用户名: 密码: 验证码:
三峡库区农业面源污染控制的土地利用优化途径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,随着水环境问题的日益突出及点源污染控制水平的逐渐提高,面源污染尤其是农业生产和农村生活引起的农业面源污染问题己成为当今水环境污染的主要污染源,严重威胁着人类的生存与发展,并成为世界各国普遍关注的热点问题之一。农业面源污染形成的根本原因在于人类不合理的土地利用活动,它与土地利用类型、不同土地利用类型组合结构以及土地利用空间分异特征和土地利用管理措施等因素关系紧密。鉴于此,目前围绕土地利用与面源污染的关系已开展了诸多研究,但主要侧重于不同土地利用对面源污染的影响,关于不同土地利用与面源污染之间关系的定量研究以及据此构建适宜的土地利用优化模式和管理措施以控制农业面源污染的研究甚少,更没有一种系统的、可靠的研究理念和研究范式。三峡工程是举世瞩目的特大型水利工程,工程生态环境影响是国内外关心的重大问题,其中三峡库区水质问题则是关注焦点。三峡水库作为我国的战略水资源库,其水质状况不仅影响到三峡库区居民的生活、生产用水安全,同时也对长江中下游地区居民生产生活、经济发展以及南水北调工程的成败产生十分重要的影响。目前随着三峡工程的竣工和运营,工程生态环境影响逐步突现。由于库区特殊的生态环境条件和移民压力,特别是库区农业化学品的不合理投入、种养殖有机废弃物不合理排放等,农业面源污染日益严重,部分支流己出现“水华”现象。以上种种导致库区水质状况不容乐观,水环境安全问题令人担忧。面源污染是导致受纳水体水质恶化重要原因之一,因此,尽快开展面源污染控制措施研究已刻不容缓。能否针对三峡库区脆弱生态环境特点和农业面源污染发生特征,对三峡库区不同土地利用格局下的面源污染进行研究,提出适宜的面源污染控制的土地利用优化模式及管理措施,对三峡库区面源污染防控和水质保护具有重要的理论价值和现实意义。
     鉴于此,本研究引入土地利用优化配置这一概念,并根据三峡库区流域脆弱生态环境特征和农业面源污染发生特征,提出了三峡库区农业面源污染控制的一个理念——整体优化(规划)控制,局部关键(管理)控制,和一个范式——农村居民点-旱坡地-水田-消落带多重拦截与消纳农业面源污染物的综合防控技术体系和控制模式,据此确定了三峡库区农业面源污染控制的土地利用优化途径。同时在三峡库区重庆段涪陵区珍溪镇遴选了一个封闭的典型农业流域——王家沟小流域为例进行了实证分析。通过在王家沟小流域广泛的实地调查获取了大量的基础数据,并通过地理信息系统(Geographic Information System, GIS)与现场监测和定位实验结合的技术手段以及景观生态学的研究方法,探讨了该小流域土地利用与面源污染的关系,构建了流域最佳土地利用优化模式和管理措施,进而提出了解决三峡库区面源污染的控制理念和措施。具体思路是,首先利用实地调查和实测数据分析了土地利用对土壤养分、农业面源污染物影响,并据此构建了农业面源污染控制的土地利用整体优化调控模式,同时筛选出农业面源污染关键源区及敏感的土地利用类型,最后在关键源区及敏感的土地利用类型上实施相应的控制措施,并对其实施效果进行预测和评价。
     本研究取得了如下成果:
     (1)三峡库区小流域面源污染基础数据库建立
     根据研究需要,对三峡库区王家沟小流域自然环境和社会经济状况进行了全面调查,结合现场测绘和实地调查结果,在1:1000地形图调绘基础上,采用GIS软件获得土地利用类型图,并建立小流域数字高程模型(Digital Elevation Model, DEM)、坡度和坡向情况;并对小流域交通和农用基本设施等进行了初步规划布局;同时根据调查资料,分析了小流域主要面源污染来源。据此构建了面源污染基础数据库。该工作为进一步开展面源污染后续研究并提出适合王家沟小流域甚至三峡库区特征的面源污染控制工程及技术措施提供系统的、可靠的基础资料支撑。
     (2)三峡库区小流域土壤养分空间变异及其对土地利用格局的响应
     采用地统计学与GIS相结合的方法,以三峡库区王家沟小流域为研究区,研究了表层土壤(0-20cm)的pH值、有机质(soil organic matter, SOM)、全氮(total nitrogen, TN)、全磷(total phosphorus,TP)、全钾(total kalium, TK)、碱解氮(available nitrogen, AN)、有效磷(available phosphorus, AP)和速效钾(available kalium, AK)等8种养分的空间变异特征。研究结果表明:(1)SOM的含量普遍较低,AN的含量普遍较高;土壤养分的变异系数大小是AP(99.7%)>AK(39.7%)>TP(37.4%)>SOM(27.2%) >AN(26.1%)>TN(21.6%)>pH(19.9%)>TK(15.7%),均为中等程度的空间变异性;土壤pH、TP和的AK半方差函数理论模型为球状模型,SOM、TN和AP为指数模型,TK和AN均为线性模型;pH具有强烈的空间相关性,结构性因素是影响其空间变异的主要因素,其余土壤元素存在中等的空间相关性,随机因素引起的空间变异性所占比重较大。(2)pH值沿东南到西北逐渐增加,多数区域土壤呈酸性微酸性。SOM除东南有高值区外,其他地方由中心到四周辐射降低。TN值由中间向两翼降低。TP值除东北、西北有大片高值区和中部偏东有少量高值区,其他部分则由中部向四周递增。TK值则较破碎,在西北、东南有高值区。AN值由东北、西北向南部,逐渐增加。AP值在西北、东南有高值区,其他地方变异不大。AK值由中部向东北西南降低,大部分区域AK含量处于较高水平。(3)不同土地利用类型其养分含量差异显著,园地的pH值、TP和TK均高于其他地类,与此同时园地的SOM、AN和AK也都低于其他地类;旱地的SOM、TN和AN均高于其他地类,其中AP却低于其他地类;林地的AK最高,但pH、TN、TP和TK又是最低;水田AP含量明显高于其他地类。研究结果可为小流域综合治理中土壤养分管理、农业面源污染控制与植被恢复提供理论依据。
     (3)三峡库区小流域面源氮(N)污染时空变异及其对土地利用格局的响应
     为揭示三峡库区小流域面源N污染的时空分布特征,以位于三峡库区腹心地区的王家沟小流域为研究对象,在自然降雨条件下,通过2008年9月~2009年11月期间11次对沟渠、塘、井3种水体水质中的总氮(Total Nitrogen, TN)、溶解态氮(Dissolved Ditrogen, DN)、硝态氮(Nitrate-N,NO3-N)、氨氮(Ammonium-N, NH4-N)等不同形态N素野外水样监测分析以及流量的测定,研究了王家沟小流域面源N污染的时空变化规律。研究结果表明:(1)该小流域N素污染非常严重,其浓度最高达到45.27mg/l,每次都超过地表水V类标准,这与该区是典型的农业耕作区有关;(2)从空间尺度来看,同一时间不同水体中不同N素平均浓度变化趋势为:TN(井)>TN(沟渠)>TN(塘),DN(井)>DN(沟渠)>DN(塘),井中的硝态氮大于其他塘和沟渠两种水体中的硝态氮,这与不同水体周边有不同的土地利用方式密切相关;(3)从季节变化来看,N素的最高输出浓度与负荷的季节,不是发生在雨水丰盛的夏季,而是发生在细雨的秋季,输出负荷跟径流量成乘幂回归关系,输出负荷最高的两月分别是11月和10月,整个小流域中总氮月输出负荷最高达到1233kg。(4)从N素输出形式来看,主要以溶解态为主,但也有个别月份输出以颗粒态为主的,这主要是与土地利用方式和降雨密切相关。
     (4)三峡库区小流域土地利用格局优化分析
