用户名: 密码: 验证码:
水沙分离方法及其对黄河小浪底下游减淤作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河是世界罕有的多沙性河流,其泥沙问题的复杂性和处理难度亦堪称世界之最,长期以来,下游河道淤积严重。传统黄河下游减淤模式主要为基于对沙源的控制提出的水土保持系列工程和基于水动力学条件的控制而提出的水沙调度工程。但由于自然和社会条件的限制,均无法达到对泥沙的大规模最终治理和处置。本文分析了水沙运动的边界条件,并结合黄河下游水流高含沙性和泥沙细颗粒性特点,探讨了并验证了小浪底水沙分离减淤模式的重点理论问题,即高含沙水细颗粒泥沙的絮凝沉降问题。并在此基础上,利用一维非恒定流数学模型,探讨了水沙分离模式下小浪底下游河道的泥沙冲淤响应。主要内容包括以下几个方面:
     (1)阐述了黄河下游减淤问题的研究背景及研究意义,总结了已有减淤方式的研究进展以及局限性。基于水沙边界的分析提出了水沙分离模式在黄河上的应用。阐述了本文的研究内容和所采用的研究方法。
     (2)通过研究黄河下游水流含沙量和泥沙粒径组成,分析调水调沙前后的泥沙粒径变化,重点研究了黄河下游泥沙细颗粒特性和水流高含沙特性。分析了细颗粒泥沙絮凝形成条件,影响泥沙絮凝碰撞的作用,以及影响絮凝的内外界因素。对细颗粒泥沙的絮凝沉降三种主要方式单颗粒沉降,颗粒絮凝,絮团沉降做出力学阐述。在此基础上,分析了黄河高含沙水颗粒间的絮凝类别,以及含沙量对泥沙絮凝生长过程的影响。分别阐述了细泥沙颗粒在低、高含沙量下的四个沉降阶段,絮凝沉降段,制约群体沉降段,絮网及超絮网沉降段和固结压缩沉降段的沉降过程。为高含沙水中细颗粒泥沙絮凝沉降公式的推导提供理论依据
     (3)利用胶体理论,分析各已有模型,从电化学的角度初步解释了黄河泥沙絮团的稳定原理。结合DLVO理论,双电子层压缩机理,吸附电中和机理,吸附架桥机理和胶体的网捕机理解释了黄河细颗粒泥沙的絮凝生长过程。从力学的角度,分析了布朗运动,重力系作用力,水流剪切力对细颗粒泥沙运动的影响。结合分形生长理论,介绍了泥沙分形动力学发展。在此基础上,考虑到已有泥沙分形维度计算方法主要基于二维和均匀沙颗粒,提出三种实用于三维空间和非均匀沙的分形维度计算方法,即密度相关函数法(三维),球体的回转半径法,沉降法。通过研究重力,阻力,和浮力以及布朗运动对细颗粒泥沙运动的影响,推导了细颗粒泥沙和絮团的沉速公式。为泥沙颗粒的絮凝沉降模型的建立提供理论基础。分析比较高含沙量下各泥沙群体沉速公式实用性,选取在黄河上使用较为广泛的张洪武公式,为黄河下游一维非恒定流水沙模型的建立提供理论支持。
     (4)在泥沙分形理论基础上,通过分析和推导静水中黄河高含沙颗粒和絮团的受力特性,利用颗粒内部力和外部剪切力的平衡,分别推导出均匀沙和非均匀沙状态下,絮团处于稳定状态时的粒径-极限粒径,并以此为基础,解释了高含沙水清浑界面的形成原因,推导了清浑界面的初始段的沉速,结合费翔俊,Kynch, Roberts, Yoshioka, Toty and Shannon等人的研究成果,计算了直线段,过渡段和压缩段清浑界面的沉降速度。
     (5)利用有限扩散单体絮凝模型,采用Visual Fortran平台编制程序,研究了细颗粒泥沙生长为絮团的絮凝生长过程。考虑到黄河细颗粒泥沙的电化学作用,以郎之万动力学方程为基础,采用蒙特卡洛方法求解方程,结合黄河细颗粒泥沙的实际初边界条件,建立了静水动力学模型,模拟了絮团生长过程中的颗粒数,回旋半径,分形维度,絮团结构的变化过程。并比较带电荷和不带电荷两种情况下泥沙絮团的生长过程。有限扩散单体絮凝模型和动力学絮凝模型均采用三维模型,后处理采用适合三维CAD命令流的格式,使絮团结构和实际更为接近。以极限粒径理论为基础,结合黄河泥沙实际条件,建立了高含沙水流清浑界面的沉降模型,模拟了不同含沙量系列下清浑界面沉降过程。
     采用取自黄河花园口的淤泥样品,试验测量泥沙粒径组成,干密度,干容重,密度,容重以及清浑界面沉降等特性。分析调水调沙后黄河小浪底下游来水来沙情况,各断面泥沙组成,并对有限扩散絮凝模型,动力学絮凝模型和清浑分界面模型计算结果进行分析和验证,结果分析表明,计算值和实测值符合较好。
     (6)为研究水沙分离对黄河小浪底下游的影响,在剖析现有黄河下游一维水沙数学模型的基础上,分析黄河下游高含沙水和泥沙细粒径特性,引入考虑絮凝、高含沙水的泥沙颗粒沉速公式,群体沉速公式和水流挟沙力公式,构建了黄河下游一维非恒定水沙数学模型,模型能够较好的模拟泥沙交换过程,泥沙冲淤计算结果更趋合理。利用2006年黄河下游汛期调水调沙实测过程对模型进行率定,使其能够较好的适应黄河细颗粒和高含沙的实际情况。利用2007年调水调沙实测过程进行验证,结果表明,模型计算水流、含沙量传播过程和分河段冲淤都与实测值比较接近。
     参照2006年黄河小浪底下游来水来沙资料,分别拟定不同含沙量系列,不同粒径组成系列,不同絮凝情况系列下的水沙分离方案,利用一维非恒定流水沙模型,研究各因素对黄河下游减淤的影响。为黄河小浪底下游的水沙分离提供认识性依据。
     (7)总结和展望。对研究结果进行了总结分析,并提出了存在的问题及下一步的研究方向。
