用户名: 密码: 验证码:
二氧化硫及其衍生物光谱特性及对血管张力作用的离子通道与信号转导机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硫是常见的大气污染物,以往研究表明二氧化硫不仅对呼吸系统有影响,而且对心血管系统及其它系统均有一定的毒害作用,因此它不仅是一种呼吸系统毒物而是一种全身性的毒物。现有资料表明,心脑血管疾病已经成为威胁人类健康的第一杀手。而以往的流行病学调查结果表明,二氧化硫及其衍生物与心血管系统的健康密切相关,二氧化硫暴露可以增加缺血性心脏疾病、心律失常等心血管疾病的患病风险和死亡率。因此,科研工作者越来越关注环境污染物二氧化硫与心脑血管疾病的关系。有关二氧化硫诱发心脑血管系统疾病的流行病学研究已经很多,但二氧化硫影响心脑血管疾病的作用机制却不够深入。继NO、CO、H2S被证明是气体信号分子之后,近年来有关研究不断表明二氧化硫可能是第四种气体信号分子。然而,有关二氧化硫及其衍生物的光谱特性研究及二氧化硫供体的研究却很少。为此,本研究运用紫外可见光光谱法和离体血管环技术等方法,重点研究了二氧化硫及其衍生物亚硫酸钠(Na2SO3)、亚硫酸氢钠(NaHSO3)、焦亚硫酸钠(Na2S2O5, SMB)的光谱特性及亚硫酸钠、亚硫酸氢钠、焦亚硫酸钠对离体大鼠血管环舒张作用的离子通道和信号转导机制。通过这些研究,以探讨亚硫酸氢钠、焦亚硫酸钠作为二氧化硫供体进行生物学研究的可能,为二氧化硫作为气体信号分子的设想增添新的依据。
     本研究对二氧化硫溶于水和有机溶剂时的吸收光谱特征进行研究,同时也对二氧化硫衍生物亚硫酸钠、亚硫酸氢钠和焦亚硫酸钠水溶液的吸收光谱特征进行研究,并探讨盐酸(HCl)对二氧化硫及其衍生物光谱性质的影响。研究结果表明:(1)二氧化硫在水、乙醇、甘油(含20%水)、正丁醇具有特征吸收峰,分别为276、277、276和278nm,表明二氧化硫在溶剂中的吸收峰主要取决于二氧化硫分子本身的物理化学性质。(2)二氧化硫在水中的吸收峰值远低于在有机溶剂中的吸收峰值,表明水对二氧化硫分子的光谱吸收具有一定的淬灭作用。(3)二氧化硫水溶液的特征吸收峰为276nm,焦亚硫酸钠和亚硫酸氢钠水溶液的特征吸收峰均为257nm,而亚硫酸钠水溶液在200~800nm范围内不具特征吸收峰,这表明二氧化硫衍生物的水溶液不存在二氧化硫或二氧化硫浓度很低。(4)盐酸、硫酸、硝酸、磷酸和醋酸均能增强二氧化硫水溶液的吸光强度,且呈浓度依赖关系:而氯化钾、氯化镁、氯化钠和氯化钙对二氧化硫水溶液的吸光强度有下降作用。结果表明,盐酸对二氧化硫溶于水中的吸光强度的增强作用是H+的作用而不是Cl-的作用。(5)焦亚硫酸钠、亚硫酸氢钠和亚硫酸钠水溶液加入盐酸后,均在276nm出现特征性吸收峰,表明盐酸与二氧化硫衍生物进行化学反应生成二氧化硫。(6)二氧化硫水溶液对环境和生物(包括人体)的作用是二氧化硫或水合二氧化硫所引起;而亚硫酸氢钠和焦亚硫酸钠水溶液的作用是HSO3所引起,亚硫酸钠溶液的作用是S032-所引起,为了增强二氧化硫衍生物的作用,向其溶液中加入H+是一个简单适宜的途径。(7)应用二氧化硫及其衍生物在溶剂中具有特征性吸收峰这一特点,可以采用简便易行的光谱分析方法测定溶液中二氧化硫的浓度及其动态变化。(8)亚硫酸氢钠或焦亚硫酸钠溶液加入适当浓度的H+可以作为毒理学和生理学研究和实践的“二氧化硫供体”。
     本文同时对亚硫酸钠和亚硫酸氢钠的舒张血管机制进行了比较研究,结果发现(1)亚硫酸氢钠可以引起离体大鼠血管环的舒张,且在100~4000μmol·L-1之间呈浓度依赖性。与亚硫酸氢钠的舒张效应不同,亚硫酸钠在200μmol·L-1之下对离体大鼠血管环未见明显影响,在500~1000μmol·L-1引起离体大鼠血管环收缩,在2000~4000μmol·L-1则可引起大鼠离体血管环舒张。(2)亚硫酸氢钠的EC5o为2326±78.56μmol·L-1加入盐酸后亚硫酸氢钠的ECso则为2078±88.57μmol·L-1,表明加入盐酸后可以显著增强亚硫酸氢钠对离体大鼠血管环的舒张效应。(3)在低浓度下,亚硫酸氢钠对离体大鼠血管环的舒张效应与内皮有关;而在高浓度下,亚硫酸氢钠的舒张效应与内皮无关。这提示我们,亚硫酸氢钠的舒张机制在低浓度和高浓度下是不同的。(4)L型钙离子通道阻断剂硝苯地平能够部分地抑带2000.4000μmol·L-1亚硫酸氢钠对离体大鼠血管环的舒张反应,而对400μmol·L-1亚硫酸氢钠引起的舒张反应无显著影响。(5)非特异性钾通道阻断剂TEA可部分地抑制400、2000及4000μmol·L-1亚硫酸氢钠对血管环的舒张反应;大电导钙激活的钾通道(BKca)阻断剂IbTx可部分地抑制400.2000μmol·L-1亚硫酸氢钠对血管环的舒张反应,而对4000μmol·L-1亚硫酸氢钠引起的舒张效应没有明显影响;小电导钙离子激活的钾通道(SKCa)抑制剂蜂毒明肽和电压依赖型的钾通道(Kv)阻断剂4-AP对亚硫酸氢钠的舒张效应没有影响。ATP敏感的钾通道(KATP)阻断剂格列本脲可部分地抑制4000μmol·L-1亚硫酸氢钠对离体大鼠血管环的舒张反应,而对400、2000μmol·L-1亚硫酸氢钠引起的舒张反应无显著影响。(6)一氧化氮合酶抑制剂(L-NNA)和sGC抑制剂(NS-2028)可部分地抑制低浓度亚硫酸氢钠导致的舒张效应,而对高浓度亚硫酸氢钠诱导的舒张效应无明显影响。(7)蛋白激酶C抑制剂十字孢碱、前列环素PGI2抑制剂吲哚美辛、p-肾上腺素受体抑制剂普萘洛尔对亚硫酸氢钠诱导的舒张效应没有明显影响。
     本文研究了焦亚硫酸钠对离体大鼠血管环的效应,结果发现焦亚硫酸钠可浓度依赖性的引起血管环的舒张。去除内皮后发现,在低浓度下(<400μmol·L-1)焦亚硫酸钠不能引起血管环的舒张,而在高浓度下(>500μmol·L-1可以导致血管环的舒张。这说明焦亚硫酸钠的舒张效应在低浓度下是内皮依赖性的或是内皮起主要作用,而在高浓度下焦亚硫酸钠的舒张效应与内皮无关或内皮不起主要作用。在低浓度下内皮依赖性的舒张最大约为20%,而在高浓度下非内皮依赖性的舒张则可达到90%以上。我们研究了L型钙离子通道对焦亚硫酸钠诱导的血管环舒张效应的影响。结果表明,硝苯地平能够部分地抑制1000μmol·L-1焦亚硫酸钠对离体大鼠血管环(内皮完整及去内皮)的舒张反应,而对50、200μmol·L-1焦亚硫酸钠引起的舒张反应无显著影响。这说明在高浓度焦亚硫酸钠诱导的舒张效应中,L型钙离子通道起了一定的作用。我们同时也研究了PGI2合成酶抑制剂吲哚美辛对焦亚硫酸钠诱导的舒张效应的影响。结果发现,吲哚美辛对焦亚硫酸钠诱导的舒张效应没有明显影响。为了解钾离子通道在焦亚硫酸钠诱导的舒张效应中所起的作用,我们用多种不同的钾离子通道阻断剂TEA、4-AP、IbTx、蜂毒明肽和格列本脲预先温育血管环20min、然后观察其对焦亚硫酸钠诱导的舒张效应的影响。结果发现:(1)高浓度及低浓度焦亚硫酸钠诱导的舒张效应均部分地被TEA所抑制。(2) IbTx可以部分地抑制J50、200μmol·L-1焦亚硫酸钠诱导的舒张效应,表明BKca离子通道在低浓度焦亚硫酸钠诱导的舒张效应中可能有一定的作用,而对高浓度焦亚硫酸钠诱导的舒张效应不起作用或作用很小。蜂毒明肽对焦亚硫酸钠诱导的舒张效应没有明显影响,表明焦亚硫酸钠的舒张效应与小电导该激活钾离子通道无关。(3)KATP通道阻断剂格列本脲可部分地抑制1000μmol·L-1焦亚硫酸钠对离体大鼠血管环(内皮完整及去内皮)的舒张反应,而对50、200μmol·L-1焦亚硫酸钠引起的舒张反应无显著影响。这表明KATp通道与高浓度焦亚硫酸钠诱导的舒张效应有关,而对低浓度焦亚硫酸钠诱导的舒张效应无关或作用很小。(4)4-AP对焦亚硫酸钠诱导的舒张效应没有明显影响,表明Kv通道在焦亚硫酸钠诱导的舒张作用中不起作用或作用很小。我们分别用sGC抑制剂NS-2028和NOS抑制剂L-NNA预先温育血管环。结果发现,NS-2028和L-NNA对血管环的基础张力没有影响。而对低浓度焦亚硫酸钠诱导的舒张效应有部分抑制作用。这表明低浓度的焦亚硫酸钠舒张效应与cGMP途径有关,而高浓度的焦亚硫酸钠舒张效应与cGMP途径无关。焦亚硫酸钠的舒张效应与PKC, PGI2, β-1肾上腺素受体途径无关。