     农业面源污染“起”于人类不合理土地利用活动,它与土地利用类型、不同土地利用类型组合结构以及土地利用空间分异特征等因素存在着紧密关系,相应地农业面源污染控制应“止”于人类合理土地利用活动,通过土地利用优化配置影响土地利用和覆被类型以及土地利用方式和管理措施,以达到农业面源污染的有效控制。鉴于此,以王家沟小流域为研究区,对现有土地利用进行了系统分析,探讨通过土地利用的优化,在宏观层面上实现农业面源污染控制的最佳途径。研究结果表明:(1)从数量结构来看,王家沟小流域耕地、未利用地和农村居民点处于减少状态,其中耕地减少幅度最大,尤其是旱地;园地、林地、交通运输用地、水域及水利设施用地处于增加状态,其中林地和园地增加最多,约束年两者面积达到55.36%;(2)以水质保护为目标,利用耗费表面模型,结合景观格局特征以及生态系统服务功能价值等分析方法,提出景观格局优化方案,构建了生态上较为安全的格局优化途径。
     (5)三峡库区小流域农业面源污染关键源区识别
     农业面源磷污染是水体富营养化和和水质恶化的重要原因,而对农业面源磷流失的关键源区进行有效识别是农业面源污染控制和管理的重要内容和重要组成部分。以位于王家沟小流域为研究区,在GIS支持下,采用改进的磷指数法开展农业面源污染磷流失关键源区识别。研究结果表明:该小流域中关键源区(即磷流失危险性极高和较高的区域)占到整个流域面积的44.9%,危险性中等的地区占到45.6%,危险性低的地区仅仅占到9.5%;其中具有高和中等危险性的区域主要分布在水系周边地区和坡耕地上,这些区域应作为下一步农业面源磷污染的重点控制地区,并根据其不同形成原因采取适当的控制措施。该研究成果成果能为该小流域进一步开展农业面源污染控制和管理并将其在空间上进行有效集成提供依据,同时也为其他流域进行农业面源污染控制和管理提供借鉴。
     (6)三峡库区小流域农业面源污染控制的最佳管理措施研究
     仅仅通过不同土地利用类型(地块)之间的优化配置来实现控制农业面源污染还不够,还需要对已确定被控制的关键源区或敏感土地利用类型(地块)实施相应的控制措施。鉴于此,以王家沟小流域为例,根据该小流域农业面源污染特征,并结合土地利用状况、地形地貌、降雨特征等条件,设计了一套融农村居民点—旱坡地—水田—消落带于一体的多重拦截与消纳农业面源污染物的农业面源污染控制系列化最佳管理措施(BMPs),并对其中部分BMPs运行效果进行了评价。研究结果表明:(1)保护性农业技术措施秸秆覆盖能有效减少旱坡地泥沙流失,却增加了径流中氮、磷流失量,且具有较强的时效性;金银花植物篱技术在常年都具有较好的保水保土和防治氮磷流失功能;(2)坡耕地PAM优化利用技术可使泥沙流失量减少80%-90%,氮、磷流失量分别减少20%-30%和25%-35%:(3)水稻田以及垄作拦截和消纳技术一周左右就可以有效地控制污水中的无机态氮和外源污水中的磷;(4)针对分散型畜禽粪便污染而设计的沼气化农业生态循环利用技术,其治污效果和经济效益都较好;(5)消落带芦苇植被拦截带可以有效地吸收和截留氮和磷流失,其中对总氮流失的控制效果最好为30.00%,总磷最好为65.00%。本研究所设计的系列化BMPs对王家沟小流域农业面源污染中N、P和泥沙等污染物的综合去除率达到89%以上。该研究结果可以推广应用到三峡库区其它小流域以控制和管理农业面源污染。
In recent years, as water environment pollution problem becomes more and more serious and point sources(PS) pollution control level increases, the non-point source(NPS) pollution has gradually become a major pollution source of water pollution and the key deciding whether the water environmental problem could be solved effectively. Meanwhile, among which the agricultural NPS pollution caused by farmers' agricultural production and rural living has been recognized to the main source of water pollution, which covers wider range with greater uncertainty and is more difficult to calculate simulate, control and manage. NPS pollution is a landscape-scale phenomenon with various origins, including agriculture, silviculture, mining, and construction, etc. It is driven by multiple factors and includes diffuse pollution which is exclusively a result of human land abuse and land use changes. Generation, transport, and transformation of NPS pollution is closely related to human activities and natural factors. And among them, land use is one of the most important affecting drivers that determine the generation and transport of NPS pollution. Land abuse is one of the most direct forms of human activities, while irrational land-use activities and management mode will lead to soil erosion and nutrient loss with surface runoff, therefore, the large area of NPS pollution to watershed is formed. Meanwhile, small watershed is the headwaters of the water bodies, such as reservoires, rivers and lakes. Its soil erosion can lead to siltation in the river channel, and its soil nutrition loss caused by surface runoff and sediment can make water quality impairment and even eutrophication. All these become one of the main sources of NPS pollution, therefore, it has a significance to control and manage the generation and transport of NPS pollutants. Considering this, it is important to build best management practices(BMPs) based on rational land use through examining the effect of land use on NPS pollution systematically and analyzing the relationship between NPS pollutants and land use in a watershed comprehensively.