Yellow river is one of the river with highest sediment discharge. It also the complexity river in sediment controlling. The traditional sedimentation reduction model including two type. The first one is soil and water conservation project based on sediment source. The second one is water and sediment regulation engineering based on the hydrodynamic conditions. However, as the result of natural and social conditions limit, nether of the two models can achieve the massive sediment utilize. Our work analyse the boundary condition of water and sediment transport and the flow and sediment transport characteristic. We also analysed the key theory in water and sediment separation model. Based on that, we used the one-dimensional unsteady flow mathematical model discuss the effect of water and sediment separation model on the sediment erosion and siltation quality in the the lower reaches of the yellow river. The main contents of this paper are as follows:
     (1) The introduction expounds research background and significance of the the Yellow River sediment reduction, summarized limitations of existing deposition reduction models. The application of water and sand separation model in the Yellow River based on water and sediment boundary condition analysis. The research content and method has been introduced in this part.
     (2) Sediment concentration and sediment grain size are researched to compare the sediment particle diameter. In this work, we analysed of the flocculation conditions of fine sediment, sediment particle collision influence and the internal and external flocculation factors. Mechanics of the three flocculation and sedimentation ways, including single particle sedimentation, particle flocculation and floc sedimentation are expatiated. Four sediment stages of fine particle flocculation in low and high sediment concentration, including floc settlement period, control-group settlement period, flocculent net period and consolidation settlement period are research.
     (3) Yellow river sediment hydrodynamic properties in different sediment concentration are discussed. The existing colloidal models are used to preliminary interpretated floc stability mechanisation. The floc growth process of yellow river sediment is expounded with DLVO theory, compression mechanism of electric double layer, adsorption and charge neutralization mechanism, adsorption bridging mechanism, capture mechanism. From the mechanical hand, effects of Brown motion, Gravitational system forces, flow shear stress on the fine sediment were discussed.
