A.Comparison of the disinfection by-product formation potentials between a wastewater effluent and surface waters.Water Res.2005,39:1025-1036.
    [6]Shon H.K.,Vigneswaran S.,Snyder S.A.Effluent organic matter(EfOM) in wastewater:Constituents,effects,and treatment.Crit.Rev.Environ.Sci.Technol.2006,36:327-374.
    [7]Sirivedhin T.,Gray K.A.Part I:Identifying anthropogenic markers in surface waters influenced by treated effluents:a tool in potable water reuses.Water Res.2005,39:1154-1164.
    [8]Jarusutthirak C.,Amy G.,Croue J.P.Fouling characteristics of wastewater effluent organic matter(EfOM) isolates on NF and UF membranes.Desalination 2002,145:247-255.
    [9]Raunkjer K.,Jacobsen T.H.,Nielsen P.H.Measurement of pools of protein, carbohydrate and lipid in domestic wastewater.Water Res.1994,28:251-262.
    [10]Dubois M.,Gilles K.A.,Hamilton J.K.,et al.Colorimetric method for determination of sugars and related substances.Anal.Chem.1956,28:350-356.
    [11]Pasternack R.F.,Bustamante C,Collings P.J.Porphyrin assemblies on DNA as studied by a resonance light-scattering technique.J.Am.Chem.Soc.1993,115:5393-5399.
    [12]Pasternack R.F.,Collings P.J.Resonance light scattering:A new technique for studying chromophore aggregation.Science 1995,269:935-939.
    [13]Huang C.Z,Li K.A.,Tong S.Y.Determination of nucleic acids by a resonance light-scattering technique with α,β,γ,5-Tetra-[4-(trimethylammoniumyl)phenyl]porphine.Anal.Chem.1996,68:2259-2263.
    [14]Jiang Z.L.,Zhou S.M.,Liang A.H.,et al.Resonance scattering effect of rhodamine dye association nanoparticles and its application to respective determination of trace ClO_2 and Cl_2.Environ.Sci.Technol.2006,40:4286-4291.
    [15]Bradford M.M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal.Biochem.1976,72:248-254.
    [16]Doumas B.T.,Watson W.A.,Biggs H.G.Album in standards and the measurement of serum albumin with bromcresol green.Clin.Chem.Acta.1971,31:87-96.
    [17]Catherine M.Close conversion between bromcresol green-and bromcresol purple-measured albumin in renal disease.Nephrology Dialysis Transplantation 2001,16:1925-1929.
    [18]Anglister J.,Steinberg I.Z.Resonance rayleigh scattering of cyanine dyes in solution.J.Chem.Phys.1983,78:5358-5368.
    [19]Antonov L.,Gergov G.,Petrov V.,Kubista M.,Nygren J.UV-Vis spectroscopic and chemometric study on the aggregation of ionic dyes in water.Talanta 1999,49:99-106.
    [20]Lahav O.,Morgan B.E.,Loewenthalre R.E.X.Rapid,simple,and accurate method for measurement of VFAS and carbonate alkalinity in anaerobic reactors.Environ.Sci.Technol.2002,36:2736-2741.
    [21]Pind P.F.,Angelidaki I.,Ahring B.K.Dynamics of the anaerobic process:effects of volatile fatty acids.Biotechnol.Bioeng.2002,82:791-801.
    [22]Feitkenhauer H.,Sachs J.V.,Meyer U.On-line titration of volatile fatty acids for the process control of anaerobic digestion plants.Water Res.2002,36:212-218.
    [23]Chen J.Y.,Zhang H.,Matsunaga R.Rapid determination of the main organic acid composition of raw Japanese apricot fruit juices using near-infrared spectroscopy.J.Agric.Food.Chem.2006,54:9652-9657.
    [24]Luypaert J.,Massart D.L.,Heyden Y.V.Near-infrared spectroscopy applications in pharmaceutical analysis.Talanta 2007,72:865-883.