     The Three-Gorges Project(TGP) is one of the largest hydropower projects in the world, which has attracted worldwide attention for its potential influences on the ecological environment. It is ranked as a key project for the improvement and development of the Yangtze River, which has formed a gigantic multi-operation business pattern for flood prevention, power generation, navigation, etc. However, as water levels were driven up, current velocity and diffusivity were dramatically reduced, and the retention time of pollutants was prolonged after the water was cut off. Thus, the TGP also had a profound impact on the environment, such as non-point source pollution. With the completion and operation of the TGP, the influence of it exerting on the ecological environment gradually emerges. The Three-gorge Reservoir areas(TGRA) which is affected greatly by the TGP, because of the special ecological environment and the immigration pressures, and unreasonable human land use activities, the agricultural NPS pollution becomes more and more serious and is seriously restricting sustainable development of agricultural economy and rural environment. And from the point of view of the generation, transport, and transformation mechanism on NPS pollution, it mainly depends on land use/land cover change model. Therefore, it is urgent to strengthen research on the control of NPS pollution, especially studying NPS pollution based on different land use pattern and putting forward land use optimization management mode and measures for controlling NPS have an important theory value and practical significance in protecting water quality.
     Taking account into the generation and, on the basis of hypotheses, Wangjiagou watershed in the core zone of the TGRA has been selected as a study site. A large number of basic data were collected through the extensive on-site investigation, and through integrated technique means of field monitoring, location experiment and geographic information system(GIS), this study discusses the relationship between watershed land use and the NPS pollution. By establishing basin optimization model of harmonization between environment and economy, this study discusses the best management pattern of land use. Accordingly, this study put forward the theoretical assumption which including an control idea and a control paradigm, the former is land optimization(planning) control in the whole and the latter is BMPs control based on rational land use in the part. To be specific, a paradigm for intercepting and controlling NPS pollution which using the rural residential area-slopping land-paddy field ecosystem-hydro-fluctuation belt system to intercept and reduce NPS pollutants.
     The main content and result achievements are as follows:
     (1) The foundation database of Wangjiagou watershed in the Three Gorges Reservoir area NPS pollution research is established
     According to research needs, this part carried out a comprehensive investigation and analysis on natural environment and socioeconomic situation of Wangjiagou watershed, and combining on-site investigation, using the GIS software and so on as platform, to establish DEM. And land use type map is acquired from topographic map investigation.The soil type map is acquired by digitizing the Wangjiagou watershed 1:1000 soil type map. Consequently, the foundation databases for the NPS pollution research.are provided.