     Combining with fractal growth theory, it introduced the sediment fractal dynamics. The existing fractal dimension calculation methods were all based on two dimensional and uniform sediment. Three calculation methods, density function method (3D), radius of sphere gyration method and sedimentation method, were used to calculate the floc fractal dimension. It deduced the sediment particle and floc settling velocity with consideration of gravity force, drag force, buoyancy force and Brown motion. The existing group settling velocity formulas were researched and the ZHANG Hongwu formula were chose to build the one-dimensional unsteady flow and sediment model.
     (4) Based on fractal theory, the particle and floc force characteristics were disccused. Using the balance of internal and external force, the limited diameter under uniform sediment and un-uniform sediment were calculated. With this, the reason for supernatant-sediment interface forming was expounded. With the force analysis, the supernatant-sediment interface settling velocity in initial section was calculated. Combining with the research of FEI Junxiang, Kynch, Roberts, Yoshioka, Toty and Shannon, the settling velocity in straight section, transition section and the compression section all have been calculated.
     (5) It is difficult to dynamical observe the fine particle growing to floc. With analysing the actual Yellow river situation, The diffusion limited flocculation model was built to simulate the floc growth process of uniform and non-uniform sediment. With consideration of particle surface electrochemical action, a simulation based on Brownian dynamic for perikinetic flocculation of fine sediment under the ionization is presented. The Langevin equation is used as dynamical equation for tracking each particle making up a floc. Monte Carlo method was used for simulate random variation in particle movement. It simulated the particle number, radius of gyration, fractal dimension.etc. The floc growth process with charged particle and uncharged particle were compared to analyse the effects of electricity on flocculation. From the mathematical view, it explained the reason that flocculants accelerate sediment flocculation. Based on limited diameter, the supernatant-sediment interface settling velocity was calculated in different sediment concentration.
     (6) The experimental samples in this work were taken from the Huayuankou of Yellow River. The sediment properties including sediment grain size, dry density, dry unit weight, density, bulk density and settling velocity were measured in experiments. It analyzed the incoming water and sediment data, sediment grain size of riverbed in the lower reaches of Xiaolangdi Dam. The model proposed in this work were verified using the previous data. The calculated values and experimental values were coincided well with each other.
     (7) To study the effects of water and sediment separation model on sediment lower reaches. Based on the existing one-dimensional mathematical model of the lower reaches of the Yellow River, a one-dimensional mathematical model for unsteady flow was introduced, which included the newest theory of particle settling velocity formula, group settling velocity formula and sediment-carrying capacity of flow formula. After the test for function and stability of each module, the date from2006Yellow River flood and sediment regulation were used to rating roughness coefficient and coefficient of sediment transport capacity. The date from2007Yellow River flood and sediment regulation were used to verify the model. The results show that the numerical diffusion process of water stream and sediment concentration are close to that of real value.
     According to the flow and sediment data of2006, some data series with different sediment concentration, different particle diameter distribution and different flocculation situation, were drawn up to study the effects of each factor on sedimentation reduction on the lower reaches of Xiaolangdi Dam using the previous one-dimensional mathematical model. This work could provide cognitive basis for the water and sediment separation in lower reaches of Xiaolangdi Dam.
     (8) Research result is summarized and the present unsolved questions as well as the future research were listed.
引文
[1]张洪武,潘贤娣,缪凤举等.黄河泥沙[M].郑州黄河水利出版社,1996.
    [2]熊应乾,杨作升,刘振夏.长江、黄河沉积物物源研究综述[J].海洋科学进展,2003,21(3):355-362.
    [3]姚文艺,时明立,崔长江.黄河泥沙问题研究综述[J].黄河水利职业技术学院学报,2004,16(1):1-10.
    [4]景可,李凤新.泥沙灾害类型及成因机制分析[J].泥沙研究,1999,2(1):12-16.
    [5]张兴昌,高照良,彭珂珊.中国特色的水土保持成就和治理措施[J].自然杂志,2008,1:17-38.
    [6]周月鲁.新时期黄河水土保持创新发展的探索与实践[J].中国水土保持,2006,10(295):5-8.
    [7]刘万栓.黄河流域的水土保持科学体系[J].人民黄河,1996,7(7):5-9.
