用户名: 密码: 验证码:
中继镜系统光束传输与控制优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中继镜技术是近年来备受各方瞩目的一项重要的新型激光系统作战概念,在军事上具有独特的应用背景。论文从中继镜技术的基本概念出发,围绕中继镜系统的光束传输理论、应用可行性、上行链路能量耦合效率及优化提升方法和双自适应光学装置的影响等内容,采用理论分析、数值模拟和缩比实验验证方法展开了较为系统的研究。
     首先,开展了中继镜系统光束传输理论和应用可行性研究。根据现有的研究资料分析了中继镜系统的结构组成,从光束传输性能角度分析了最优上行传输方式。在此基础上,分析了中继镜系统光束传输理论,详细推导了真空和湍流条件下激光中继镜传输过程的等效菲涅耳数以及靶面光斑峰值强度与传输过程等效菲涅耳数之间的关系。分析了激光中继镜传输可行的判断条件以及应用优势范围的计算方法,分别以天基激光、机载激光和地基激光中继镜系统为具体场景进行了模拟计算。在实验室条件下,以“光源波长1.064μm,望远镜口径1.2m,上行传输距离30km,下行传输距离10km”的中继镜系统为原型,以传输过程等菲涅耳数为准则,搭建了中继镜系统光束传输缩比实验装置,开展了实验研究。理论和实验结果表明:中继镜系统能提升激光对远距离目标的打击效果,拓展激光的作用范围。
     其次,开展了双自适应光学装置对中继镜系统性能影响的理论研究。根据中继镜系统两套自适应装置不同的工作条件和用途,结合自适应光学装置的主要类型和特点,分析了中继镜系统两套自适应装置宜选取的类型,得出:位于光源处的自适应装置宜选用共轭式自适应光学系统,位于飞行平台上的自适应装置宜选用优化式自适应光学系统。在此基础上,以“Hufnagel-Valley5/7模型湍流条件下,目标高度25km,飞行平台高度30km”的地基激光中继镜系统为模型,模拟计算了不同校正精度条件下中继镜系统的打击性能,结果显示:“闭环”理想校正时,目标靶面光斑的一倍衍射极限桶中功率比(与初始光源功率之比)为61.44%,是“开环”条件下的3.6倍。
     再次,开展了中继镜系统上行链路能量耦合效率分析及其优化提升方法研究。理论方面,模拟分析了中继镜系统上行链路能量损耗情况及造成能量损耗的主要原因;分析了利用光束全场整形、阵列光束相干合成和涡旋光源三种方法提升中继镜系统上行链路能量耦合效率的基本原理,模拟了上述三种方法对中继镜系统上行链路能量耦合效率的提升效果。主要结果为:“闭环”工作时,上行链路能量耦合效率为84.46%;通过光束全场整形,上行链路能量耦合效率由84.46%提升至99.73%;通过阵列光束相干合成,上行链路能量耦合效率由84.46%提升至95.02%;通过涡旋光源,上行链路能量耦合效率由84.46%提升至98.04%。实验方面,搭建了中继镜系统光束传输缩比实验装置,实验分析了中继镜系统上行链路能量损耗情况;利用液晶空间光调制器和缩比实验装置开展了光束全场整形和涡旋光源对中继镜系统上行链路能量耦合效率提升效果的实验研究。主要实验结果为:缩比中继镜系统上行链路能量耦合效率为71.89%;通过光束整形,上行链路能量耦合效率由71.89%提升至87.88%,目标靶面光斑5像素(半径32.25μm)桶中功率比由44.52%提升至52.78%;通过涡旋光源方法,上行链路能量耦合效率由71.89%提升至90.60%。
     最后,开展了光束控制优化方法对中继镜系统性能提升效果的理论研究。以光束整形为例,分析了光束控制优化方法对中继镜系统性能的提升效果,在H-V5/7模型湍流条件下,以“目标高度25km,飞行平台高度30km”的地基激光中继镜系统为模型,模拟计算了不同校正精度条件下,光束整形对中继镜系统上行链路能量耦合效率和系统打击性能的提升效果。
     论文的研究结果有望对中继镜系统的论证和设计提供一定的参考,论文提出的光束整形、阵列光束相干合成和涡旋光源三种方法可在激光空间自由通信系统等光学系统中拓展应用。
The relay mirror technology is an important new laser system combat concept thathas unique application in military field, which has been under extensive research inrecent years. Begin with the basic concept, contents including theory of beampropagation in a relay mirror system, the feasibility of a relay mirror system, powercoupling efficiency of a relay mirror system and the methods used to improve uplinkpower coupling efficiency, influences induced by the two adaptive istallations areinvestigated in theory, simulation and experiment in this thesis.
     First, theory of beam propagation in a relay mirror system and the feasibility of arelay mirror system are investigated in theory and experiment. Based on the previousresearches on the relay mirror technology, components of a relay mirror system isanalyzed, the optimal mode of beam uplink propagation is analyzed with the emphasison the damage performance at the target. Based on the optimal mode, theory of beampropagation in a relay mirror system is analyzed, the equivalent Fresnel number of beampropagation in a relay mirror system under vacuum and turbulence conditions, therelations between the maximum beam intensity at the target and the equivalent Fresnelnumber are both ratiocinated in detail. The conditions in which a relay mirror system isfeasible is analyzed, the method used to compute the advantage scope of a relay mirrorsystem is illuminated. As examples, the advantage scopes of relay mirror systems withspace-based laser, airborne laser and ground-based laser are simulated. In the laboratory,a reduced-scale experimental installation is established with the same Fresnel number ofbeam propagation in a relay mirror system with1.064μm laser source,1.2m-diametertelescopes,30km uplink propagation distance and10km downlink propagation distance.With the experimental installation, the reduced-scale experiment is carried out. Thetheoretical results and the experimental results show that the relay mirror system canimprove the laser damage performance to the forane target and extend the laser's range.