     (2) Spatial variability of soil nutrients and its response to land use pattern in small watershed of the Three Gorges Reservoir area
     The geostatistics combined with GIS method was used to analyze and determine spatial variability of surface soil nutrients(0-20cm) which included pH, soil organic matter(SOM), total nitrogen(TN), total phosphorus(TP), total K(TK), available nitrogen(AN), available phosphorus(AP), available K(AK) in Wangjiagou watershed of the TGRA. The results showed that:(1) From the view of soil nutrients statistic characteristics, The soils were widely deficient of OM, and the content of soil AN was relatively higher; The variation coefficients of soil nutrients were graded as AP>AK>TP>OM>AN>TP>pH>TK, and all these presented moderate spatial dependence; the semivariograms of pH, TP and AK in topsoil were best described by spherical model, that of soil SOM, TN and AP submitted exponential model, and those of TK and AN submitter linear model; soil pH have intense spatial self-correlation, and the spatial variability was determined mostly by structural factors, such as parent material, soil type, climate and water conditions, and other soil nutrients have moderate spatial self-correlation, and the spatial variability was determined mostly by random factors, such as crop type, fertilization level and land use management measures. (2)pH tended to increase gradually from southeast to northwest, and most areas in this watershed presented acidity and subacidity; the highest OM content was found in the southeast of this watershed and other areas decrease gradually from center to around; TN decrease gradually from center to around; the highest TP content was found in the northeast, northwest and central areas with shifts eastward, and other areas increase gradually from center to around; TK presented crushing characteristics and had the highest content in the northwest and southeast; AN tended to increase gradually from northeast and southeast to south; the highest AP content was found in the northwest and southeast, and other areas had no significantly variation; AK tended to decrease gradually from the center to northeast and southwest, and in most areas maintained high level. (3) Soil nutrients were significantly affected by different land use types and their spatial positions. Higher values of pH, TP and TK were found in garden land, and its SOM, AN and AK lower than other land use types; higher values of SOM, TN and AN from upland, and AP lower than other land use type; forest land had higher values of AK, but it also had lower values of pH、TN、TP and TK; higher values of AP was found in paddy field, and meanwhile its other soil nutrients maintained intermediate position.
     (3) Temporal and spatial variation of non-point nitrogen pollution and its response to land use pattern in small watershed of the Three Gorges Reservoir area
     Surface water nitrate contamination has aroused nationwide concern recently. In order to reveal temporal and spatial variation of non-point nitrogen pollution, this part take Wangjiagou watershed as an example, based on the data from investigation and monitor from September,2008 to November,2009 under natural rainfall condition in this watershed, temporal and spatial variation characteristics of different forms of nitrogen concentrations were studied. The results showed that:(1) Nitrate contamination in this watershed has been very seriously, and the maximum concentration of N was 45.27mg/l which far exceeds the "V" standard of surface water quality, and this was related to typical agricultural farming area; (2) From the point of spatial scale, the variation rule of average nitrogen concentrations was, well>ditch>pond, and was associated with different land use management practices around the water bodies; (3) From the point of seasonal variation, top nitrogen producer concentrations and load was autumn which in the drizzle but which summer which have sufficient rainwater; there is the power regression relation between nitrogen export load and runoff amount, and maximum export load happened at November and October, and the highest TN export load could reach to 1233kg; (4)And the nitrogen output form was mainly dissolved nitrogen, but in some month was particles nitrogen, Rainfall and human land use activity are important factors for influencing the nitrogen export.
     (4) Land use pattern optimization analysis in small watershed of the Three Gorges Reservoir area
     NPS pollution is a landscape-scale phenomenon with various origins, and they are driven by multiple factors and includes diffuse pollution which is exclusively a result of human land abuse and land use changes. That is, there is a strong relationship between different land use and NPS pollutants. Therefore, the mitigation of NPS pollution should be fully considered rational land use and scientific land management practices. Considering this, this part uses Wangjiagou watershed as investigation demonstrate-on,on the base of analysis on the present status of land use, studies the configuration and quantity characteristics of land use and the problems in existence of land use, and puts forward a land-use patterns optimization approach for controlling agricultural NPS pollution in the macroscopic scale. The results showed that:(1) The cultivated land, unused land and rural resident land will reduce and other land types will be increase, and the rates of forest land and garden land could reach to 55.36%; (2) In order to maintain ecological balance and protect water quality in this watershed, this paper attempts to construct a landscape functional network based on least-cost modeling and combines with ecosystem services and spatial interactions of landscape types, analyzes the spatial difference of the ecological function in Wangjiagou watershed and further discusses the landscape pattern optimization proposal.
     (5) Critical sources area identification of agricultural non-point phosphorus loss in small watershed of the Three Gorges Reservoir area
     Agricultural nonpoint phosphorus(P) pollution is an important cause of eutrophication and water quality deterioration in many water bodies. Identifying critical sources areas that at high risk for P loss to surface water in watershed and concentrating management efforts on these minimal portions of lands are better measures than implementing general strategies over a broad area. A modified catchment scale phosphorus ranking scheme was developed for agricultural areas in Wangjiagou watershed. The result showed that:highest risk areas, take up about 44.9% of the watershed, and middle risk areas contain 45.6%, and lowest risk areas contain 9.5%, and the highest risk areas mainly spread near the downstream parts of main water systenms to the reservoir and from upland. These areas should be regarded as critical source areas to be treated in priority, and then best management practice(BMPs) should be implemented in a high priority to minimize P loss to sensitive watercourses.
     (6) Research on BMPs of agricultural non-point sources pollution in small watershed of the Three Gorges Reservoir area
     Many researchers advocate BMPs to reduce nutrients(N、P) and sediment loss in agricultural areas. Considering the eco-environment vulnerability around the TGRA, and the generation and transport characteristics of agricultural NPS pollution in the TGRA, and with combining, ameliorating and designing a series of techniques and methods relating to the researches on agricultural NPS pollution control, the paper, adopting the comprehensive control thought of combining source control, process block and terminal regulation, designs a series of BMPs based on the rural residential area-slopping land-paddy field ecosystem-water-level-fluctuating zone to intercept and reduce agricultural non-point pollutants in the study area. The results showed that:(1) agrotechnical measures, such as straw mulching can effectively reduce sediment loss from effectively reduce, but it increased the loss amounts of N and P; (2)PAM optimum utilization technique can reduce loss amounts of sediment by 80%-90%, loss amounts of TN and TP by 20%-30% and 25%-35% separately; (3)Rice paddy field ecosystems could effectively control the inorganic nitrogen in sewage and rural sewage phosphorus within just 1 week; (4)Marsh gas tanks for rural households and dispersed livestock and poultry manure have good control effect on N and P, and have good economy benefits; (5) Riparian reed vegetable buffers of water-level-fluctuating zone can decrease the loss of N and P, and the load of TN reduced by 30.00%, and that of TP by 65.00% at least.