    [8]李锐,杨文治,李壁成等.中国黄土高原研究与展望[M].北京:科学出版社,2008.
    [9]莫顺山.干旱浅山水保造林技术初探[J].青海科技研究与探讨,2010,6:38-39.
    [10]邬良兴,章亮.加速水保草业建设提高生态经济效益[J].江西水利科技,1994,1:21-24.
    [11]张胜利等.黄河中游水土保持减水减沙作用分析[R].黄河水利科学研究院研究报告(ZX-9908-18),1999.
    [12]Carter D.L.,Berg R.D.,李国强.灌区实施水保耕作的防蚀作用及效益[J].水土保持科技情报,1997,4:1-3.
    [13]杨慧玲.蒙阴县毛坪小流域生态修复示范工程生态效益监测与评价[D].山东农业大学,2010.
    [14]任文海.花岗岩红壤坡面工程措施的水土保持效应研究[D].华中农业大学,2012.
    [15]杨光琦.小流域防治体系中沟坡兼治的量化指标[J].中国水土保持,1999,12:44-45.
    [16]黎奕瑾,苏娟,张薇.荫子沟小流域监测实践[J].中国水土保持,2010,8:62-63.
    [17]韦宏晖.浅埋暗挖施工方法在电力沟道工程中的应用[J].技术与市场,2011,8:218-219.
    [18]杨广庆,杜学玲,周乔勇等.土工格栅加筋石灰土挡墙工程特性试验研究[J].岩土工程学报,2010,12:1904-1909.
    [19]林宇亮,杨果林,李昀等.绿色加筋格宾挡墙工程特性试验研究[J].岩土力学,2010,10:3113-3119.
    [20]张金良.黄河调水调沙实践[J].天津大学学报,2008,9(41):1046-1051.
    [21]韩其为.小浪底水库初期运用及黄河调水调沙研究[J].泥沙研究,2008,6(3):1-17.
    [22]齐璞,李世滢,刘月兰等.黄河水沙变化与下游河道减淤措施[M].郑州:黄河水利出版社,1997.
    [23]林秀芝,刘琦,曲少军.黄河下游引水引沙对河道冲淤调整影响分析[J].泥沙研究,2010,6:42-47.
    [24]曹志敏.试论清代“束水攻沙、蓄清敌黄”的治河方略及其影响[J].前沿,2011,2:170-173.
    [25]齐璞.论调水调沙与束水攻沙[J].中国水利,2005,11:29-31.
    [26]张丙夺,孔令科,韩保平.菏泽黄河河段人工淤滩治理“二级悬河”探讨[J].中国水运(学术版),2007,3:94-95.
    [27]王鸿涌.太湖无锡水域生态清淤及淤泥处理技术探讨[J].中国工程科学,2010,6:108-112.
    [28]张长英,刘宝玉,张治昊.黄河口引黄灌区清淤泥沙对环境的危害方式与治理措施[J].水利科技与经济,2010,16(1),56-57.
    [29]崔萌,刘生云,刘娟.黄河下游滩区机械放淤初步探讨[J].人民黄河,2010,32(9):18-19.
    [30]尹学良,梁志勇,陈金荣.河型成因研究及其应用[J],泥沙研究,1994,2:13-19.
    [31]韩其为.小浪底水库初期运用及黄河调水调沙研究[J].泥沙研究,2008,6(3):1-17.
    [32]赵悦,张安鲁,刘云.浅谈黄河调水调沙[J].科技资讯,2009,2(a):156-157.
    [33]张金良.黄河调水调沙实践[J].天津大学学报.2008,9(41):1046-1051.
    [34]赵文林主编.黄河泥沙.郑州:黄河水利出版社,1996.
    [35]周月鲁.新时期黄河水土保持创新发展的探索与实践[J].中国水土保持,2006,10:5-9.
    [36]钱意颖,叶青超,周文浩.黄河干支流水沙变化与河床演变[M].北京:中国建材工业出版社,1993.
    [37]许炯心.黄河上中游产水产沙系统与下游河道沉积系统的耦合关系[J].地理学报,1997,52(5):421-429.