     Second, influences to the relay mirror system damage effect induced by the twoadaptive optics istallations are investigated in theory. According to the different workingconditions and different uses, styles of the two adaptive optics istallations used in arelay mirror system are analyzed with the characteristics and styles of the adaptiveoptics used in nowadays. We get that the adaptive optics istallation locates at the sourceshould use the conjugacy based adaptive optics, the adaptive optics istallation locates atthe platform should use the optimization algorithm based adaptive optics. Based on themodel of a ground-based laser relay mirror system under the Hufnagel-Valley5/7turbulent model condition and with the parameters as:25km target height and30kmplatform height, performances of the relay mirror system under different precisions ofthe adaptive optics istallations are simulated. The results show that proportion of power in bucket with diffraction limit radius is61.44%under the closed-loop and idealconditions, which is3.6times of the value under the open-loop.
     Then, power coupling efficiency of beam uplink propagation in a relay mirrorsystem and methods used to improve the uplink power coupling efficiency areinvestigated in theory and experiment. In theory, power coupling efficiency of beamuplink propagation in a relay mirror system is simulated, theories of three methods usedto improve the uplink power coupling efficiency including beam shaping, coherentbeams combination and vortex beams are analyzed, and performances of the abovemethods are simulated. The theoretical results show that uplink power couplingefficiency of the relay mirror system is84.46%, power coupling efficency is improvedfrom84.46%to99.73%by beam shaping; power coupling efficency is improved from84.46%to95.02%by coherent beams combination; power coupling efficency isimproved from84.46%to98.04%by using vortex source. In experiment, areduced-scale experimental installation is established, and the experiment of detectinguplink power coupling efficiency of the relay mirror system is carried out. By using twoliquid crystal spatial light modulators, the experiments of detecting uplink powercoupling efficiencies of the relay mirror system with beam shaping and vortex sourceare carried out. The experimental results show that uplink power coupling efficiency ofthe relay mirror system is71.89%, uplink power coupling efficency is improved from71.89%to87.88%, proportion of power in5pixelsbucket (32.25μm radius)isimproved from44.52%to52.78%by beam shaping; uplink power coupling efficencyis improved from71.89%to90.60%by using vortex source.
     At last, performances of beam control optimizations in a relay mirror system areinvestigated in theory. Taking beam shaping as an example, performances of a30km-height relay mirror system with different precisions adaptive optics istallations aresimulated under the Hufnagel-Valley5/7turbulent model.
     The results of this dissertation may provide some references for the design and thedevelopment of the relay mirror system, the three methods proposed in the paper thatused to improve uplink power coupling efficiency of the relay mirror system can beused in laser systems including laser communication systems, laser data transmittionsystems and so on.
引文
[1]姚润丰.激光物理的创立及早期的发展[D].首都师范大学,2001年:35-37
    [2] Mary Bellis. History of Lasers [EB/OL]. http://inventors.about.com/od/lstartin-ventions/a/laser.htm
    [3]陈家璧.激光原理及应用[M].北京:电子工业出版社,2011
    [4]李瑞贤.固体激光器热效应引起像差的研究[J].光机电信息,2011,10:15-18
    [5]吴谨.新型长脉冲TE CO_2激光器[J].激光与光电子学进展,2009,2:43-45
    [6]王琛. X射线激光实验研究[D].中国工程物理研究院,2004年:5-28
    [7]唐玄之,封国林,邵耀椿.激光及激光生物学发展概况[J].激光生物学报,1999,2:157-159
    [8]杨春平,吴健,何毅,张巍.激光雷达在空间交会对接中的应用[J].电子科技大学学报,1999,4:447-450
    [9]赵剑峰,张建华,余承业,黄因慧,张友良,于晓伟.激光烧结铸造型壳强度试验分析[J].南京航空航天大学学报,2001,1:41-44
    [10]徐依吉,周长李,钱红彬,宋鹏.激光破岩方法研究及在石油钻井中的应用展望[J].石油钻探技术,2010,4:129-133
    [11]吕磊,张正厚,隋丽云,李田勋,郭顺生.激光在医学基础和临床研究中的应用[J].中国临床康复,2006,17:78-79
    [12]王涛,古桂茹,李玉翔,姚建铨,刘宝利,蔡彬晶.激光在机械制造技术中的应用[J].激光杂志,2006,3:75-76
    [13] Gerd Wollmann. Directed Energy Weapons: Fact or Fiction?[J]. MilitaryTechnology,2003,4:80-85.
    [14]孙承纬.激光辐照效应[M].北京:国防工业出版社.2002年
    [15]关效贤,朴贤卿,孙晶,王英伟,朱忠立,刘景和.软杀伤战术激光武器及作用机理的研究[J].红外与激光工程,2004,2:118-120
    [16]余浩,刘永峰,姜宗福.高能气动CO2激光器在军事上的应用[J].红外与激光工程,2006, z3:194-197
    [17]杜祥琬.高能激光与应用光学的几个问题[J].中国工程科学,2001,2:21-24.
    [18]苏毅,万敏.高能激光系统[M].北京:国防工业出版社,2006.