     This paper is a progress report of an ongoing research project from which the expected final product will be an control idea and a control paradigm which also named an integral technology system to control NPS pollution in the TGRA. And because the research results of this paper is just only the beginning, there still remains much work to be done systematically and comprehensively based on the previous research achievement so as to form an systematic control idea and an integral technology system to control NPS pollution in the TGRA.
引文
Abbott M B, Bathurst J C, Cunge J A, et al. Introduction to the European Hydrological System-Systeme Hydrological European, "SHE", I:History and philosophy of a Physically-based, Distributed Modelling System [J]. Hydrol,1986,87 (1-2): 45-59.
    Alm A L. Non-point Sources of Water Pollution [J].Environmental Science and Technology,1990,24 (7):967
    Alp,M.,Cigizoglu,H.K. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data[J].Environmental Modelling and Software,2007,22(1):2-13.
    Ascough Ⅱ J C, Baffaut C, Nearing M A, et al. The WEPP watershed model:I [J].Hydrology and erosion,1997,40(6): 921-933.
    Benoit G R. Effect of agricultural management of wet, sloping soil on nitrate and phosphorus in surface and surface water [J]. Water Resource. Res,1973,9:1296-1303.
    Bicknell B R, Imhoff J C, Kittle J L et al. Hydrological simulation program-fortran user's manual for release 11. http://www.epa.gov/waterscience/basins/bsnsdocs.html. 1996
    Boers P C M. Nutrient emissions from agriculture in etherlands:causes and remedies[J]. Water Sci Technol,1996,33: 183-190.
    BrainwoodM. A., Burgin S., Maheshwari B. Temporal variations in water quality of farm dams:impacts of land use and water sources[J]. Agricultural Water Management,2004,70(2):151-175.
    Castillo M M, Allan J D, Bmnzell S. Nutrient concentrations and discharge in a midwestern agricultural catchment[J]. J Environ. Qual.,2000,29(4):1142-1151.
    Crawford N H, Linsley R K. Digital simulation in hydrology:Stanford Watershed Model IV[R]. Stanford, California:Dept Civil Engineering, Stanford University,1996,39:210
    Daniel T C, sharpley A N, Edwards D R, et al. Minimizing surface water eutrophication from agriculture by phosphorus management [J]. Soil Science Society of America Journal,1994,155:1079-1100.
    Dennis L.Corwin, Keith Loague, Timothy R. Ellsworth. GIS支持下的非点源污染模型[J].水土保持科技情报,1999,(1):14-16.
    Dylan S. A., Richard W. S., Randy A. D.,et al. Land use and land cover influence onwater quality in the last free-flowing riverdraining thewestern Sierra Nevada, California[J]. Journal of Hydrology,2005,313(3/4):234-247.
    Ebbert J C and M H Kim. Soil processes and chemical transport [J].Environ.Qual,1998,27:372-380
    Foster G R. USDA-water Erosion Prediction Project, Hillslope Profile and Watershed Model Documentation[R]. W Lafayette ind:Purdue University,1995.
    Fu Q., Yin C Q., Ma Y. Phosphorus removal by the multipond system sediments receiving agricultural drainage in a headstream watershed[J]. Journal of Environmental Science,2005,17(3):404-408.
    Gaynor J D, Findlay W I. Soil and phosphorus loss from conservation and conventional tillage in Corn production [J]. Environ Qual,1995,24:734-741.
    GiblinA. E., NadelhofferK. F., ShaverG R.,et al. Biogeochemical diversity along a riverside toposequence in Arctic Alaska [J]. Ecological Monographs,1991,61(4):415-435
    Heathwait L,Sharpley A and Giburek W. A conceptual approach for integrating Phosphorus and nitrogen management at watershed scales [J]. Environ.Qual,2000,29(1):158-166.
    Henderson F M et al.Application of C-CAP protocol land-cover data to nonpoin t source water pollution potential spatial models in a coastal environment [J]. Photog.Egin.and R S,1998,64(10):1015-1020.
    Hubbard R K, Erickson A E, Ellis B G et al. Influence of macrophytes on nitrate removal in wetlands[J]. Ambio,1982,23(6): 363-366.
    Ingram J J, Woolhiser D A. Chemical transfer into overland flow[C]. Proc Symp watershed management,1980,40-53.
    Jia Y. W., Niu C. W., WangH. Integrated modeling and assessment of water resources and water environment in theYellow River Basin[J]. Journal of Hydro-environment Research,2007,1(1):12-19
    Johnes P J.Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters:the export coefficient modeling approach[J].Journal of Hydrology,1996,183:323-349.
    Kingery W L, Wood C W, Delaney D P, et al. Impact of long-term land application of broiler on environmentally related soil properties [J]. Environ Qual,1994,23:139-147.
    Kuenzler B J and Craig N J. Land Use and Nutrient Yields of the Chowan River Watershed, in:Correll D L[J]. Watershed Research Perspectives,1986:77-107.
    Laflen J M, Elliot W I, Simanton J R, et al. WEPP soil erodibility experiments for rangeland and cropland soils. Journal of Soil Water Conservation,1991,46(1):39-44.
    Lee S L. Non-point source pollution[J].Fisheries,1979,(2):50-52.
    Line D E, Mclaughlin R A, Osmond D L, et al. Non-point sources[J].Water Environment Research,1998,70(4):895-911.