    [38]徐建华,高亚军,陈鸿等.1960年前黄河下游河槽淤积物粒径组成分析[J].泥沙研究,2006,3:1-5.
    [39]钱宁,王可钦,阎林德等.黄河中游粗泥沙来源区对黄河下游冲淤的影响[C].第一次河流泥沙国际学术讨论会论文集.北京:光华出版社,1980.
    [40]陈孝田,陈明非,宋晓景.黄河下游不同含沙量洪水对河道冲淤的影响[J].泥沙研究,2000,11:841-846.
    [41]肖培青,姚文艺,王吕高.灌木减流减沙效应及其水力学机理试验研究[J].泥沙研究,2012,5:33-37.
    [42]大矢晴彦.分离的科学与技术[M].北京:中国轻工业出版社,1999.
    [43]袁惠新,冯晶.分离工程[M].北京:中国石化出版社,2002.
    [44]罗茜余,仁焕,徐继润.固液分离[M].北京:冶金工业出版社,1997.
    [45]张瑞瑾.河流泥沙动力学[M].北京:中国水利水电出版社,2002.
    [46]C. Migniot,丁联臻泽.不同的极细沙(淤泥质)物理性质的研究及其在水动力作用下的性质[A]. LahouBlanche. NO.7,1966.
    [47]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [48]王党伟,杨国录,余明辉.静水中粘性细颗粒泥沙絮凝临界粒径的确定及其影响因素分析[J].泥沙研究,2009,71□80.
    [49]陈邦林.长江口南港南槽地区悬输质絮凝机理研究[A].上海:华东师范大学出版社.
    [50]王保栋.河口细颗粒泥沙的絮凝作用[J].黄渤海海洋,1994,12(1),71-76.
    [51]蒋新.扩散双电层作用下的胶体粒子聚集过程模拟[J].高校化学工程学报.2004,18(1),33□37.
    [52]洪国军,杨铁笙.黏性细颗粒泥沙絮凝及沉降的三维模拟[J].水利学报,2006,2:172-177.
    [53]金同轨,高湘,张建锋等.黄河泥沙的絮凝形态学和絮体构造模型问题[J].泥沙研究,2003,5:69-73.
    [54]蒋新.扩散双电层作用下的胶体粒子聚集过程模拟[J].高校化学工程学报.2004,18(1),33□37.
    [55]陈洪松,邵明安.CaCl2对细颗粒泥沙静水絮凝沉降的影响[J].水土保持学报,2000,2:4649.
    [56]黄建维.粘性泥沙在静水中沉降特性的试验研究[J].泥沙研究,1981,6:30□41.
    [57]HS Coe, GH Clevenger. Methods for Determing the Capacities of Slime Settling. Trans, AIME, 1916,55:356.
    [58]Fei Xiangjun. Settling of Particles in Suspension-Two Typical Cases in Calculating the Settling Velocity of Nonuniform Sediment[J]. Journal of Sediment Research,1992,3:11-20.
    [59]GJ Kynch.A Theory of Sedimentation[J]. The Faraday Society,1952,48:166-176.
    [60]Bryant Fitch, Sedimentation of flocculent suspensions:state of the art[J]. AIChE,1979,25(6), 913-930.
    [61]Krone R.B. The significance of aggregate properties to transport process[J]. Estuarine Cohesive Sediment Dynamics,1986,66□84.
    [62]E. Partheniades. A fundamental framework for cohesive sediment dynamics[J]. Estuarine Cohesive Sediment Dynamics,1986,219□250.
    [63]Meakin P. Fractal aggregates[J]. Advanced in Colloid Interface Science,1988,28:249-3038.
    [64]G K Batchalor. Sedimentation in a Dilute Polydisperse System of Interacting Spheres. General Theory[J]. Journal of Fluid Mechanics,1982,119:379□408.
    [65]张树德.黄河泥沙沉降与颗粒分散特性的研究[D].西安建筑科技大学,2002.
    [66]Huang H. Fractal properties of flocs formed by fluid shear and differential settling[J]. Physics of Fluids.1994,36(10):3229□3234.