     综合以上实验可得出如下结论:(1)二氧化硫及其衍生物的光谱特性是不同的,其中二氧化硫在水中的特征吸收峰为276nm,亚硫酸氢钠和焦亚硫酸钠水溶液的特征吸收峰均为257nm,亚硫酸钠水溶液在200~800nm之间未表现出特征吸收峰。(2)二氧化硫衍生物亚硫酸氢钠、亚硫酸钠和焦亚硫酸钠对离体大鼠血管环的舒张效应并不相同,其中亚硫酸钠表现为低浓度收缩,高浓度舒张;而亚硫酸氢钠和焦亚硫酸钠则均表现为舒张效应,且焦亚硫酸钠对离体大鼠血管环的舒张效应要大于亚硫‘酸氢钠。(3)亚硫酸氢钠或焦亚硫酸钠在低浓度下的舒张效应是内皮依赖性的,其舒张途径部分地与cGMP途径和BKO。离子通道有关;亚硫酸氢钠或焦亚硫酸钠在高浓度下的舒张效应与内皮无关,可能与KATP和L型Ca2+通道部分地有关。亚硫酸氢钠或焦亚硫酸钠的舒张效应与PKC, PGI2,p-肾上腺素受体途径无关。(4)在加入适当H+情况下,焦亚硫酸钠或亚硫酸氢钠可以用作二氧化硫供体进行毒理学等方面的研究。
As we know, sulfur dioxide (SO2) is a common gaseous pollutant. Our previous studies showed that SO2and its derivatives are systemic toxins, which may cause many kinds of toxicological effects not only in respiratory system but also other system of mammals. Epidemiological studies have shown that SO2was correlative with the cardiovascular diseases such as ischemic heart diseases, myocardial ischemia, spontaneous hypertension, and hypoxic pulmonary hypertension. Compared with epidemiological studies, little research has been made on the mechanism of SO2induced cardiovascular diseases. Our recent studies demonstrated that gaseous SO2had a biological role in regulating cardiovascular functions, and SO2could cause relaxation of rat thoracic aortic rings in a concentration-dependent manner. Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) were considered as gasotransmitters. Recent studies found that SO2was may be the fourth endogenous gaseous transmitter in the cardiovascular system. To the best of our knowledge, few publications tried to show the spectra of SO2and its derivatives. In present study, the absorption spectra of SO2, sodium sulfite (Na2SO3), sodium bisulfite (NaHSO5) and sodium metabisulfite (Na2S2O5, SMB) in aqueous solution were studied. At the same time, the vasodilator effects and its ion channel and signal transduction mechanisms of Na2SO3, Na2S2O5and NaHSO3on isolated rat aortic rings were investigated.
     In present paper, we investigated the absorption spectra of SO2, sodium sulfite, sodium bisulfite and sodium metabisulfite in aqueous solution. In the meanwhile, the effects of HCl on spectral properties of SO2and its derivatives were also investigated. The results showed that:(1) Sulfur dioxide in water, ethanol, n-butyl-alcohol and glycerol had a characteristic absorption peak at276,277,276and278nm respectively.(2) The absorption value of SO2in water was much smaller than in ethanol, n-butyl-alcohol and glycerol. We attributed the absorbing power of SO2to SO2molecule, rather than hydrated sulfur dioxide.(3) Na2S2O5and NaHS03exhibited a characteristic absorption peak at257nm. Na2SO3solution did not show a characteristic absorption from200to800nm.(4) The absorption of SO2at276nm was strongly enhanced in the presence of HC1, H2SO4, HNO3, H3PO4and HAc but not KC1, MgCl2, NaCl and CaCl2solution. The absorption of SO2strongly enhanced by HCl at276nm was due to H+, instead of the formation of a complex SO2Cl-.(5) NaHSO3, Na2SO3and Na2S2O5also exhibited an absorption at276nm with the addition of HC1, which was enhanced with the increase of HCl concentration.(6) NaHSO3and Na2S2O5solution in presence of H+may be acted as a donor of SO2in biology and other area.