    [19] Richard J. Dunn. Operational Implications of Laser Weapons [EB/OL]. http://www.northropgrumman.com/analysis-center/paper/assets/Operational_Implications_of_La.pdf. September2005:5-24
    [20] Robert J. Bunker, Dan Lindsay. Laser weapons: an emerging threat [EB/OL].http://findarticles.com/p/articles/mi_m2194/is_4_77/ai_n25353905/,April,2008
    [21] William H. Possel. LASER WEAPONS IN SPACE: A CRITICALASSESSMENT AIR WAR[C], Maxwell Air Force Base, Alabama April1998:11-65
    [22]李勇,汪民乐,张均.高能激光武器对弹道导弹毁伤能力研究[J].红外与激光工程,2006,5:588-592
    [23]隋江波,孙东延,马乐梅.舰载激光武器反导作战使用研究[J].现代防御技术.2006,4:6-8
    [24] Frank Smith. Laser Weapons in the Military [EB/OL]. http://ezinearticles.com/?Laser-Weapons-in-the-Military&id=1487230
    [25] John Adams. New "Laser" Weapon Debuts in LA County Jail [EB/OL]. http://www.nbclosangeles.com/news/local/New-Laser-Weapon-Debuts-in-LA-County-Jail-101230974.html,Aug23,2010
    [26]杨鸿儒.新概念高能激光武器与强激光光学计量检测技术[J].应用光学.2005,2:1-5
    [27]侯睿,赵尚弘,胥杰,刘佳,郭钦鹏,李田.组束激光的军事应用前景分析[J].激光杂志,2008:3:4-5
    [28]刘淑英,邵元培,计世藩.用战术激光武器反巡航导弹[J].现代防御技术.2001,1:8-12
    [29]余宗敏,蔡传能.未来战场的攻防新锐—激光武器[J].飞航导弹,2005,2:62-64
    [30]佘辉,谭胜.高能激光武器的发展和应用前景[J].红外与激光工程.2002,3:268-232
    [31]胡海舰,许晓军.激光轻武器的研究现状与应用前景[J].国防科技,2006,12:39-41
    [32]徐军,罗积军,郭锁利.高能激光武器反战术导弹的技术分析[C].2004全国光学与光电子学学术研讨会、2005全国光学与光电子学学术研讨会、广西光学学会成立20周年年会论文集
    [33] Ronald J. Lipinski, Dorothy C. Meister, and Stephenson Tucker,Robert Q.Fugate, Phillip Leatherman, Carl Maes, W. Joseph Lange, and William Cowan,RichardA. Cleis, James M. Spinhirne, and Raymond E. Ruane,Robert B. Michie,Donald F.Vonderhaar. Laser Beaming Demonstrations to High-Orbit Satellites [Z].1994:3-9
    [34]陈娅冰,赵尚弘,朱婧,刘涛,庄茂录.激光武器新技术及应用[J].激光与光电子学进展.2003,4:18-20
    [35]周义,周丽,胡根秀,崔东杰.未来战争主攻手—美军激光武器即将走向战场[J].飞航导弹.2005,10:32-35
    [36] A. Brown. First Annual Wireless Power7'ransnlission CoJ_'rence, II/PT '93,San Antonio, T,V,February23-25,1993.
    [37] J. D. G. Rather, Laser Power Beaming for Space Development: An Example ofan On-going Advanced Research Technology Project at NASA[C]. Prec. of theSELENE Advocacy Bricng and Progress Review, Mars'hall Space Flight Center, AL35812, July16,1992.
    [38] G. A. Landis and L. H. Westerlund, Laser Beamed Power: SatclliteDetnonstration Applications [C].43rd Congress of the International AstronauticalFederation, Aug.28-Sept.5,1992, Washington, DC, IAF-92-0600.
    [39] D. K. Monroe. Space Debris Removal Using a High-Power Ground-BasedLaser [C]. Prec. of the AIAA Space Programs and Technologies Conference, Huntsville,AL, Sept.21-23,1993, AIAA93-4238.
    [40] R. Q. Fugate, D. L. Fried, G. A. Ameer, B. R. Bocke, S. L. Browne, P. H.Roberts, R. E. Ruane, G. A. Tyler, and L. M. Wopat. Measurement of AtmosphericWavefront Distortion Using Scattered Light from a Laser Guide-Star [J]. Nature,1991,353:144.
    [41] N. Hubin and L. Noethe. Active Optics, Adaptive Optics, and Laser GuideStars [J]. Science,1993,262:1390.
    [42] D. L. Fried. Least-square fitting a wave-front distortion estimate to an array ofphase-difference measurements [J]. J. Opt. Soc. Am,1997,67:370.
    [43] D. P. Greenwood. Bandwidth specifications for adaptive optics systems [J]. J.Opt. Soc. Am.,1977,67:390.
    [44] Low-Power Chemical Laser Backed up Army's Troubled MIRACL Test Shot[C], Inside the Air Force. Oct.24,1997:8-10
    [45] SSDC Hold Successful Hover Test of Kinetic Energy Anti-satellite System[C],Inside the Army. Aug.18,1997:6
    [46] R. J. DeYoung. Second Beamed Space-Power Wor'LqTop, Hampton, I4,1, Feb.28-March2,1989, NASA Conf.Publ.3037,1989.
    [47] E. P. Coomes. Power Beaming l.gorkshop, Pacific Northwest Laboratot:v,Richland, I,VA, May14-16,1991.
    [48]任国光,黄裕年.战术高能激光武器的发展现状和未来[J].激光与红外,2002,4:211-217
    [49]赵江,徐世录.激光武器的现状与发展趋势[J].激光与红外,2005,2:67-70
    [50]程勇,郭延龙.反卫星激光武器发展现状与动态[J].光学与光电技术.2003,3:1-4.
    [51]周炳玉,李雪,飞李莹.地基强激光反卫星侦察技术[J].第十二届光电对抗与无源干扰学术交流会论文集.2002年.