    [67]Shumin Chen, Doeke Eisma. Fractal geometry of in situ floes in the estuarine and coastal environment[J]. Netherlands Journal of Sea Research,1995,32(2):1731□182.
    [68]Kranenburg C, The fractal structure of cohesive sediment aggregates[J]. Estuarine, Coastal and Shelf Science.1994,39:451□460.
    [69]Winterwerp J C. A simple model for turbulence induced flocculation of cohesive sediment[J], Journal of Hydraulic Research.1998,36(3):309□1326.
    [70]Dyer K R, Manning A J. Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions[J]. Journal of Sea Research,1999,41:871195.
    [71]洪国军,杨铁笙.黏性细颗粒泥沙絮凝及沉降的三维模拟[J].水利学报,2006,2:172-177.
    [72]Yang Tie Sheng, Zhao, M., Xiong, X. Z., Zhan, X. L. & Yang, M. Q. Fractal Dimensions and Setting Velocities of Cohesive Sediment Flocs[J]. Proceedings of International Conference On Estuaries and Coasts, Hangzhou, China,2003:445□453.
    [74]Jia Yajun. A study on characteristic and mechanism of spontaneous sedimentation of Yellow River's loess particles[D]. Xi'an University of Architecture and Technology,2003.
    [75]BG Krishnappan, J Marsalek. Modelling of Flocculation and Transport of Cohesive Sediments from an on-stream stormwater Detention Pond[J]. Water Research,2000,36:3849□3859.
    [76]Vladimir Nikora, Jochen Aberle, Malcolm Green. Sediment Floe:Settling Velocity, Flocculation Factor and Optical Backscatter[J]. Hydraulic engineering,2004,10:1043□1047.
    [77]蔡树棠.泥沙的群体沉降速度[J].应用数学和力学,1983,4(3):341-346.
    [78]Zhang Zhizhong. Studies on basic characteristics of fine sediment in Changjiang Estuary[J]. Journal of sediment research,1996,3(1):67□73.
    [79]A Einstein. Investigations on the Theory of Brownian Movement,1956.
    [80]Witten T.A, Sander L.M. Diffusion-Limited Aggregation[J]. A Kinetic Critical Phenomenon Physical Review Letters,1981,47 (19):1400□1403.
    [81]Emark D.L. A computer simulation of charged particles in solution.I Technique and equilibrium properties[J]. The Journal of Chemical Physics,1975,62:4189□4196.
    [82]Forrest S.R., Witten T.A. Long-range correlations in smoke-particle aggregates[J]. Journal of Physics A:General Physics,1979,12:1091□117.
    [83]R. Cherian, C. Gerard, P. Mahadevan. Size dependence of the bulk modulus of semiconductor nanocrystals from first-principles calculations[J]. Physical review B,2010,82:23511242.
    [84]H.Y. Chung and D.J. Lee. Porosity and interior structure of flocculated activated sludge floc[J]. Journal of colloid and interface science,2003:1361□143.
    [85]S. Schuetz and M. Piesche. A model of the coagulation process with solid particles and floes in a turbulent flow[J]. Chemical engineering science,2002,57:4357□4368.
    [86]Rajat K, Chakrabort, Joseph F Atkinson, John E Van Benachoten. Characterization of Alum floc by image analysis. Environ Science Technology.2000,34:3969-3976.
    [87]Tan Wanchun. A Study on the Morphological Characteristics of Flocculation of the Yellow River's Loess Particles-Computer Simulation of Flcos Growth and Flcos Model[D]. Xi'an University of Architecture and Technology,2003.
    [88]Fu Qiang, XIA Keqing. Wavelet analysis of multifractal and its application to processing temperature data in Rayleigh-Benard convection [J]. Journal of Hydrodynamics,2001,13(4): 34□41.
    [89]AE Gonzlez. Concentration effects on two and three dimensional colloidal aggregation[J]. Physica A:Statistical Mechanics and its Applications,2002,3(14):235□245.
    [90]Meakin P, Wasserman Z R. Some universality properties associated with cluster-cluster aggregation model[J]. Physics Letters A,1984,103,337-341.