     To study the biological role of bisulfite on vascular contractility and its underlying cellular and molecular mechanisms, and to explore whether bisulfite can be used as a SO2donor in the biological experiments, the vasorelaxant effects of sodium bisulfite and sodium sulfite on isolated rat thoracic aortic rings were compared; and the signal transduction pathways and the ion channels involved in the vascular effects of bisulfite were investigated. The results showed that:(1) Sodium bisulfite relaxed rat thoracic aortic rings in a concentration-dependent manner (from100to4000μM); however, sodium sulfite at500and1000μM caused vasoconstriction, and only at higher concentrations (from2000to4000μM) it caused vasorelaxation in a concentration-dependent manner.(2) The EC50values of vasorelaxation effects induced by NaHSO3solution with and without200μM HCl were2078±88.57μM and2326±78.56μM, respectively. The vasorelaxation of isolated rat thoracic aortic rings induced by NaHSO3solution with HCl added was stronger than that of NaHSO3solution without HC1.(3) The vasorelaxation caused by the bisulfite at low concentrations (<500μM) was endothelium-dependent, but at high concentrations (>1000μM) it was endothelium-independent.(4) The vasorelaxant effects induced by the high concentrations (2000,4000μM) NaHSO3solution were partially inhibited by nifedipine (an L-type Ca2+channel blocker). But the vasorelaxant effects induced by the low concentration (400μM) NaHSO3solution were not affected by nifedipine.(5) The vasorelaxant effects induced by NaHSO3at low concentration were partially inhibited by TEA (many different types of K+channel inhibitor) or iberiotoxin (BKCa channel inhibitor), but not by glibenclamide (KATP channel inhibitor). The vasorelaxant effects induced by NaHSO3at high concentrations were partially inhibited by TEA or glibenclamide, but not by iberiotoxin.(6) The vasorelaxation induced by NaHSO3at low concentrations was virtually abolished by L-NNA or NS-2028. However, the vasorelaxation induced by NaHSO3at high concentrations was not altered by L-NNA or NS-2028.(7) Indomethacin (an inhibitor of cycloxygenase, one of PGl2-synthetases) or staurosporine (an inhibitor of PKC) or propranolol (an antagonist of P-noradrenoceptor) did not change the vasorelaxation effect of NaHSO3on isolated rat aortic rings.
     In the present paper, the vasodilator effects of Na2S2O5and roles of Ca2+and K+channels as well as the cGMP pathway on isolated rat aortic rings were studied. The results show that the removal of functional endothelium abolished the relaxation response to Na2S2O5at low concentrations (<400μM), indicating that vasorelaxation was endothelium-dependent. However, Na2S2O5at high concentrations (>500μM) caused vasorelaxation of both endothelium-intact and endothelium-denuded rings, indicating that the vasorelaxation was endothelium-independent. The maximal endothelium-dependent vasorelaxation of Na2S2O5was rather smaller, approximately20%in comparison with those not depending on the presence of the endothelium was more than90%. We also studied the role of L-type calcium channels in Na2S2O5-induced vasorelaxation. The result showed that the vasorelaxant effects of1000μM Na2S2O5on both endothelium-intact and endothelium-denuded rings were partially inhibited by nifedipine. The relaxation effect induced by1000μM Na2S2O5in presence of1μM nifedipine was lower than that in absence of1μM nifedipine, which suggested a possible involvement of L-type Ca2+channels. We investigated the role of indomethacin in the vasorelaxation effect of Na2S2O5. The result showed that the treatment of indomethacin did not affect the vasorelaxation of Na2S2O5at low and high concentrations, which suggested that the vasorelaxant effect of Na2S2O5was not mediated by PGI2. To clarify the potential involvement of K+channels, aortic rings were pre-incubated with10mM TEA,2.5mM4-AP,100nM iberiotoxin,50nM apamin and10μM glibenclamide for20min prior to the application of Na2S2O5, respectively. The results showed that (1) The Na2S2O5-induced vasorelaxation was partially inhibited by TEA that blocked many K+channels in vascular SMCs, including Kca, Kv and KATP channels. Blocker of Kv channel failed to affect the vascular effects of Na2S2O5.(2) Iberiotoxin partially inhibited the50,200μM Na2S2O5-induced vasorelaxation for the endothelium-intact rings, suggesting that BKCa channels might be responsible for the low concentrations Na2S2O5-induced vasorelaxation. The Na2S2O5-induced vasorelaxation was not affected by apamin, suggesting that small-conductance KCa channels might not be responsible for the Na2S2O5-induced vasorelaxation.(3) Glibenclamide partially inhibited the1000μM Na2S2O5-induced vasorelaxation for both endothelium-intact and endothelium-denuded rings, showing that KATP channel might be attributed to the high concentrations Na2S2O5-induced vasorelaxation.(4) The relaxant effect of Na2S2O5was not affected by4-AP. These results suggested that opening of K+channels (BKCa and KATP) might contribute to the vasorelaxant effect of Na2S2O5. To examine whether the Na2S2O5-induced vasorelaxation was mediated by cGMP pathway, we studied the vascular effect of Na2S2O5in the presence of the sGC inhibitors NS-2028and the NO synthase inhibitor L-NNA, respectively. Relaxation induced by low concentrations Na2S2O5was virtually abolished by L-NNA or NS-2028. However, the high concentrations Na2S2O5-induced relaxation was not altered by L-NNA or NS-2028.
     In summary, these findings led to the conclusions:(1) Spectral properties of sulfur dioxide and its derivatives dissolved in water were different. Sulfur dioxide in water had a characteristic absorption peak at276rm. And the characteristic aborption peak of Na2S2O5and NaHSO3were257nn. Na2SO3solution did not show a characteristic absorption from200to800nm.(2) The vasodilator effects of Na2SO3, Na2S2O5and NaHSO3on isolated rat aortic rings were different. Na2S2O5or NaHSO3caused relaxation of isolated rat thoracic aortic rings in a concentration-dependent manner. However, Na2SO3could cause constriction in low concentration (<2mM) and relaxation in high concentration.(3) The vasorelaxation of Na2S2O5or NaHSO3at low concentrations was endothelium-dependent and mediated by the cGMP pathway and BKca channel, but that at high concentrations was endothelium-independent and mediated by KATP and L-type Ca2+channels. The vasorelaxant effect of Na2S2O5or NaHSO3was disproved the involvement of PKC, PGI2and β-adrenoceptor pathways.(4) Na2S2O5or NaHSO3in presence of H+can be used as a SO2donor for the study of SO2biology.
引文
[1]Shaddick G, Wakefield J. Modelling daily multivariate pollutant data at multiple sites[J]. Journal of the Royal Statistical Society,2002,51:351-372.
    [2]Anderson HR, De Leon AP, Bland JM, et al. Air pollution and daily mortality in London:1987-92[J]. Brit Med J,1996,312(7032):665-669.
    [3]Jones AP. Astham and the home environment[J]. J Asthma,2000,37:103-124.
    [4]Laurent F, Alain LT, Isabelle B, et al. Difference in the relation between daily mortality and air pollution among elderly and all-ages populations in south western France[J]. Environmental Research,2004,94:249-253.
    [5]Daniels MJ, Dominici F, Samet JM, et al. Estimation particulate matter mortality dose-respose curves and threshold levels:an analysis of daily time-series for the 20 largest US cities[J]. Am J Epidemol,2000,152:397-406.
    [6]Dominici F, Daniels M, Zeger SL, et al. Air pollution and mortality:estimating regional and national dose-response relationships[J]. J AM Stat Assoc,2002,97: 100-111.
    [7]Katsouyanni K, Touloumi G, Spix C, et al. Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European Cities:results from time-series data from the APHEA project-air pollution and health:a European approach[J]. British Med J,1997,314:1658-1663.
    [8]Andersson E, Nilsson T, Persson B, et al. Mortality from asthma and cancer among sulfite mill workers[J]. Scand J Work Env Hea,1998,24(1):12-17.
    [9]Abdelkrim Z. Short-term effect of air pollution on mortality in the cities of Rouen and Le Havre, France,1990-1995[J]. Arch Environ Health,2001,56:327-335.
    [10]Stieb DM, Judek S, Burnett RT. Meta-analysis of time-series studies of air pollution and mortality:effect of gases and particles and the influce of cause of death, age and season[J]. J Air Waste Manag Assoc,2002,52(4):470-484.
    [11]Hajat S, Anderson HR, Atkinson RW, et al. Effects of air pollution on general practitioner consultations for upper respiratory diseases in London[J]. Occup Environ Med,2002,59(5):294-299.
    [12]Hong Y, Lee J, Kim H, et al. Effects of air pollutants on stroke mortality[J]. Environ Health Perspect,2000,110:187-191.