    [52]李莹,周炳玉.地面强激光反卫星侦察技术[J].光电对抗与无源干扰.2002,2:9-11
    [53]刘天华,王云萍.高能激光武器综述[J].现代军事,2001年06期
    [54]任国光,黄裕年.强激光武器技术最新发展评述[J].激光技术,1999.8:193-201
    [55] Ground Based Laser [EB/OL]. http://www.globalsecurity.org/space/systems/gbl.htm.21-07-2011
    [56]任国光,黄裕年.空间对抗中的激光武器[J].激光与红外.2004,5:323-325
    [57]刘伟超.“鹦鹉螺”激光武器系统解析[J].舰船科学技术.2007, S1:26-28
    [58]吕明春,梁红卫.高能激光武器及其技术发展[J].激光杂志.2008,1:1-3
    [59] Mobile Tactical High Energy Laser [EB/OL]. http://www.globalsecurity.org/space/systems/mthel.htm,21-07-2011
    [60] Bush Administration Researching Anti-Satellite Laser Weapon [EB/OL].http://www.thephora.net/forum/archive/index.php/t-6917.html,05-07-2006
    [61] Tactical High Energy Laser [EB/OL]. http://en.wikipedia.org/wiki/Tactical_High_Energy_Laser,28October2011
    [62] WILLIAM J.BROAD. U.S. and Israel Shelved Laser as a Defense [EB/OL].http://www.nytimes.com/2006/07/30/world/middleeast/30laser.html,July30,2006
    [63] Northrop Grumman Develops Skyguard Laser Defense System for LocalDefense [EB/OL]. http://www.spacewar.com/reports/Northrop_Grumman_Develops_Skyguard_Laser_Defense_System_For_Local_Defense_999.html, Jul13,2006
    [64]任国光.高能激光武器的现状与发展趋势[J].激光与光电子学进展.2008,9:62-64
    [65]刘铭.国外激光武器技术的发展[J].舰船电子工程,2011,4:18-22
    [66]姬寒珊,秦致远,赵东新.国外激光武器发展的经验与前景[J].激光与光电子学进展.2006,5:14-17
    [67]袁大发,唐勇.美国研制的高能激光武器系统[J].激光与光电子学进展.2004,12:15-17
    [68]任国光.地基激光反卫的发展现状与大气补偿实验[J].激光与红外.2007,1:3-5
    [69]刘顺发,陈洪斌,郑亚林.影响激光传输因素分析[J].宝鸡文理学院学报(自然科学版).2002,2:90-93.
    [70] Ryan P. Starkey, Mark J. Lewis. Sensitivity of Hydrocarbon CombustionModeling for Hypersonic Missile Design [J]. JOURNAL OF PROPULSION ANDPOWER.2003,19:1-4.
    [71]李建平,宋文艳,肖隐利.超燃冲压发动机/机体一体化优化设计[J].航空动力学报.2011,4:874-876.
    [72] Suzann Chapman.The Airborne Laser [J]. Air Force Magazine, January1996:54-55
    [73] Geoffrey E. Forden.The Airborne Laser [J].IEEE Spectrum, September1997:46
    [74] Col. Robert McMurry, Lt. Gen. Michael Dunn. Airborne laser(ABL):Assessing Recent Developments and Plans for the Future.The WashingtonRoundtable on Science and Public Policy,2008:1-10
    [75]王戎瑞.美国机载激光武器发展现状[J].激光与红外.1999,4:195-197
    [76]林聪榕.美国机载激光武器及其关键技术[J].现代防御技术,2006,4:10-13
    [77] Blackwood, N.J. Adaptive Optics Associates, Inc., a Wholly-owned Subsidiaryof Metrologic Instruments, Inc. Delivers Wavefront Sensor for Airborne Laser MissileDefense System [EB/OL]. http://business. highbeam.com/3613/article-1G1-81014278/adaptive-optics-associates-inc-whollyowned-subsidiary,December21,2001
    [78]袁天保,石艳霞,姜娜.美国机载激光武器作战能力分析[J].红外与激光工程.2007, z2:71-73
    [79]李清源.美国定向能激光武器的发展及其对弹道导弹的威胁[J].导弹与航天运载技术.2000,2:44-46
    [80]余驰,张立群.机载激光武器系统作战应用分析[J].指挥控制与仿真.2011,3:93-95
    [81]石艳霞.机载激光武器打击能力分析[J].中国航天,2007,5:37-39
    [82]朱宝鎏.“悄无声息的截杀”评ABL试射成功[J].兵器知识.2010年4期
    [83] US begin testing airborne laser in missile defense system [EB/OL].http://business.highbeam.com/62876/article-1P2-13331021/us-begins-testing-airborne-laser-missile-defense-system, July19,2002
    [84]"DoD4120.15-L, Model Designation of Military Aerospace Vehicles".
    [EB/OL]. http://www.dtic.mil/whs/directives/corres/pdf/412015l.pdf. May12,2004:5-146
    [85] MDA Sets2006ABL Goals, Completes2005'Knowledge Points'.[EB/OL].http://business.highbeam.com/408155/article-1G1-140677881/mda-sets-2006-abl-goals-completes-2005-knowledge-points, December13,2005
    [86] MDA Awards Northrop Grumman$142Million for Airborne Laser [EB/OL].http://business.highbeam.com/408155/article-1G1-131141026/mda-awards-northrop-grumman-142-million-airborne-laser,March1,2005
    [87] Lester Haines. US to test missile-killing airborne laser [EB/OL]. http://www.there gister.co.uk/2006/03/27/airborne_laser_test/
    [88] Tech. Sgt. Eric M. Grill. Airborne Laser returns for more testing [EB/OL].http://www.afmc.af.mil/news/story.asp?id=123038913,1/25/2007
    [89] Boeing YAL-1[EB/OL].http://en.wikipedia.org/wiki/Boeing_YAL-1,June2010
    [90] ABL YAL1A, United States of America [EB/OL]. http://www.airforce-technology.com/projects/abl/.