    [91]李悦,陈艾,吴孟强.RF气凝胶分形生长过程的计算机模拟[J].电子元件与材料,2004,1:52(?)56.
    [92]Jin Pengkang, Wang Xiaochang, Guo Kun. Dla simulation of fractal flocs and calculation of fractaled dimension[J]. Environmental chemistry,2007,1(26):5119.
    [93]F.A. Campo, J.S. Rivas Murillo, E.J. Barbero. Aggregation model for the gelation of a sol starting from the processing conditions[J]. Journal of Non-Crystalline Solids.2011,357(10):2046□2053.
    [94]Zhang Deru, LIANG Zhiyong. Experimental study of effect of nonuniform fine sediment on flocculation[J]. Journal of Nanjing Hydraulic Research Institute,1994,1(2):11□17.
    [95]Zhang Zhizhong. Studies on basic characteristics of fine sediment in Changjiang Estuary[J]. Journal of Sediment Research,1996,3(1):67□73.
    [96]杨国录,吴卫民.一维河流数值模拟算法的概述泥沙研究[J].泥沙研究,1995,12:34□41.
    [97]张红武,赵连军.黄河下游非恒定输沙数学模型——Ⅰ模型方程与数值方法[J].水科学进展,2002,3:265 270.
    [98]王士强.黄河泥沙冲淤数学模型研究[J].水科学进展,1996,3:193□199.
    [99]张红武,张清.黄河水流挟沙力的计算公式[J].人民黄河,1992,11:7□9.
    [100]何明民,韩其为.挟沙能力级配及有效床沙级配的确定[J].水利学报,1990,3:1□12.
    [101]赵连军,张红武.黄河下游河道水流摩阻特性的研究[J].人民黄河,1997,9:17□20.
    [102]田治宗.黄河下游不同粒径泥沙冲淤特性分析[J].人民黄河,1996,9:45□47.
    [103]王仁龙.水利工程沉沙池泥沙沉降计算方法分析与验证[J],人民黄河,2012,32(9),130□132.
    [104]杜彦学,戴爱军,谢欣馨.水煤浆力度测定技术[J].煤化工,2010,03,33-35.
    [105]张智,袁绍春,胡坚.覆膜人工滤层干化床处理城市污泥的试验研究[J],中国给水排水.2009,25(3),28-36.
    [106]都丽红.密闭真空过滤机的应用[J].化工科技市场,1999.08,64-65.
    [107]张春芝,贾金霖, 潘志强板框式过滤机过滤常数测定研究[J],北京工商大学学报(自然科学版),2010,28(3),68-71.
    [108]张善发.带式压滤机污泥脱水模拟试验研究[J],上海环境科学,1995,14(10),39-42.
    [109]田中良司.离心脱水机的污泥脱水实验及应用分析[J].固废处理与处置.1997,(18)7,321-323.
    [110]周加祥,佘鹏,刘铮,等.水平电场污泥脱水过程[J].化工学报,2001,52(7):635-638.
    [111]黎艳,林海,朱向东.板式电凝聚强化市政污水处理厂剩余污泥脱水的研究[J].科学技术与工程,2007,7(9),575-575.
    [112]李帅,边炳鑫,周正.磁场对活性污泥脱水性能的影响[J].环境科学研究,2007,20(3):119-123.
    [113]彭晓峰,陶涛,陈剑波等.国际污泥研究现状初探[J].科技进展,2007,24(4):191-194.
    [114]郑宗和,牛宝联,雷海燕.利用太阳能进行污泥脱水干燥的试验[J].中国给水排水,2003,19(13):112-113.
    [115]段宏伟.可生化污泥调理剂的研制与应用基础研究[D].昆明:昆明理工大学.2007
    [116]杨斌,杨家宽,唐毅,等.粉煤灰和生石灰对生活污水污泥脱水影响研究[J].环境科学与技术,2007,30(4):98-100.
    [117]詹德昊,芦秀青,陶涛,等.普鲁兰预处理高浓度味精废水实验研究[J].给水排水.2001,27(1):22-25.
    [118]刘自莲,施永生,李鹏.污泥调理剂[J].云南化工,2005,32(5):55-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700