    [13]高军,徐希平.北京市东,西城区空气污染与居民死亡情况的分析[J].中华预防医学杂志,1993,27(6):340-343.
    [14]董景五,徐希平,陈育德等.1990-1991年北京市城区大气污染与每日居民死亡关系的研究[J].卫生研究,1995,24(4):212-214.
    [15]Xu Z, Yu D, Jing L, et al. Air pollution and daily mortality in Shenyang China[J]. Arch Environ Health,2000,55(2):115-20.
    [16]王慧文,潘秀丹,林刚.沈阳市空气二氧化硫污染对心血管疾病死亡率的影响[J].环境与健康杂志,2002,19(1):50-52.
    [17]汤军克,陈林利,董英等.上海市闵行区大气污染与居民日死亡关系的时间序列研究[J].环境与职业医学,2006,23(6):485-487.
    [18]宋桂香,江莉莉,陈国海等.上海市大气气态污染物与居民每日死亡关系的时间序列研究[J].环境与健康杂志,2006,23(5):390-393.
    [19]Christian F, Bernd H, Josef C, et al. Association of lung function with declining ambient air pollution[J]. Environ Health Perspect,2003,111(3):383-387.
    [20]Heinrich J, Hoelscher B, Frye C, et al. Improved air quality in reunified Germany and decreases in respiratory symptoms[J]. Epidemiology,2002,13:394-401.
    [21]Heinrich J, Hoelscher B, Wichmann HE. Decline of ambient air pollution and respiratory symptoms in children[J]. Am J Respir Crit Care Med,2000,161(6): 1930-1936.
    [22]Heinrich J, Hoelscher B, Wjst M, et al. Respiratory diseases and allergies in two polluted areas in East Germany[J]. Environ Health Perspect,1999,107:53-62.
    [23]Amdur MO, Melvin WW, Drinker P. Effects of inhalation of sulphur dioxide by man[J]. Lancet,1953,265(6789):758-759.
    [24]Schwartz J. Lung function and chronic exposure to air pollution:a cross-sectional analysis of NHANES Ⅱ[J]. Environ Res,1989,50(2):309-321.
    [25]Dockery DW, Speizer FE, Stram DO, et al. Effects of inhalable particles on respiratory health of children[J].Am Rev Respir Dis,1989,139(3):587-594.
    [26]Lester MR. Sulfite sensitivity:significance in human health[J]. J Am Coll Nutr, 1995,14:229-232.
    [27]Gong HJ, Linn WS, Terrel SL, et al. Anti-inflammatory and lung function effects of montelukast in asthmatic volunteers exposed to sulfur dioxide[J]. Chest,2001, 119(2):402-408.
    [28]Tunetoshi Y, Fukutomi K, Yoshida K, et al. Epidemiological study of respiratory symptoms in school children with special reference to effect of air pollution[J]. J Jpn Soc Air Pollut,1987,22:431-459.
    [29]Reist M, Jenner P, Halliwell B. Sulphite enhances peroxynitrite-dependent al-antiproteinase inactivation:A mechanism of lung injury by sulphur dioxide? [J]. FEBS Lett,1998,423:231-234.
    [30]Agar A, KucukatayV, Yargicoglu P, et al. The effect of sulfur dioxide inhalation on visual evoked potentials, antioxidant status, and lipid peroxidation in alloxaninduced diabetic rats[J]. Arch Environ Contam Toxicol,2000,39:257-264.
    [31]Lee J, Kim H, Song H, et al. Air pollution and asthma among children in Seoul, Korea[J]. Epidemiology,2002,13(4):481-484.
    [32]Lee W, Teschk K, Kauppinen T, et al. Mortality from lung cancer in workers exposed to sulfur dioxide in the pulp and paper industry[J]. Environ Health Perspect, 2002,110:991-995.
    [33]Ballester F, Saez M, Perez-Hoyos S, et al. The emecam project:a multicenter study on air pollution and mortality in Spain:combined results for particulates and for sulfur dioxide[J]. Occup Environ Med,2002,59(5):300-308.
    [34]Bernstein JA, Alexis N, Barnes C, et al. Health effects of air pollution[J]. J Allergy Clin Immunol,2004,114:1116-1123.
    [35]陈小琳,洪传洁,陶旭光.大气二氧化硫污染对妇女和儿童肺功能的影响[J].环境与健康杂志,1993,10(4):152-155.
    [36]陈小琳,洪传洁,陶旭光等.上海市大气二氧化硫污染与常见呼吸道症状的关系[J].中国公共卫生学报,1993,12(1):1-3.
    [37]江耀安.大气中二氧化硫含量与人群肺功能关系[J].环境与健康杂志,1998,5(3):36-38.
    [38]王慧文,潘秀丹.沈阳市大气二氧化硫污染对呼吸系统疾病死亡率的影响[J].环境与健康杂志,2007,24(10):762-765.
    [39]Ippoliti D, Forastiere F, Ancona C, et al. Air pollution and myocardial infarction in Rome:a case crossover analysis[J]. Epidemiology,2003,14(5):528-535.
    [40]Rich DQ, Schwartz J, Mittleman MA, et al. Association of short term ambient air pollution concentrations and ventricular arrhythmias [J]. Am J Ep idemiol,2005, 161(12):1123-1132.
    [41]Park SK, O'Neill MS, Vokonas PS, et al. Effects of air pollution on heart rate variability:the VA normative aging study[J]. Environ Health Perspect,2005,113(3): 304-309.
    [42]Sunyer J, Ballester F, Tertre AL, et al. The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe(The Aphea-Ⅱ study)[J]. Eur Heart J,2003,24:752-760.
    [43]Venners SA,Wang B, Peng Z, et al. Particulate matter, sulfur dioxide and daily mortality in Chongqing China[J]. Environ Health Perspect,2003,111:562-567.
    [44]Fung KY, Luginaah Ⅰ, Gorey KM, et al. Air pollution and daily hospital admissions for cardiovascular diseases in Windsor, Ontario[J]. Can J Public Health.2005,96(1): 29-33.
    [45]Routledge HC, Manney S, Harrison RM, et al. Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects[J]. Heart,2006,92(2):220-227.
    [46]徐肇栩,刘允清,俞大乾等.沈阳市大气污染对死亡率的影响[J].中国公共卫生学报,1996,15(1):61-64.
    [47]杨敏娟,潘小川.北京市大气污染与居民心脑血管疾病死亡的时间序列分析[J].环境与健康杂志,2008,25(4):294-297.
    [48]Meng ZQ. Oxidative damage of sulfur dioxide on various organs of mice:sulfur dioxide is a systemic oxidative damage agent[J]. Inhal Toxicol,2003,15:181-195.
    [49]孟紫强.氧化应激效应与二氧化硫全身性毒作用研究[J],中国公共卫生,2003,19(12):1422-1424.
    [50]Meng ZQ, Qin GH, Zhang B. DNA damage in mice treated with sulfur dioxide by inhalation[J]. Environ Mol Mutagen,2005,46:150-155.
    [51]Meng Z, Liu Y. Cell morphological ultranstructural changes in various organs from mice exposed by inhalation to sulfur dioxide[J]. Inhal Toxicol,2007,19:543-551.
    [52]Rabinovitch S, Greyson ND, Weiser W, et al. Clinical and laboratory features of acute sulfur dioxide inhalation poisoning:Two-year follow-up[J]. Am Rev Respir Dis,1989,139(2):556-558.
    [53]Martin B. Outdoor air pollution, low birth weight, and prematurity[J]. Environ Health Perspect,2000,108(2):173-176.