    [91] JIM SKEEN. AIRBORNE LASER-WEAPON SYSTEM PASSES ITSMISSILE-'KILLING' FLIGHT TEST [EB/OL]. http://business.highbeam.com/4093/article-1G1-166609121/airborne-laserweapon-system-passes-its-missilekilling, July18,2007
    [92] Airborne Laser Missile Defense System Begins Activation Tests [EB/OL].http://business.highbeam.com/408155/article-1G1-180489664/airborne-laser-missile-defense-system-begins-activation, May29,2008
    [93] MCKEON PRAISES MISSILE DEFENSE AGENCY, INDUSTRYPARTNERS FOR SUCCESSFUL AIRBORNE LASER TEST [EB/OL].http://business.highbeam.com/5488/article-1G1-219275865/mckeon-praises-missile-defense-agency-industry-partners, February17,2010
    [94]任国光,黄裕年.机载激光武器的发展现状与未来[J].激光与红外.2005,5:309-311
    [95]宛东生.关注美国机载激光武器ABL计划[J].激光与光电子学进展,2006,3:28-30
    [96]辜璐.机载激光武器回顾与发展[J].红外与激光工程.2006, z1:48-50
    [97]薛积光.美利坚天剑-美国机载激光武器发展现状[J].现代兵器,2007.4:49-51
    [98] U.S. successfully tests airborne laser on missile [EB/OL]. http://www.reuters.com/article/2010/02/12/usa-arms-laser-id USN1111660620100212, Feb12,2010
    [99]吴慧云.中继镜在100kW固体激光传输中的应用研究[D].国防科学技术大学.2008.
    [100]梁晋平.美国机载激光器ABL离实战使用还有多远[J].现代军事,2006.3:46-48
    [101] Amy Butler, Lights Out For The Airborne Laser [EB/OL].http://www.aviationweek.com/aw/generic/story.jsp?id=news/asd/2011/12/21/02.xml&headline=Lights%20Out%20For%20The%20Airborne%20Laser&channel=defense.
    [102]美国终止ABL空基反导激光器研发计划[EB/OL]. http://lenta.ru/news/2011/12/22/abl/_Printed.htm
    [103] Space Based Laser [EB/OL]. http://www.fas.org/spp/starwars/program/sbl.htm,November01,2011
    [104] Mark E. Rogers, Lieutenant Colonel. LASERS IN SPACETECHNOLOGICAL OPTIONS FOR ENHANCING US MILITARY CAPABILITIES[Z]. USAF. November1997
    [105] William H. Possel. Lasers and Missile Defense: New Concepts for Space-basedand Ground-based Laser Weapons [Z]. USAF. July1998
    [106] Steven G. Leonard. Laser Options for National Missile Defense [Z]. AirCommand and Staff College.1998
    [107] Kenneth W. Barker, AIRBORNE AND SPACE-BASED LASERS:ANANALYSIS OF TECHNOLOGICALAND OPERATIONAL COMPATIBILITY [Z]. AirWar College, Air University, June1999:5-35
    [108] Larry D. Welch, Donald C. Latham. Defense Science Board Task Force onHigh Energy Laser Weapon Systems Applications [Z] June1,2001
    [109] Iskender G.KALP, Max CALABRO, Herv é HOLLANDERS, LucienDESCHAMPS. Space Solar Energy: A Challenge for the European (and International)Community[J]. IAC-02-R.1.03,2002
    [110] Mankins, J.C. and Howell, J. Overview of the Space Exploratory Research andTechnology Program [J].2000, AIAA-2000-3060.
    [111]张岩,冯书兴,武晓鹏,何忠龙.天基激光武器的作战轨道分析[J].装备指挥技术学院学报.2005,4:53-55
    [112]侯国江.天基激光武器在弹道导弹防御中的作战性能分析[J].装备指挥技术学院学报.2004,2:46-50
    [113] Ninneman, R., M. Vigil and D. Founds. Projected Technology Needs for anOperational Space based Laser System [J].2001. AIAA-2001-2863.
    [114] Way D.W. and Olds J.R. Space transfer vehicle concept for deploying solarpower satellites [J]. Journal of Aerospace Engineering,2001,2:65-71.
    [115] Michael S. Taylor. High-level PC-based laser system modeling [J]. Proc. SPIE,1991,1415:300
    [116]潘科炎.实战天基激光武器系统设计的技术需求分析[J].航天控制.2004,1:90-93
    [117]任国光.评述美国天基激光计划的重大调整[J].激光与红外.2003,3:163-165
    [118] Glen P. Perram, Michael A. Marciniak, and Matthew Goda. High energy laserweapons: technology overview [J]. Proc. SPIE,2004,5414:1-3.
    [119] E. A. Duff and D. Washburn. The Magic of Relay Mirrors [J]. Proc. SPIE,2000,5413:137-144
    [120]战术中继镜和重定向能系统资料选编[M].国防科大定向能研究所,2006.
    [121]吴慧云,吴武明,陈金宝,许晓军.100kW固体中继镜系统对1km高度目标作用效果模拟[J].光学学报2008,28:1967-1970
    [122] Gregory E Glaros, Broad departmental application of Directed EnergySystems[J]. Directed Energy Weapon SMI Conference, the Hatton, London,2004:7-28
    [123] Jeffrey Dierks, Susan Ross. Relay Mirror Experiment overview: a GELpointing and tracking demonstration [J], Tracking and Pointing,1991:152-156
    [124] Relay Mirror Experiment[EB/OL].http://www.robins.ball.com/rme.html,2004.