    M. Dzikiewicz. Activities in nonpoint pollution control in rural areas of Poland[J]. Ecological Engineering,2000,14(4): 429-434.
    McDowell L L, Willis G H, Murphree C E. Plant Nutrient Yields in Runoff from a Mississippi Delta Watershed [J]. Transaction of the ASAE,1984,27(4):1059-1066.
    Mohammad N. A., Jagath J. K. Modeling nitrate contamination of groundwater in agriculturalwatersheds[J].Journal of Hydrology,2007,343(3/4):211-229.
    Naiman R J.(ed). Watershed Management: Balancing Sustainability and Environmental Change[M]. Springer-Verlag, Newyork, USA,1992.
    NandishM. MattikalliL, Keith S. Richards. Estimation of surfacewater quality changes in response to land use change: application of the export coefficientmodel using remote sensing and geographical information system[J]. Journal of EnvironmentalManagement,1996(48):263-282.
    Naveh Z. Landscape Ecology:Theory and Application(Second Edition) [J]. New York:Springer-verlag,1993.
    Ng H Y F, Mayer T, Marsalek J. Phosphorus transport in runoff from a small agricultural watershed [J]. Wat Sci Tech,1993, 28(3-5):451-460.
    Novontny V, Chesters G Handbook of nonpoint pollution:sources and management[M].New York:Van Nostrand Reinhold Company,1981.
    Oiness A E, Smitli S J, Rhoades E D, et al. Nutrient and sediment discharge from agricultural watersheds in Oklahoma [J]. Environ Qual,1975,4:331-336.
    Phene C J, Davis K R, Hutmacher R B. Advantages of subsurface irrigation forprocessing tomatoes[J]. Acta Hort,1987,200: 101-114.
    PolyakovV., FaresA., KuboD.etal. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed[J]. Environmental Modelling & Software,2007,22(11):1617-1627.
    Ritter L, Solomon K, Sibley P, et al. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the walkerton inquiry[J]. Journal of Toxicology and Environmental Health Part A,2002,65(1): 1-142.
    Rmokens J M, Nelson D W, Mannerign J V Nitrogen and phosphorus composition of surface runoff as affected by tillage method[J]. Environ Qual,1973,2:292-295.
    Roberta Parry. Agricultural Phosphorus and water quality, U.S. A. environmental protection agency perspective[J]. Journal of Environmental Quality,1998,27:258-261.
    S.Shrestha, F.Kazama a, L.T.H.Newham. A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data[J]. Environmental Modelling&Software,2008, (23):182-194.
    SchillingK. E., Libra R. D. The relationship of nitrate concentrations in streams to row crop land use in Iowa[J]. J. Environ.Qua.1,2000,29(6):1846-195.
    Schuman G E, Spomer R G, Piest R F. Phosphorus losses from agricultural watersheds on Missoouri Valley loess [J]. Soil Sci Soc Am Proc,1973,37:424-427.
    Sharpley A N, Smith S J. Prediction of soluble phosphorus transport in agricultural runoff[J]. Environ Qual,1989,18: 313-316.
    Sharpley Andrew N, S C Chapra, R Wedephol, et al. Managing agricultural phosphours for protection of surface waters: issues and options [J]. Environ Qual,1994,23:437-451.
    Soil Conservation Service. National Engineering Handbook, Section 4 [S].1956:2365.
    Tim U S, Jolly R. Evaluating agriculture nonpoint-source pollution using integrated geographic information systems and hydrologic/water qualitymodel[J].Environ Qual,1994,23(11):25-35.
    Troiano J et al. Influence of amount and method of irrigation water applieationon leaehing of Atrazine[J]. Environ.Qual,1993, 22:290-298
    USDA (United States Department of Agriculture Soil Conservation Service). Urban hydrology for small watersheds[A]. In: Technical Release No.55 [C]. Colorado:Water Resources Publications,1986.15-17.
    USDA-SCS (Department of Agriculture, Soil Conservation Service). National engineering handbook. Section 4: hydrology[M]. Washington, DC:Soil Conservation Service, USDA,1985.13-24.
    Vladimir Novomy. Integrating diffuse/nonpoint pollution control and water body restoration into watershed management[J]. Journal of the American Water Resources Association,1999,35(4):717-722.
    W ithers P. J. A., Hodgkinson R. H., AdamsonH.,et al. The impact of pasture improvement on phosphorus concentrations in soils and streams in an upland catchment in Northern England[J]. Agriculture, Ecosystems & Environment,2007,122(2): 220-232.
    Weld J L. Identifying critical sources of phosphorus export from agricultural watersheds[J]. Nutrient Cycling in Agroecosystems,2001,59(1):29-38.
    Williams J R. Sediment Routing for A gricultural Watersheds[J]. Water Resources Bulletin,1975,11:965~974.
    Williams J R. Sediment-yield Prediction with universal equation using runoff energy faetor. In:Present and Prospective Technology for Predicting Sediment Yields and Sourees, Proc. of Sediment-yield workshop, USDA, Qxford, MI,1975: 244-252.
    Wischmeier W H, Smith D D. Predicting rainfall erosion losses [J]. U S Dept of Agriculture, Agricultural Handbook,1978, 537:10-34.
    Yan W, Y in C, T ang H. Nutrient retention by multipond systems:mechanisms for the control of nonpoint source pollution[J]. J.Environ. Qual.,1998,27:1009-1017.
    Yin C, Zhao M, Jin W, et al. A multi-pond system as a protective zone for the management of lakes in China[J]. Hydrobiologia,1993,251:321-329.