    [54]Ha E, Hong Y, Lee B, et al. Is air pollution a risk factor for low birth weight in Seoul?[J]. Epidemiology,2001,12(6):643-648.
    [55]Lee B, Ha E, Park HS, et al. Exposure to air pollution during different gestational phases contributes to risks of low birth weight[J]. Human Reproduction,2003,18(3): 638-643.
    [56]Ricciardi C, Guastadisegni C. Environmental inequities and low birth weight[J]. Ann 1st Super Sanita,2003,39:229-234.
    [57]Xu X, Ding H, Wang X. Acute effects of total suspended particles and sulfur dioxides on preterm delivery:a community-based cohort study[J]. Arch Environ Health,1995,50(6):407-415.
    [58]Nyberg F, Gustavsson P, Jarup L. Urban air pollution and lung cancer in Stockholm[J]. Epidemiology,2000,11(5):487-495.
    [59]Andersson E, Nilsson T, Prsson B. Mortality from asthma and cancer among sulfite mill workers[J]. Scand J Work Environ Health,1998,24(1):12-17.
    [60]Band PR, Len D, Fang R, et al. Cohort mortality study of pump and paper mill workers in British Columbia, Canada[J]. Am J Epidemiol,1997,146:186-194.
    [61]Selp HM, Agard P, Angell V, et al. Acidification in China:Assessment based on studies at formated from Chongqing to Guangzhou[J]. Ambi,1999,28(6):522-528.
    [62]孟紫强.环境毒理学基础[M].北京,高等教育出版社,2003,162-163.
    [63]孟紫强,张连珍.硫酸厂工人外周血淋巴细胞微核率的研究[J].环境科学学报,1989,9(1):125-128.
    [64]孟紫强,张连珍,张珂.硫酸厂工人外周血淋巴细胞染色体畸变的研究[J].中国环境科学(学报),1990,1 0(5):360-363.
    [65]孟紫强,张波.二氧化硫吸入诱发小鼠骨髓细胞染色体畸变的效应[J].中华预防医学杂志,2002,36(4):229-231.
    [66]孟紫强,阮爱东,桑楠等.二氧化硫污染对小鼠骨髓细胞微核的诱发作用[J].环境科学,2002,23(4):123-125.
    [67]孟紫强,阮爱东,张波等.二氧化硫对小鼠骨髓细胞微核的诱发及沙棘油的防护作用[J].山西大学学报(自然科学版),2002,25(2):168-172.
    [68]武冬梅,孟紫强,耿红等.二氧化硫吸入对小鼠谷胱甘肽氧化还原系统的影响[J].应用与环境生物学报,2003,9(2):163-166.
    [69]孟紫强,张连珍.亚硫酸氢钠(二氧化硫)对人血淋巴细胞染色体畸变,姊妹染色单体互换及微核的诱发效应[J].遗传学报,1994,21(1):1-6.
    [70]孟紫强,桑楠,张波.二氧化硫体内衍生物诱发CHL细胞染色体畸变的效应[J].中国环境科学,2000,20(1):8-12.
    [71]孟紫强,张波.二氧化硫吸入对大鼠血红细胞的氧化损伤作用[J].环境与健康杂志,2001,18(5):262-264.
    [72]孟紫强,桑楠,张波等.二氧化硫体内衍生物诱发中国仓鼠肺细胞微核的效应[J].环境与健康杂志,2001,18(1):7-10.
    [73]Meng ZQ, Zhang LZ. Chromosomal aberrations and sister-chromatid exchanges of lymphocytes of workers exposed to sulphur dioxide[J]. Mutation Research,1990, 241:15-20.
    [74]Meng ZQ, Zhang LZ. Observation of frequecies of lymphocytes with micronuclei in human peripheral blood cultures from workers in a sulphuric acid factory[J]. Environmental and Molecular Mutagenesis,1990,15:218-220.
    [75]仪慧兰,孟紫强,杜建红.亚硫酸氢钠对大蒜有丝分裂周期的影响[J].山西大学学报,2001,24(3):262-264.
    [76]孟紫强,秦国华,白巨利等.二氧化硫对大鼠肺基因组表达谱的影响一环境表达不稳定基因组存在的证据[J].山西大学学报,2006,29(3):225-236.
    [77]Meng Z, Geng H, Bai J, et al. Blood pressure of rats lowered by sulfur dioxide and its derivatives[J]. Inhal Toxicol,2003,15(9):951-959.
    [78]Zhang Q, Meng Z. The vasodilator mechanism of sulfur dioxide on isolated aortic rings of rats:Involvement of the K+ and Ca2+ channels[J]. Eur J Pharmacol,2009, 602(1):117-123.
    [79]刘晓莉,杨东升,孟紫强.二氧化硫对大鼠海马神经元电活动和学习记忆能力的影响[J].卫生研究,2010,37(6):660-664.
    [80]Meng Z, Bai W. Oxidation damage of sulfur dioxide on testicles of mice[J]. Environ Res,2004,96:298-304.
    [81]王慧阳,孟紫强,常凤滨.二氧化硫体内衍生物对雄性小鼠精子的毒性效应[J].应用与环境生物学报,2006,12(3):363-366.
    [82]常凤滨,孟紫强,王慧阳.二氧化硫体内衍生物对小鼠的显性致死作用[J].应用与环境生物学报,2006,12(3):360-362.
    [83]Singer TP, Kearney EB. Intermediary metabolism of Lcysteinesulfinic acid in animal tissues[J]. Arch Biochem Biophys,1956,61(2):397-409.
    [84]Shih VE, Abrons IF, Johnson JL, et al. Sulfite oxidase deficiency:biochemical and clinical investigations of a hereditary hereditary metabolic disorder in sulfur metabolism[J]. N Engl J Med,1977,297(19):1022-1028.
    [85]Yang Z, deVeer MJ, Gardiner EE, et al. Rabbit polymorphonuclear neutrophils form 35S-labeled S-sulfo-calgranulin C when incubated with inorganic [35S] sulfate[J]. J Biol Chem,1996,271(33):19802-19809.
    [86]Ji AJ, Savon SR, Jacobsen DW. Determination of total serum sulfite by HPLC with fluorescence detection[J]. Clin Chem,1995,41(6 pt 1):897-903.
    [87]Ubuka T, Yuasa S, Ohta J, et al. Formation of sulfate from Z-cysteine in rat liver mitochondria[J]. Acta Med Okayama,1990,44(2):55-64.
    [88]Mitsuhashi H, Nojima Y, Tanaka T, et al. Sulfite is released by human neutrophils in response to stimulation with lipopolysaccharide[J]. J Leukocyte Biol,1998,64(5): 595-599.
    [89]Balazy M, Abu-Yousef IA, Harpp DN, et al. Identification of carbonyl sulfide and sulfur dioxide in porcine coronary artery by gas chromatography/mass spectrometry, possible relevance to EDHF[J]. Biochem Biophy Res Commun,2003,311(3): 728-734.
    [90]Meng Z, Li J, Zhang Q, et al. Vasodilator effect of gaseous sulfur dioxide and regulation of its level by ACh in rat vascular tissues[J]. Inhal Toxicol,2009,21(14): 1223-1228.
    [91]孟紫强,桑楠.二氧化硫代谢衍生物对大鼠海马CAI区神经元钠电流的影响[J].生理学报,2002,54(3):267-270.
    [92]Meng Z, Nie A. Enhancement of sodium metabisulfile on sodium current in acutely isolated rat hippocampal CAI neurons[J]. Environ Toxicol Pharmacol,2005,20(1): 35-41.
    [93]魏彩玲,孟紫强.焦亚硫酸钠对大鼠背根节神经元L-型钙电流的影响[J].环境科学学报,2010,30(6):1250-1256.