    [125] Mary Hartman, Sergio R. Restaino, Jeffrey T. Baker, Don M. Payne, Jerry W.Bukley. EAGLE: relay mirror technology development [J]. Proceedings SPIE,2004,4724:110-117
    [126] J. S. Dierks, S. E. Ross, A. Brodsky, P. W. Kervin, and R. W. Holm. RelayMirror Experiment overview: a GBL pointing and tracking demonstration [J]. Proc.SPIE,1991,1482:146-158.
    [127] J. D. Barchers, D. L. Fried, and D. J. Link. Evaluation of the performance ofHartmann sensors in strong scintillation [J]. Applied Optics,2002,41:1012-21
    [128] T. Fossen. Commants on Hamiltonian Adaptive Control of Spacecraft [J]. IEEETransactions on Automatic Control,1993,38: No.4
    [129] Jae Jun Kim, Tim Sands, and Brij N. Agrawal. Acquisition, Tracking, andPointing Technology Development for Bifocal Relay Mirror Spacecraft [J]. Proc. ofSPIE,2007,6569:656907-1
    [130] Scott L. Johnson. Beam Control of Extremely Agile Relaying Laser Source forBifocal Relay Mirror Spacecraft [D], Naval Postgraduate School, Monterey, California,2006:1-2
    [131] Justin D. Mansell, Arturo A. Jacobs, and Morris Maynard. Development of anAdaptive Optics Test-Bed for Relay Mirror Applications [J]. Proc. SPIE,5894:1-13
    [132] Bifocal Relay Mirror Spacecraft Lab [EB/OL]. http://www.nps.edu/Academics/Centers/SRDC/Laboratories/BifocalRelay.html,Sep23,2011
    [133] David M. Meissner. A three degree of freedom test bed for nanosatellite andcubest attitudedynamics, determination and control [D]. Naval Postgraduate School,December2009:1-76
    [134]储修祥.中继镜系统激光传输与变换的理论研究[D].国防科学技术大学.2009.
    [135] Half-scale Boeing US Air Force relay mirror system for high-altitude airshipsand long-endurance aircraft laser hits its target [EB/OL]. http://www.flightglobal.com/news/articles/half-scale-boeing-us-air-force-relay-mirror-system-for-high-altitude-airships-and-long-endurance-208457/,15Aug2006
    [136] St. Louis MO. Boeing Demonstrates Aerospace Relay Mirror System [EB/OL].http://www.spacewar.com/reports/2006-08-18
    [137] Simpson J. Tactical laser relay mirror demonstration anticipated before2011[R].Inside The Air Force,2007,41:3
    [138] X. Chu, Z. Liu and Y. Wu, The propagation of a flattened circular Gaussianbeam through an optical system in turbulent atmosphere [J], Applied. Physics. B,2008,92:119-122
    [139]刘春雨,金光.中继反射镜能量特性研究[J].空间科学学报.2009,1:64-66
    [140] X. Chu and G. Zhou, Power coupling of a two-Cassegrain telescope system inturbulent atmosphere in a slant path [J], Optics Express,2007,15:7697-7707
    [141] X. Chu, Z. Liu and Y. Wu, Propagation of four-petal Gaussian beams inturbulent atmosphere[J], Chinese Physics Letter,2008,25:485-488
    [142] Chunyu Liu, Xing Zhong, Yongjie Piao, Guang Jin. Research on energycharacteristics of aerospace relay mirror system [J]. Electronic and MechanicalEngineering and Information Technology,2011:19
    [143] X. Chu, Z. Liu and Y. Wu, Propagation of a general multi-Gaussian beam inturbulent atmosphere in a slant path [J], J. Opt. Soc. Am.2008,25:74-79
    [144] M.Born and E.Wolf,光学原理(第七版)杨葭荪译.北京:科学出版社,2005.
    [145]吴慧云,陈金宝,许晓军.激光中继镜系统的上行光束模拟[J].红外与激光工程.2008,5:854-857
    [146] Alan J. MacGovern, David A. Nahrstedt, Michael M. Johnson. AtmosphericPropagation for Tactical Directed Energy Applications [J]. Proc. SPIE.4034:128-139
    [147]许晓军.大气光学与自适应光学教学讲义[M].国防科技大学定向能研究所,2007
    [148]黄印博.高能激光近地面稠密大气传输及其相位校正的若干分析[D].中科院安徽光机所.2005.
    [149]王娟.大气湍流对激光传输特性的影响[D].河南师范大学.2009
    [150]闫传忠.基于分形的大气湍流随机相位屏数值模拟[D].中国海洋大学.2009
    [151]倪志波,黄宏华,黄印博,苑克娥,饶瑞中.基于多孔径闪烁的湍流强度廓线反演方法研究[J].光子学报.2009,12:3270-3271
    [152]武琳,应家驹,耿彪.大气湍流对激光传输的影响[J].激光与红外.2008,10:974-977
    [153]刘波涛.大气对激光传输的影响[J].光散射学报.2007,1:974-975
    [154]饶瑞中.光在湍流大气中的传播[M].合肥:安徽科学技术出版社,2005.
    [155] Atmospheric Models [EB/OL]. http://scalingcodes.mza.com/doc/ATMTools/AtmosModels.html
    [156]庞之浩.气味卫星--打开地球大气层奥秘[J].太空探索.2004,9:14-15
    [157]吴世荣.独一无二的地球大气层[J].大科技·科学之谜.2008,2:22
    [158]姚琪.数字阵MST风廓线雷达系统设计[D].南京理工大学,2010:1-32
    [159]张逸新,朱拓,陶纯堪.激光传输湍流大气的折射率起伏双尺度模型[J].光电子·激光.2004,10:1246-1248
    [160]胡月宏,强希文,冯建伟,张志刚,韩燕,宗飞,李岩.基于气象参数戈壁沙漠地区近地面大气湍流建模[J].强激光与粒子束.2010,12:2800-2802
    [161] Judy L. Mohr. Atmospheric Turbulence Characterisation Using ScintillationDetection and Ranging [D]. University of Canterbury,November24,2009:10-96
    [162]杨昭.基于1.06μm激光雷达的大气消光特性的研究[D].苏州大学,2004.