    [25]Macho S.,Larrechi M.S.Near-infrared spectroscopy and multivariate calibration for the quantitative determination of certain properties in the petrochemical industry.Trends Anal.Chem.2002,21:799—806.
    [26]Sasic S.,Ozaki Y.Short-wave near-infrared spectroscopy of biological fluids.1.quantitative analysis of fat,protein,and lactose in raw milk by partial least-squares regression and band assignment.Anal.Chem.2001,73:64-71.
    [27]Wold S.,Antti H.,Lindgren F.Orthogonal signal correction of near-infrared spectra.Chemometr Intell Lab Syst,1998,44:175-185.
    [28]Tan H.W.,Brown S.D.Wavelet analysis applied to removing non-constant,varying spectroscopic background in multivariate calibration J.Chemometr.2002,16:228-240.
    [29]Levin,D.B.,Pitt L.,Love M.Biohydrogen production:prospects and limitations to practical application.Int.J.Hydrogen Energy 2003,29:173-185.
    [30]Pind P.F.,Angelidaki I.,Ahring B.K.Dynamics of the anaerobic process:effects of volatile fatty acids.Biotechnol.Bioeng.2002,82:791-801.
    [31]Rocheleau M.J.and Purdy W.C.Ion-selective electrode with fixed quaternary phosphonium ion-sensing species.Analyst 1992,117:777-179.
    [32]Martin J.M.,Vacher B.,Ponsonnet L.,et al.Chemical bond mapping of carbon by image-spectrum EELS in the second derivative mode Ultramicroscopy.1996,65:229-238.
    [33]APHA,1995.Standard Methods for the Examination of Water and Wastewater,19~(th) ed.American Public Health Association,New York.
    [34]Dabakk E.,Nilsson M.,Geladi P.,et al.Inferring lake water chemistry from filtered seston using NIR spectrometry.Water Res.1999,34:1666-1672.
    [35]Buerck J.,Roth S.,Kraemer K.,et al.Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater.J.Hazar.Mater.2001,83:11-28.
    [36]Norgaard L,Saudland A.,Wagner J.Interval partial least-squares regression (ipls):a comparative chemometric study with an example from near-infrared spectroscopy.Appl.Spectrosc.2000,54:413-419.
    [37]Barache D.,Antoine J.P.,Dereppe J.M.The continuous wavelet transform,a tool for NMR spectroscopy.J.Magn.Reson.1997,128:1-11.
    [1]廖正品,中国塑料工业发展现状。塑料工业,2002,30:1-6.
    [2]土肥羲治,斯泰因比歇尔,生物高分子。化学工业出版社,2005.
    [3]Steinbuchel A.,Valenttn H.E.Diversity of bacterial polyhydroxyalkanoic acids.FEMS Microbiol.Lett.1995,128:219-228.
    [4]Sudesh K.,Abe H.,Doi Y.Synthesis,structure and properties of polyhydroxyalkanoates:biological polyesters.Prog.Polym.Sci.2000,25:1503-1555.
    [5]许保玖,龙腾锐,当代给水与废水处理原理。高等教育出版社,2000.
    [6]沈忠耀,尹进,李红旗,从微生物细胞中分离提取PHB的方法的综述。化工时刊,1997,11:40-45.
    [7]Riis V.and Mai W.Gas chromatographic determination of poly-bhydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis.J.Chromatogr.1988,445:285-289.
    [8]Naumann D.,Helm D.,Labischinski H.Microbiological characterization by FTIR spectroscopy.Nature 1991,351:81-82.
    [9]Curk M.C.,Peladan F.,Hubert J.C.Fourier transform infrared(FTIR)spectroscopy for identifying Lactobacillus species.FEMS Microbiol.Lett.1994,123:241-248.
    [10]Goodacre R.,Timmins E.M.,Rooney P.J.,et al.Rapid identification of streptococcus and enterococcus species using diffuse reflectance-absorbance fourier transform infrared spectroscopy and artificial neural networks.FEMS Microbiol.Lett.1996,140:233-239.