    Yuan,D.,Lin,B.,Falconer,R.A.,Tao,J.Development of an integrated model for assessing the impact of diffuse and point source pollution on coastal waters[J].Environmental Modelling and Software,2007,22(6):871-879.
    Zampella R A. Characterization of surface water quality along a watershed disturbance gradient [J]. Water Resource Bulletin (Urb.),1994,30:605.
    鲍全盛,毛显强,王华东.我国水环境非点源污染研究与展望[J].上海环境科学,1996,15(5):11-16.
    鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,16(1):66-71.
    蔡明,李怀恩,庄咏涛,等.改进的输出系数法在流域非点源污染负荷估算中应用[J].水利学报,2004(7):40-45.
    柴世伟,裴晓梅,张亚雷等.农业面源污染及其控制技术研究[J].水土保持学报,2006,20(6):192-195.
    常娟,王根绪.黑河流域不同土地利用类型下水体N、P质量浓度特征与动态变化[J].兰州大学学报,2005,41(1):11-6.
    陈慧.澳大利亚的全流域管理[J1.环境导报,1997,(1):3-6.
    陈利顶,傅伯杰.农田生态系统管理与非点源污染控制[J].环境科学,2000,(2):98-100.
    陈利顶,傅伯杰,徐建英等.基于“源-汇”生态过程的景观格局识别方法-景观空间负荷对比指数[J].生态学报,200。3,23(1]):2407-2413.
    陈利顶,傅伯杰,张淑荣.异质景观中非点源污染动态变化比较研究[J].生态学报,2002,22(6):808-816.
    陈利顶,傅伯杰,赵文武等.“源-汇”景观理论及其生态学意义[J].生态学报,2006,26(5):1444~1449.
    陈为峰,史衍玺.“3S”技术在农业非点源污染研究中的应用[J1.水土保持学报,2002,16(2):122-125.
    陈西平,黄时达.涪陵地区农田地表径流输出负荷定量化研究[J].环境科学,1991,12(3):75-79.
    陈西平.计算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学,1992,12(1):48-52.
    滇池流域面源污染控制技术(清华大学,云南省环境科学研究院,中国农业科学院农业资源与农业区划研究所等:陈吉宁,李广贺,王洪涛等)
    丁晓雯,沈珍瑶,刘瑞民.基于水文水质资料的非点源输出系数模型参数确定方法及其应用[J].北京师范大学学报,2006,42(5):534-538.
    丁晓雯,沈珍瑶,刘瑞民等.基于降雨和地形特征的输出系数模型改进及精度分析[J].长江流域资源与环境,2008,17(2):306-309.
    樊娟,刘春光,石静等.非点源污染研究进展及趋势分析[J].农业环境科学学报,2008,27(4):1306-1311.
    冯孝杰.三峡库区农业面源污染环境经济分析[D].西南大学博士学位论文:2002.12.
    付永锋,陈文辉,赵基花.非点源污染的研究进展与前景展望[J].山西水利科技,2003,(3):
    傅伯杰,马克明,周华峰等.黄土丘陵区土地利用结构对土壤养分分布的影响[J].科学通报,1998,43(22):2444-2448.
    甘小泽.农业面源污染的立体化削减[J].农业环境与发展,2005,(5):34-37.
    高超,朱继业,窦贻俭,张桃林.基于非点源污染控制的景观格局优化方法与原则[J].生态学报,2004,(01)
    高秋霞,李田.国外城市非点源径流水质模型简介[J].安全与环境工程,2003,10(4):9-12.
    郭鸿鹏,朱静雅,杨印生.农业非点源污染防治技术的研究现状及进展[J].农业工程学报,2008,24(4):290-295.
    郭旭东,陈利顶.土地利用/土地覆被对区域生态环境的影响[J].环境科学进展,1999,7(6):66-75.
    郝俊萍.三峡库区典型小流域非点源污染模拟研究[D].华中农业大学硕士学位论文,2008.
    何园球,王明珠.红壤低丘地区种养复合农业生态系统研究[J].生态农业研究,1999,7(3):55-58.
    洪华生,黄金良,曹文志.九龙江流域农业非点源污染机理与控制研究[D].北京:科学出版社,2008.
    黄东风,王果,陈超.农业面源污染研究概况及发展趋势[J].中国农村小康科技,2006,(11):39-45,52.
    黄丰.三峡库区农业非点源污染规律调查研究[D].华中农业大学硕士学位论文,2007.
    黄满湘,章申,唐以剑等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境,2001,10(1):6-10.
    黄满湘.北京地区农田生态系统氮磷向水体迁移的过程、机理和影响因素的研究[D].中国科学院地理科学与资源研究所,2001.
    黄真理,李玉樑.三峡水库水质预测和环境容量计算[M].北京:中国水利水电出版社,2006.91.
    荚德安,陈金林,王世红等.太湖流域农田生态系统管理与非点源污染控制[J].长江流域资源与环境,2007,16(4):489-493.
    蒋勇军,袁道先,谢世友等.典型岩溶农业区地下水质与土地利用变化分析——以云南小江流域为例[J].地理学报,2006,61(5):471-481.
    蕉荔.USLE模型及营养物流失方程在西湖非点源污染调查中的应用[J].环境污染与防治,1991,13(6):5-8,17.
    金相灿,刘文祥,叶春等.湖泊非点源污染控制及生态恢复技术[A].中国水污染防治技术装备论文集,1998,(8):238-255.
    金相灿,尚愉民,徐南妮等.湖泊富营养化控制与管理技术[M].北京:化工出版社,2001.
    金相灿,屠清英主编.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990.
    李本纲,陶澍.地理信息系统在环境模型研究中的应用[J].环境科学,1998,19(3):87-90.