    [163]李军梅,孙晓泉,张军.大气对上靶激光能量密度影响的分析[J].光电子技术.2004,3:181-183
    [164]孙毅义,董浩,毕朝辉,李治平.大气辐射传输模型的比较研究[J].强激光与粒子束.2004,2:149-151
    [165]董言治,周晓东.大气红外辐射模型与实用算法的研究进展[J].激光与红外.2003,6:412-414
    [166]周仁忠,阎吉祥.自适应光学理论[M].北京:北京理工大学出版社,1996年:22-123
    [167]周仁忠.自适应光学[M].北京:国防工业出版社,1996年:5-254
    [168]陈波,李新阳.曲率探测的自适应光学Zernike模式的闭环校正[J].红外与激光工程.2011,3:467-468
    [169]杨慧珍,蔡冬梅,陈波,李新阳,姜文汉.无波前传感自适应光学技术及其在大气光通信中的应用[J].中国激光.2008,5:680-682
    [170]王小林.激光相控阵中的优化式自适应光学研究[D].国防科学技术大学.2011.
    [171]杨慧珍,李新阳,姜文汉.自适应光学系统随机并行梯度下降控制算法仿真与分析[J].光学学报.2007,8:3516
    [172]杨慧珍.无波前探测自适应光学随机并行优化控制算法及其应用研究[D].中国科学院光电技术研究.2008
    [173] P. Marsh, D. Burns, and J. Girkin. Practical implementation of adaptive opticsin multiphoton microscopy [J]. Optics Express.2003,11:1123-1130
    [174]杨平,敖明武,刘渊,许冰,姜文汉.基于泽尼克模式系数的自适应光学遗传算法[J].中国激光.2008,3:367-369
    [175]杨慧珍,李新阳,姜文汉.自适应光学系统几种随机并行优化控制算法比较[J].强激光与粒子束.2008,1:12-14
    [176]李民强,寇纪淞.遗传算法的基本理论与应用[M].北京:科学出版社,2002
    [177]陈华根,吴健生,王家林,陈冰.模拟退火算法机理研究[J].同济大学学报(自然科学版).2004,6:802-803
    [178] S. Kirkpatrick, C. D. Gelatt, Jr., M.P. Vecch. Optimization by SimulatedAnnealing [J]. Science.1983,220:4598
    [179] Yang, Ping; Hu, Shijie; Yang, Xiaodang; Chen, Shanqiu; Yang, Wei; Zhang,Xiang; Xu, Bing,Test and analysis of the time and space characteristics of phaseaberration in a diode-side-pumped Nd:YAG laser[J]. Proceedings of the SPIE,2005.6018:182-191
    [180] R. El-Agmy, H. Bulte, A. H. Greenaway and D. T. Reid. Adaptive beam profilecontrol using a simulated annealing algorithm [J]. Optics Express.2005,13:6085
    [181] Vorontsov MA, Carhart GW, Cohen M, Cauwenberghs G. Adaptive opticsbased on analog parallel stochastic optimization: analysis and experimentaldemonstration[J]. J Opt Soc Am A Opt Image Sci Vis.2000,8:1440-1453.
    [182] M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin. Adaptive phase-distortioncorrection based on parallel gradient-descent optimization [J]. Optics Letters.1997,22:907-909
    [183] M.A.Vorontsov, G.W.Carhart, M.Cohen. Adaptive optics based on analogparallel stochastic optimization: analysis and experimental demonstration [J]. J. Opt.Soc.Am.A,2000,8:1440-1453.
    [184]高全华,曾晓东,安毓英.大功率半导体激光器光束整形[J].光电子·激光.2005,6:662-663
    [185] David L. Shealy. Optical Design of Laser Beam Shaping Systems,Universityof Alabama at Birmingham Department of Physics,15303rd Avenue South, CH310Birmingham, AL35294-1170USA,5June2002
    [186]马浩统,周朴,王小林,马阎星,汪晓波,许晓军,刘泽金.基于液晶空间光调制器的激光束近场整形[J].光学学报.2010,7:2032-2034
    [187]吴慧云等,用于提高中继镜系统能量耦合效率的光束整形[J].中国激光,2011,1:0102006
    [188] Huiyun Wu et al. Beam shaping for uplink transmission of the relay mirrorsystem [J]. Applied Optics,2010.17:3245-3248
    [189]周朴.光纤激光相干合成技术研究[D].国防科学技术大学.2009.
    [190]周朴,许晓军,刘泽金,储修祥.相干合成光束在湍流大气中的传输[J].光学学报,2008,11:2051-2056
    [191] Pu Zhou, Zilun Chen, Xiaolin Wang, Xiao Li, Zejin Liu, Xiaojun Xu. Toleranceon tilt error for coherent combining of fiber lasers [J]. Chin.Opt.Lett.2009,1:39-42
    [192] G. Zhou, X. Chu, Investigation in the propagation of non-paraxial TE vectorGaussian beam from vectorial structure [J], J. Mod. Opt,2007,8:1151-1163.