    [94]Du Z, Meng Z. Modulation of sodium current in rat dorsal root ganglion neurons by sulfur dioxide derivatives[J]. Brain Res,2004,1010(1-2):127-133.
    [95]Nie A, Meng Z. Sulfur dioxide derivatives modulate Na/Ca exchange currents and cytosolic [Ca2+] in rat myocytes[J], Biochem Biophys Res Commun,2007,358(3): 879-884.
    [96]Du Z, Meng Z. Sulfur dioxide derivatives modulation of high-threshold calcium currents in rat dorsal root ganglion neurons[J]. Neurosci Lett,2006,405(1-2): 147-152.
    [97]Nie A, Meng Z. Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes[J]. Arch Biochem Biophys,2005,442(2):187-195.
    [98]Nie A, Meng Z. Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives[J]. Food Chem Toxicol,2006,44(3):355-363.
    [99]Du Z, Meng Z. Effects of derivatives of sulfur dioxide on transient outward potassium currents in acutely isolated rat hippocampal neurons[J]. Food Chem Toxicol,2004,42(8):1211-1216.
    [100]Meng Z, Nie A. Effects of sodium metabisulfite on potassium currents in acutely isolated CAI pyramidal neurons of rat hippocampus[J]. Food Chem Toxicol,2005, 43(2):225-232.
    [101]Kaye AD, De Witt BJ, Anwar M, et al. Analysis of responses of garlic derivatives in the pulmonary vascular bed of the rat[J]. J Appl Physiol,2000,89(1):353-358.
    [102]孟紫强,张海飞.二氧化硫衍生物对大鼠离体主动脉环收缩影响[J].中国公共卫生,2005,21(12):1412-1414.
    [103]孟紫强,张海飞.二氧化硫衍生物对大鼠离体主动脉血管环的舒张作用[J].应用与环境生物学报,2005,11(1):64-66.
    [104]Meng Z, Li Y, Li J. Vasodilatation of sulfur dioxide derivatives and signal transduction[J]. Arch Biochem Biophys,2007,467(2):291-296.
    [105]Meng Z, Zhang L. Cytogenetic damage induced in human lymphocytes by sodium bisulfate[J]. Mutat Res,1992,298(2):63-69.
    [106]孟紫强,郭掌珍.二氧化硫在水和有机溶剂中的化学形态及其脂/水分配系数:二氧化硫生理学研究新模式[J].生态毒理学报,2009,4(1):75-80.
    [107]Li J, Meng Z. The role of sulfur dioxide as an endogenous gaseous vasoactive factor in synergy with nitric oxide [J]. Nitric Oxide,2009,20(3):166-174.
    [108]Li J, Li R, Meng Z. Sulfur dioxide upregulates the aortic nitric oxide pathway in rats[J]. Eur J Pharmacol,2010,645(1-3):143-150.
    [109]李君灵,孟紫强.内源性气态SO2对血管的舒张作用及其机制III:信号转导途径[J].生态毒理学报,2009,4(3):366-372.
    [110]Noma A. ATP-regulated channels in cardiac moscytes[J]. Nature,1983,305(5930): 147-148.
    [111]Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle[J]. Physiol Rev,1997,77(4):1165-1232.
    [112]Ashcroft F M, Gribble F M. Correlating structure and function in ATP-sensitive K+ channels[J]. Trends Neurosci,1998,21(7):288-294.
    [113]Seino S. ATP-sensitive potassium channels:a model of heteromultimeric potassium channel/receptor assemblies[J]. Annu Rev Physiol,1999,61(1):337-362.
    [114]Shi WW, Yang Y, Shi Y, et al. KATP channel action in vascular tone regulation:from genetics to diseases[J]. Acta Physiologica Sinica,2012,64(1):1-13.
    [115]Duncker DJ, Oei HH, Hu F, et al. Role of K(ATP) channels in regulation of systemic, pulmonary, and coronary vasomotor tone in exercising swine[J]. Am J Physiol Heart Circ Physiol,2001,280(1):H22-33.
    [116]Brayden JE. Functional roles of KATP channels in vascularsmooth muscle[J]. Clin Exp Pharmacol Physiol,2002,29(4):312-316.
    [117]Chatterjee S, Al-Mehdi AB, Levitan I, et al. Shear stressincreases expression of a KATP channel in rat and bovine pulmonary vascular endothelial cells[J]. Am J Physiol Cell Physiol,2003,285(4):C959-967.
    [118]Quayle JM, Nelson MJ, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle[J]. Physiol Rev,1997,77:1165-1232.
    [119]Daut J, Maier-Rudolph W, von Beckerath N, et al. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels[J]. Science,1990,247: 1341-1344.
    [120]Duncker DJ, Van Zon NS, Altman JD, et al. Role of K+ATP channels in coronary vasodilation during exercise[J]. Circulation,1993,88:1245-1253.
    [121]Katsuda Y, Egashira K, Ueno H, et al. Glibenclamide, a selective inhibitor of ATP-sensitive K+ channels, attenuates metabolic coronary vasodilatation induced by pacing tachycardia in dogs[J]. Circulation,1995,92:511-517.
    [122]Ishibashi Y, Duncker DJ, Zhang J, et al. ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise[J]. Circ Res,1998,82:346-359.
    [123]Farouque HMO, Worthley SG, Meredith IT, et al. Effect of ATP-sensitive potassium channel inhibition on resting coronary vascular responses in humans [J]. Circ Res,2002,90:231-236.
    [124]Farouque HMO, Worthley SG, Meredith IT. Effect of ATP-sensitive potassium channel inhibition on coronary metabolic vasodilation in humans[J]. Arterioscler Thromb Vase Biol,2004,24:905-910.
    [125]Haissaguerre M, Chatel S, Sacher F, et al. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/K ATP channel[J]. J Cardiovasc Electrophysiol,2009,20(1):93-98.
    [126]Medeiros-Domingo A, Tan BH, Crotti L, et al. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac K ATP channel Kir6.1 as a pathogenic substrate for Jwave syndromes[J]. Heart Rhythm,2010,7(10):1466-1471.
    [127]Tester DJ, Tan BH, Medeiros-Domingo A, et al. Loss-of-function mutations in the KC-NJ8-encoded Kir6.1 KATP channel and sudden infant death syndrome[J]. Circ Cardiovasc Genet,2011,4(5):510-515.
    [128]Hirst GD, Edwards FR. Sympathetic neuroeffector transmission in arteries and arterioles[J]. Physiol Rev,1989,69(2):546-604.
    [129]Von Beckerath N, Cyrys S, Dischner A, et al. Hypoxic vasodilatation in isolated, perfused guinea-pig heart:An analysis of the underlying mechanisms [J]. J Physiol, 1991,442:297-319.
    [130]Eckman DM, Frankovich JD, Keef KD. Comparison of the actions of acetylcholine and BRL 38227 in the guinea-pig coronary artery[J]. Br J Pharmacol,1992,106(1): 9-16.
    [131]Kanatsuka H, Sekiguchi N, Sato K, et al. Micro vascular sites and mechanisms responsible for reactive hyperemia in the coronary circulation of the beating canine heart[J]. Circ Res,1992,71(4):912-922.
    [132]Sargent CA, Grover GJ, Antonaccio MJ, et al. The cardioprotective, vasorelaxant and electrophysiological profile of the large conductance calcium-activated potassium channel opener NS-004[J]. J Pharmacol Exp Ther,1993,266(3):1422-1429.
    [133]Ghatta S, Nimmagadda D, Xu XP, et al. Large-conductance, calcium-activated potassium channels:structural and functional implications [J]. Pharmacol Ther,2006, 110(1):103-116.