    [11]Picque D.,Lefier D.,Grappin R.,et al..Monitoring of fermentation by infrared spectrometry.Anal.Chim.Acta 1993,279:67-72.
    [12]Doak D.L.and Phillips J.A.In situ monitoring of an Escherichia coli fermentation using a diamond composition ATR probe and mid-infrared spectroscopy.Biotechnol.Prog.1999,15:529-539.
    [13]Schuster K.C.,Mertens F.,Gapes J.R.FTIR spectroscopy applied to bacterial cells as a novel method for monitoring complex biotechnological processes.Vib.Spectrosc.1999,19:467-477.
    [14]Zagreba J.,Savenkov L.,Ginovska M.IR-spectrophotometric control of chemical composition of microbial biomass.In Microbial conversions fundamentals and application aspects.Zinatre,Riga,Latvia.1990.
    [15]Savenkova L.,Bonartseva G.,Gertsberg Z.,et al.Nitrogen fixation and poly-3-hydroxybutyrate accumulation by some Azotobacter genus bacteria strains.Kcs.Proc.Latvian Acad.Sci.Sect.B 1994,562:89-92.
    [16]Kansiz M.,Jacobe H.B.McNaughton D.Quantitative determination of the biodegradable polymer poly(β-hydroxybutyrate) in a recombinant escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics Appl.Environ.Microbiol.2000,66:3415-3420.
    [17]Wang J.,Fang F.,Yu H.Q.Substrate consumption and biomass growth of Ralstonia eutropha at various S_0/X_0 levels in batch cultures.Biore.Technol.2007,98:2599-2604.
    [18]Geladi P.,Kowalski B.R.Partial least-squares regression:a tutorial Anal.Chim.Acta 1986,185:1-17.
    [19]Lee S.Y.Plastic bacteria progress and prospects for polyhydroxyalkanoate production in bacteria.Tibtech.1996,14:431-438.
    [1]Wingender J.,Neu T.R.,Flemming H.C.Microbial extracellular polymeric substances:characterization,structures and function.Springer-Verlag,Berlin Heidelberg,1999.
    [2]Urbain V.,Block J.C.,Manem J.Biofiocculation in activated sludge:analytical approach.Water Res.1993,27:829-838.
    [3]Frolund B.,Palmgren R.,Keiding K.,et al.Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water Res.1996,30:1749-1758.
    [4]Goodwin J.A.S.,Forster C.F.A futher examination into the composition of activated sludge surfaces in relation to their settlement characteristics.Water Res.1985,19:527-533.
    [5]Eriksson L.,Alm B.Study of flocculation mechanism by observing effects of a complexing agent on activated sludge properties.Water Sci.Technol.1991,24:21-28.
    [6]Barker D.J.,Stuckey D.C.A review of soluble microbial products(SMP) in wastewater treatment systems.Water Res.1999,33,3063-3082.
    [7]Sheng G.P.,Yu H.Q.,Yu Z.Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila.Appl.Microbiol.Biotechnol.2005,67:125-130.
    [8]Lorber A.Error propagation and figures of merit for quantification by solving marrix equations.Anal.Chem.1986,58:1167-1170.
    [9]Xu L.,Israel S.A calibration method free of optimum factor number selection for automated multivariate analysis.Anal.Chem.1998,69:3722-3726.
    [10]Lorber A.,Faber K,Kowalski B.R.Net analyte signal calculation in multivariate calibration.Anal.Chem.1997,69:1620-1625.
    [11]Thomas E.,Haaland D.Comparison of multivariate calibration methods for quantitative spectral analysis.Anal.Chem.1990,62:1091-1099.
    [12]Erdem Z.,Polikar R.,Gurgen F.,et al.Ensemble of SVMs for incremental learning.Multi.Classif.Syst.2005,3541:246-256.