    [193] G. Zhou, X. Chu, Jun Zheng, Analytical structure of an apertured vectorGaussian beam in the far field, structure[J], Optics Communications,2007,281:1929-1934
    [194] G. Zhou, X. Chu, Jun Zheng, Composition of Airy disc [J], Chinese OpticsLetter,2008,6:395-397
    [195] Pu Zhou, Zejin Liu, and Xiaojun Xu. Phase-difference detection based on adouble position sensing detector configuration for coherent combination [J]. Appl.Opt.2008,27:4868-4873
    [196] Pu Zhou, Zejin Liu, Xiaolin Wang, Yanxing Ma, Haotong Ma, and Xiaojun Xu.Coherent beam combination of two-dimensional high power fiber amplifier array usingstochastic parallel gradient descent algorithm [J]. Appl.Phys.Lett.2009,94:231106
    [197] Pu Zhou, Yanxing Ma, Xiaolin Wang, Haotong Ma, Xiaojun Xu, Zejin Liu.Coherent beam combination of three two-tone fiber amplifiers using stochastic parallelgradient descent algorithm [J]. Opt.Lett.2009,34:2939-2941
    [198] Pu Zhou, Zejin Liu, Xiaolin Wang, Yanxing Ma, Haotong Ma, Xiaojun Xu, andShaofeng Guo. Coherent beam combining of fiber amplifiers using stochastic parallelgradient descent algorithm and its application [J]. IEEE J.Sel.Top. Topics QuantumElectron,2009,2:248-256
    [199] Pu Zhou, Xiaolin Wang, Yanxing Ma, Jinyong Leng, Haotong Ma, JianhuaWang, Xiaojun Xu, Zejin Liu. Phase-locking of rapidly-changing phase fluctuations in astrongly pumped fiber amplifier using stochastic parallel gradient descent controller [J].J.Phys.B: At.Mol.Opt.2009,42:195401
    [200] G. Zhou, Y. Ni, X. Chu, Structural polarization properties of vector Gaussianbeams in the far field[J], Chin. Phys.,2007,11:3377-3381
    [201] X. Chu, G. Zhou and Y. Ni, Variations of on-axis average intensity along thepropagation path in turbulent atmosphere for plane wave excitation limited by a circularaperture[J], Optics Communications,2006,267:32-35
    [202] X. Chu, Y. Ni and G. Zhou, Propagation of cosh-Gaussian beams diffracted bya circular aperture in turbulent atmosphere[J], Applied. Physics. B,2007,87:547-552
    [203] X. Chu, Y. Ni and G. Zhou, Propagation analysis of flattened circular Gaussianbeams with a circular aperture in turbulent atmosphere[J], Optics Communications,2007,274:274-280
    [204] Pu Zhou, Xiaojun Xu, Zejin Liu, Xiuxiang Chu. Improving the power couplingefficiency in relay mirror system using multiple laser array [J]. Opt. Laser. Technol.2010.42:392
    [205] Huiyun Wu et al. Analysis of the Power coupling efficiency of the relay mirrorsystem with the transmitter composed by sub-telescope array [J]. OpticsCommunications.2010,283:3180-3183
    [206]刘晓云,唐宏亮,李倩,徐送宁.部分相干电磁涡旋光束的聚焦特性[J].中国激光,2009, s1:199-204
    [207] J¨org B.G¨otte, Kevin O’Holleran, Daryl Preece, Florian Flossmann, SonjaFranke-Arnold, Stephen M. Barnett and Miles J. Padgett. Light beams with fractionalorbital angular momentum and their vortex structure[J].Optics Express.2008,16:993-1006
    [208] A. Jesacher, A. Schwaighofer, S. F¨urhapter, C. Maurer, S. Bernet, and M.Ritsch-Marte, Wavefront correction of spatial light modulators using an optical vorteximage [J], Optics Express2007,15:5801-5806
    [209] David M. Palacios and Sarah L. Hunyadi, Low-order aberration sensitivity ofan optical vortex coronagraph [J], Optics Letters.2006,31:2981-2983
    [210]陆璇辉,陈和,赵承良.涡旋光束和光学涡旋的研究[J].红外与激光工程.2007年z1期.
    [211]崔学才,连校许,吕百达.高斯涡旋光束的傍轴度[J].强激光与粒子束.2011,5:1163-1165
    [212]何德,闫红卫,吕百达.厄米-高斯涡旋光束形成的合成光涡旋及演化[J].中国激光.2009,8:2023-2025
    [213] S. Orlov, K Regelskis, V. Smilgevilius and A. Stabinis. Free-space propagationof second harmonic Laguerre–Gaussian beams carrying phase singularity[J]. Journalof Optics A: Pure and Applied Optics.2004,6: S255
    [214] Orlov S., Regelskis K., Smilgevicius V., Stabinis A. Propagation of Besselbeams carrying optical vortices [J]. Optics Communications.2002,209:1-3
    [215]饶瑞中.大气中的光学涡旋及其传播[J].红外与激光工程.2009,4:609-611
    [216]刘辉.涡旋光束的理论和实验研究[D].华侨大学.2010.
    [217]王涛,蒲继雄.涡旋光束单缝衍射的理论和实验研究[J].中国激光.2009,11:2902-2904
    [218]付文羽,李高清,刘小军.部分相干涡旋光束在大气湍流中的远场传输特性[J].光学学报.2009,11:2958-2959
    [219]陆璇辉,黄慧琴,赵承良,王将峰,陈和.涡旋光束和光学涡旋[J],激光与光电子学进展,2008,1:51-55
    [220]吴慧云等.高斯涡旋光束分析及其在中继镜系统中的应用[J].光学学报,2011,4:0414002
    [221] Huiyun Wu et al. A new method to improve power efficiencies of opticalsystems with Cassegrain-telescope receivers [J]. Optics Communications.2011,284:3361-3364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700