    [134]Meera P, Wallner M, Jiang Z, et al. A calcium switch for the functional coupling between α and β subunits (Kv,Cap) of maxi K channels[J]. FEBS Lett,1996,385: 127-128.
    [135]Zeng XH, Benzinger GR, Xia XM, et al. BK Channels with β3a subunits generate Use-Dependent slow after hyperpolarizing Currents by an inactivation-coupled mechanism[J]. Neuroscience,2007,27(17):4707-4715.
    [136]Orio P, Lattore R. Differential effects of β1 and β2 subunits on BK channel activity[J]. J Gen Physiol,2005,125(4):395-411.
    [137]Wallner M, Meera P, Toro L. Determinant for subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels:An additional trans-membrane region at the N-terminus[J]. Proc Natl Acad Sci USA,1996,93(25): 14922-14927.
    [138]Giraldez T, Hughes TE, Sigworth FJ. Generation of functionalfluorescent BK channels by random insertion of GFP variants[J]. J Gen Physiol,2005,126(5): 429-438.
    [139]Meara P, Wallner M, Song M, et al. Large conductance voltage and calcium-dependent K channels, a distinct member of voltage-dependent ion channels with seven N-termina I trans-membrane (S0-S6), an extracellular N terminus, and an intracellular (S9-S10)C terminus[J]. Proc Natl Acad Sci USA,1997,94(25): 14066-14071.
    [140]Knot HJ, Standen NB, Nelson MT. Ryanodine receptors regulate arterial diameter and wall [Ca2+] incerebral arteries of rat via Ca2+ dependent K+ channels [J]. J Physiol, 1998,508:211-221.
    [141]Jan LY, Jan YN. Cloned potassium channels from eukaryotes and prokaryotes[J]. Annu Rev Neurosci,1997,20:91-123.
    [142]Latorre R, Brauchi S. Large conductance Ca2+-activated K+(BK) channel: Activation by Ca2+ and voltage[J]. Biol Res,2006,39:385-401.
    [143]Wellman GC, Bonev AD, Nelson MT, et al. Gender differences in coronary artery diameter involve estrogen, nitric oxide and Ca2+ dependent K+ channels [J]. Circ Res, 1996,79:1024-1030.
    [144]Orio P, Rojas P, Ferreira G, et al. New disguises for an old channel:MaxiK channel beta-subunits[J]. News Physiol Sci,2002,17:156-161.
    [145]Brenner R, Jegla TJ, Wickenden A, et al. Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4[J]. J Biol Chem,2000,275(9):6453-6461.
    [146]Brenner R, Perez GJ, Bonev AD, et al. Vasoregulation by the (31 subunit of the calcium activated potassium channel[J]. Nature,2000,407(6806):870-876.
    [147]Yang Y, Murphy TV, Ella SR, et al. Heterogeneity in function of small artery smooth muscle BKca:involvement of the β1-subunit[J]. J Physiol,2009,587(12): 3025-3044.
    [148]Carrier GO, Leslie CF, White RE, et al. Nitrovasodilators relax mesenteric micro vessels by cGMP-induced stimulation of Ca2+ -activated K+ channels [J]. Am J Physiol,1997,273(1):76-84.
    [149]Li S, Deng Z, Wei L, et al. Reduction of large-conductance Ca2+ -activated K+ channel with compensatory increase of nitric oxide in insulin resistant rats[J]. Diabetes Metab Res Rev,2011,27(5):461-469.
    [150]Schubert R, Engel H, Hopp HH, et al. Iloprost activates Kca channels of vascular smooth muscle cells:role of cAMP-dependent protein kinase[J]. Am J Physiol,1996, 271(4):1203-1211.
    [151]Schubert R, Serebryakov VN, Mewes H, et al. Iloprost dilates rat small arteries:role of KATP and Kca channel activation by cAMP-dependent protein kinase[J]. Am J Physiol,1997,272(3):1147-1156.
    [152]Campbell WB, Pratt PF, Harder DR, et al. Identification of epoxyeicosatrienoic acids as endothelium derived hyperpolarizing factors[J]. Circ Res,1996,78(3): 415-423.
    [153]Kohler M, Hirschberg B, Bond CT, et al. Small conductance, calcium activated potassium channels from mammalian brain[J]. Science,1996,273(5282):1709-1714.
    [154]Stocker M. Ca2+ activated K+ channels:molecular determinants and function of the SK family[J]. Nat Rev Neurosci,2004,5(10):758-770.
    [155]Blatz AL, Magleby KL. Single apamin blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle[J]. Nature,1986,323(6090):718-720.
    [156]Giles WR, Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular cells[J]. J Physiol,1988,405:123-145.
    [157]Liu X, Herbison AE. Small-conductance calcium-activated potassium channels control excitability and firing dynamics in gonadotropin-releasing hormone (GnRH) neuronsJuly[J]. Endocrinology,2008,149(7):3598-3604.
    [158]Faber ES, Delane AJ, PowerJM, et.al. Modulation of SK channel trafficking by beta adrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala[J]. Neurosci,2008,28(43):10803-10813.
    [159]张薇薇,杨新春,刘泰.小电导钙激活钾通道分子结构及其电生理特性[J].中国心脏起搏与心电生理杂志,2007,21(1):75-78.
    [160]Xu Y, Tuteja D, Zhang Z, et al. Molecular identification and functional roles of a Ca2+ activated K+ channel in human and mouse hearts[J]. J Biol Chem,2003,278(49): 49085-49094.
    [161]Tuteja D, Xu D, Timofeyev V, et al. Differential expression of small-conductance Ca2+ activated K+ channels SKI, SK2, and SK3 in mouse atrial and ventricular myocytes[J]. Am J Physiol Heart Circ Physiol,2005,289(6):H2714-2723.
    [162]Kohler M, Hirschberg B, Bond CT, et al. Small conductance, calcium activated potassium channels from mammalian brain[J]. Science,1996,273(5282):1709-1714.
    [163]Xia XM, Fakler B, Rivard A, et al. Mechanism of calcium gating in small conductance calcium activated potassium channels[J]. Nature,1998,395(6701): 503-507.
    [164]Hirschberg B, Maylie J, Adelman JP, et al. Gating of recombinant small conductance Ca2+ activated K+ channels by calcium[J]. J Gen Physiol,1998,111(4): 565-581
    [165]Romey G, Hugues M, Schmid-Antomarchi H, et al. Apamin:a specific toxin to study a class of Ca2+ dependent K+ channels[J]. J Physiol,1984,79(4):259-264.
    [166]Moczydlowski E, Lucchesi K, Ravindran A. An emerging pharm acology of peptide toxins targeted against potassium channels[J]. J Membr Biol,1988,105 (2):95-111
    [167]JagerH, Adelman JP, Grissmer S. SK2 encodes the apamin sensitive Ca2+activated K+ channels in the human leukemic T cell line, jurkat[J]. FEBS Lett,2000,469 (2-3): 196-202.
    [168]Bildl W, Strassmaier T, Thurm H, et al. Protein kinase CK2 is coassembled with small conductance Ca2+ -activated K+ channels and regulates channel gating[J]. Neuron,2004,43(6):847-858.
    [169]Schumacher MA, Rivard AF, Bachinger HP, et al. Structure of the gating domain of a Ca2+ activated K+ channel complexed with Ca2+/calmodulin[J]. Nature,2001,410 (6832):1120-1124.
    [170]Shapiro R. Genetic effects of bisulfite (sulfur dioxide)[J]. Mutat Res,1977,39: 149-175.
    [171]Meng ZQ, Zhang H. The vasodilator effect and its mechanism of sulfur dioxide-derivatives on isolated aortic rings of rats [J]. mhal Toxicol,2007,19: 979-986.