    [13]Merkwirth C.,Mauser H.A.,Schulz-Gasch T.,et al.Ensemble methods for classification in cheminformatics.J.Chem.Inform.and Comput.Sci.2004,44:1971-1978.
    [14]Tong W.D.,Fang H.,Xie Q.,et al.Gaining confidence on molecular classification through consensus modeling and validation.Toxic.Mech.Methods 2006,16:59-68.
    [15]Frayman Y.,Rolfe B.F.,Webb G.I.Solving regression problems using competitive ensemble models.Adv.Artif.Intell 2002,2557:511-522.
    [16]Breiman L.Bagging predictors.Machine Learning 1996,24:123-140.
    [17]Dietterieh T.G.Maehine learning researeh:Four current directions.Al magazine, 1997,18:97-136.
    [18]Ghosh J.Multiclassifier systems:back to the future,in multiple classifier systems:third international workshop.Springer Heidelberg Cagliari,Italy,2002,1-15.
    [19]Arodz T.,Yuen D.A.,Dudek A.Z.Ensemble of linear models for predicting drug properties.J.Chem.Inform.and Model.2006,46:416-423.
    [20]Cerquides J.,Mantaras R.L.Robust Bayesian linear classifier ensembles.Proc.16th European Conf.Machine Learning,Lect.Notes in Comput.Sci.,2005,3720:70-81.
    [21]Barai S.V.,Reieh Y.Ensemble modeling or selecting the best model:Many could be better than one.AI EDAM,1999,13:377-386.
    [22]Ho T.K.Complexity of classification problems and comparative advantages of combined classifiers.Multi.Ciassif.Syst.2000,1857:97-106.
    [23]Devroye L.Any discrimination rule can have an arbitrarily bad probability of error for finite sample size.IEEE Trans.On PAMI,1982,4:154-157.
    [24]Mevik B.H.,Segtnan V.H.,Naes T.Ensemble methods and partial least squares regression.J.Chemo.2004,18:498-507.
    [25]HansenL.K.,Salamon P.Neural network ensembles.IEEE Trans.Pattern Anal.Machine Intell.,1990,12:993-1001.
    [26]Rogova G..Combining the results of several neural-network classifiers.Neural Networks,1994,7:777-781.
    [27]Krogh A.,Vedelsby J.Neural network ensembles,cross validation and active learning.In adv.Neurol Inform.Proc.Syst.MIT Press,Cambridge,MA,1995,7:231-238.
    [28]Vapnik V.The Nature of statistical learning theory.Springer Verlag,1998.
    [29]梁路宏,艾海舟,肖习攀,等,基于模板匹配与支持向量机的人脸检测。计算机学报,2002,25:22-29.
    [30]Thissen U.,van Brakel R.,de Weijer A.R.,et al.Using support vector machines for time series prediction.Chemom.Intell.Lab.Syst.2003,69:35-49.
    [31]瞿海斌,刘晓宣,程翼宇,中药材三七提取液近红外光谱的支持向量机回归校正方法。高等学校化学学报,2004,25:39-43.
    [32]姚肖刚,戴连奎,方骏,基于支持向量机的柴油十六烷值近红外光谱测量方法。检测与控制装置,2004,31:48-51.
    [33]陆文聪,陈念贻,叶晨洲,等,支持向量机及其他核函数算法在化学计量学中的应用。计算机与应用化学,2002,19:691-696.
    [34]Suykens J.A.K.,De Brabanter J.,Lukas L.,et al.Weighted least squares support vector machines:robustness and sparse approximation.Neurocomput.2002,48:85-105.
    [35]Thissen U.,Ustun B.,Melssen W.J.,et al.Multivariate calibration with least-squares support vector machines.Anal.Chem.2004,76:3099-3105.
    [36]Chauchard F.,Cogdill R.,Roussel S.,et al.Application of LS-SVM to non-linear phenomena in NIR spectroscopy:development of a robust and portable sensor for acidity prediction in grapes.Chemom.Intell.Lab.Syst.2004,71:141-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700