    [172]Falk M, Giguere PA. On the nature of sulphurous acid[J]. Can J Chem,1958,36: 1121-1124.
    [173]Rosinkin A. General and Inorganic Chemistry (2nd edition)[M]. Moscow:MIR Publishers,1983:332-335.
    [174]Zlotnick S, Satloff J. Chemistry:Structure and Dynamics[M]. New York: McGraw-Hill Book Company.1984:666.
    [175]魏合理,龚知本,马志军等.污染气体和紫外和可见光谱吸收截面测量[J].量子电子学报,2001,18(1):16-19.
    [176]Rencuzogullari E, Ila H B, Kayraldiz A, et al. Chromosome aberrations and sister chromatid exchanges in cultured human lymphocytes treated with sodium metabisulfite, a food preservative[J]. Mutat Res,2001,490(2):107-112.
    [177]孟紫强主编.二氧化硫生物学:毒理学、生理学、病理生理学[M].北京:科学出版社,2012:42-53.
    [178]Meng Z, Yang Z, Li J, et al. The vasorelaxant effect and its mechanisms of sodium bisulfite as a sulfur dioxide donor[J]. Chemosphere,2012,89:579-584.
    [179]Griffith OW. Cysteinesulfinate metabolism, altered partitioning between transamination and decarboxylation following administration of β-methyleneaspartate[J]. J Biol Chem,1983,258:1591-1598.
    [180]Ali MY, Ping CY, Mok YY, et al. Regulation of vascular nitric oxide in vitro and in vivo:a new role for endogenous hydrogen sulphide? Br J Pharmacol,2006,149: 625-634.
    [181]Furchgott RF, Zaqadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine[J]. Nature,1980,288(5789): 373-376.
    [182]Furfine ES, Harmon MF, Paith JE, et al. Selective inhibition of constitutive nitric oxide synthase by L-NG-nitroarginine[J]. Biochemistry,1993,32:8512-8517.
    [183]Olesen SP, Drejer J, Axelsson O, et al. Characterization of NS-2028 as a specific inhibitor of soluble guanylyl cyclase[J]. Br J Pharmacol,1998,123:299-309.
    [184]Rodriguez-Martinez MA, Garcia-Cohen EC, Baena AB, et al. Contractile responses elicited by hydrogen peroxide in aorta from normotensive and hypertensive rats. Endothelial modulation and mechanism involved[J]. Br J Pharmacol,1998,125: 1329-1335.
    [185]Hattori Y, Kawasaki H, Fukao M, et al. Phorbol esters elicit Ca2+-dependent delayed contractions in diabetic rat aorta[J]. Eur J Pharmacol,1995,279:51-58.
    [186]Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle[J]. Am J Physiol Cell Physiol,1995,268:C799-C822.
    [187]Remillard CV, Leblanc N. Mechanism of inhibition of delayed rectifier K+ current by 4-aminopyridine in rabbit coronary myocytes[J]. J Physiol,1996,491:383-400.
    [188]Satake N, Shibata M, Shibata S. The inhibitory effect of iberiotoxin and 4-aminopyridine on the relaxation induced by β1-and β2-adrenoceptor activation in rat aortic rings[J]. Br J Pharmacol,1996,119:505-510.
    [189]Balazy M, Abu-Yousef IA, Harpp DN, et al. Identification of carbonyl sulfide and sulfur dioxide in porcine coronary artery by gas chromatography/mass spectrometry, possible relevance to EDHF[J]. Biochem Biophys Res Commun,2003,311: 728-734.
    [190]Beech DJ, Zhang H, Nakao K, et al. K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells[J], Br J Pharmacol,1993,110:573-582.
    [191]Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener[J]. EMBO J,2001,20:6008-6016.
    [192]Leung HS, Seto SW, Kwan YW, et al. Endothelium-independent relaxation to raloxifene in porcine coronary artery[J]. Eur J Pharmacol,2007,555:178-184.
    [193]Weiss JN. The Hill equation revisited:uses and misuses[J]. FASEB J,1997,11: 835-841.
    [194]Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine[J]. Nature,1980,288: 373-376.
    [195]Olson LJ, Knych Jr ET, Herzig TC, et al. Selective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation[J]. Hypertension,1997,29:254-261.
    [196]Jamieson DM, Guill MF, Wray BB, et al. Metabisulfite sensitivity:case report and literature review[J]. Ann Allergy,1985,54:115-121.
    [197]Elmas O, Aslan M, Caglar S, et al. The prooxidant effect of sodium metabisulfite in rat liver and kidney[J]. Regul Toxicol Pharmacol,2005,42:77-82.
    [198]Lavoie JC, Lachance C, Chessex P. Antiperoxide activity of sodium metabisulfite: A double-edged sword[J]. Biochem Pharmacol,1994,47:871-876.
    [199]Sun J, Sakamoto T, Chung KF. Effects of sodium metabisulphite on guinea pig contractile airway smooth muscle responses in vitro[J]. Thorax,1995,50:875-879.
    [200]Rencuzogullari E, Ila HB, Kayraldiz A, et al. Chromosome aberrations and sister chromatid exchanges in cultured human lymphocytes treated with sodium metabisulfite, a food preservative[J]. Mutat Res,2001,490:107-112.
    [201]Gunnison AF, Jacobsen DW. Sulfite hypersensitivity. A critical review[J]. CRC Crit Rev Toxicol,1987,17:185-214.
    [202]孟紫强,白巨利,耿红等.二氧化硫吸入对大鼠血压的影响[J].环境与健康 杂志,2003,20:207-209.
    [203]Broekaert A, Godfraind T. A comparison of the inhibitory effect of cinnarizine and papaverine on the noradrenaline and calcium-evoked constraction of isolated rabbit aorta and mesenteric arteries[J]. Eur J Pharmacol,1979,53:281-288.
    [204]Cauvin C, Loutzenhiser R, Van Breemen C. Mechanism of calcium antagonist-induced vasodilation[J]. Annu Rev Pharmacol Toxicol,1983,23: 373-396.
    [205]Kruse HJ, Bauriedel G, Heimerl J, et al. Role of L-type calcium channels on stimulated calcium influx and on proliferative activity of human coronary smooth muscle cells[J]. J Cardiovasc Pharmacol,1994,24:328-335.
    [206]Lands AM, Arnold A, Mcauliff JP, et al. Differentiation of receptor systems activated by sympathomimetic amines[J]. Nature,1967,214:597-598.
    [207]Black JW, Duncanw AM, Shanks RG Comparison of some properties of pronethalol and propranolol[J]. Br J Pharmacol,1965,25:577-591.
    [208]Farouque HM, Worthley SG, Meredith IT. Effect of ATP-sensitive potassium channel inhibition on coronary metabolic vasodilation in humans[J]. Arterioscler Thromb Vase Biol,2004,24:905-910.
    [209]Waldman SA, Murad F. Cyclic GMP synthesis and function[J]. Pharmacol Rev 1987,39:163-196.
    [210]Moro MA, Russel RJ, Cellek S, et al. cGMP mediates the vascular and platelet actions of nitric oxide:confirmation using an inhibitor of the soluble guanylyl cyclase[J]. Proc Natl Acad Sci USA,1996,93:1480-1485.
    [211]Arnold WP, Mittal CK, Katsuki S, et al. Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations[J]. Proc Natl Acad Sci USA,1977,74:3203-3207.
    [212]Schmidt HH, Lohmann SM, Walter U. The nitric oxide and cGMP signal transduction system:regulation and mechanism of action[J]. Biochim Biophys Acta, 1993,1178:153-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700