    李崇明,黄真理.三峡水库入库污染负荷研究(I)——蓄水前污染负荷现状[J].长江流域资源与环境,2005,14(5):611-622.
    李崇明,黄真理.三峡水库入库污染负荷研究(II)——蓄水后污染负荷现状[J].长江流域资源与环境,2006,15(1):97-106.
    李恒鹏,黄文钰,杨桂山等.太湖上游典型城镇地表径流面源污染特征[J].农业环境科学学报,2006,25(6):1598-1602
    李恒鹏,杨桂山,黄文钰等.太湖上游地区面源污染氮素入湖量模拟研究[J].土壤学报,2004,44(6):612-618.
    李恒鹏,黄文钰,杨桂山等.太湖地区蠡河流域不同用地类型面源污染特征[J].中国环境科学,2006,26(2):243-247.
    李恒鹏,刘晓玫,黄文钰.太湖流域浙西区不同土地利用类型的面源污染产出[J].地理学报,2004,59(3):401-408.
    李怀恩,沈晋.非点源污染数学模型[M].西安:西北大学出版社,1996.
    李怀恩.水文模型在非点源污染研究中的应用[J1.陕西水利,1987,(3):18-23.
    李健忠,庞明,叶朝霞等.我国农业非点源污染研究进展及其防治措施[J].广州化学,2008,33(2):54-58,79.
    李俊然,陈利顶,郭旭东等,土地利用结构对非点源污染的影响[J].中国环境科学,2000,20(6):506-510
    李佩武.N,P输出与土地利用类型相关性研究[J].农业环境与发展,1998,15(3):42-46.
    李强坤,李怀恩,胡亚伟等.黄河干流潼关断面非点源污染负荷估算[J].水科学进展,2008,19(4):460-466.
    李强坤,李怀恩,胡亚伟等.农业非点源污染田问模型及其应用[J].环境科学,2009,30(12):3509-3513.
    李童航,张根源.水土保持对非点源污染控制的水环境效应机理探悉[J].科技创新导报,2009,(8):111,113.
    李文杰.梁子湖流域土地利用变化对流域水环境的影响[M].华中师范大学硕士学位论文,2009.
    李宪文.中国科学院南京土壤研究所博士后研究工作报告[R].2000.
    李玉山,刘国彬,刘宝元等.中美小流域治理和农业的对比研究[J].水土保持通报,1993,13(1):11-15.
    李兆富,杨桂山,李恒鹏.基于改进输出系数模型的流域营养盐输出估算[J].环境科学,2009,30(3):668-672.
    李兆富,杨桂山,李恒鹏.西苕溪典型小流域土地利用对氮素输出的影响[J].中国环境科学,2005,25(6):678-681.
    李兆富,杨桂山,李恒鹏.西苕溪流域不同土地利用类型营养盐输出系数估算[J].水土保持学报,2007,21(1):1-4,34.
    李兆富.流域土地利用/覆被变化对营养盐输出影响研究[D].南京:中国科学院南京地理与湖泊研究所,2006.73-82.
    梁常德,龙天渝,李继承等.三峡库区非点源氮磷负荷研究[J].长江流域资源与环境,2007,16(1):26-30.
    梁涛,王红萍,张秀梅等.官厅水库周边不同土地利用方式下氮、磷非点源污染模拟研究[J].环境科学学报,2005,25(4):483-490.
    梁涛,张秀梅,章申,等.西苕溪流域不同土地类型下氮元素输移过程[J].地理学报,2002,57(4):389-396.
    梁涛,王浩,章申等.西苕溪流域不同土地类型下磷素随暴雨径流的迁移特征[J].环境科学,2003,24(2):35-40.
    粱涛,张秀梅,章申等.西苕溪流域不同土地类型下氮元素输移过程[J].地理学报,2002,57(4):389-396.
    刘芳,沈珍瑶,刘瑞民.基于“源-汇”生态过程的长江上游农业非点源污染[J].生态学报,2009,29(6):3271-3277.
    刘枫,王华东,刘培桐.流域非点源污染的量化识别方法及其在于桥水库流域的应用[J].1998,43(4):329-340.
    刘纪辉,赖格英.农业非点源污染研究进展[J].水资源与水工程学报,2007,]8(1):29-32.
    刘腊美,龙天渝,李崇明等.嘉陵江流域非点源溶解态氮污染负荷模拟研究[J].农业环境科学学报,2009,28(4):808-813.
    刘腊美.嘉陵江流域非点源氮磷污染及其对重庆主城段水环境影响的研究[D].重庆大学博士学位论文,2009.
    刘瑞民,沈珍瑶,丁晓雯等.应用输出系数模型估算长江上游非点源污染负荷[J].农业环境科学学报,2008,27(2):677-682
    刘瑞民,杨志峰,丁晓雯等.土地利用/覆盖变化对长江上游非点源污染影响研究[J].环境科学,2006,27(12):2407-2414.
    龙天渝,梁常德,李继承等.基于SLURP模型和输出系数法的三峡库区非点源氮磷负荷预测[J].环境科学学报.2008,28(3): 574-581.
    罗锋.三峡库区次级河流富营养化趋势研究[D].重庆大学硕士学位论文,2004.5
    毛战坡,尹澄清,单保庆等.农业非点源污染物在水塘景观系统中的空间变异性研究[J].水利学报.2006,37(6):727-733,739.
    牟溥,王庆成,Anne E. Hershey等.土地利用、溪流级别与溪流河水理化性质的关系[J].生态学报,2004,24(7):1486.1492.
    任磊,黄廷林.水环境非点源污染的模型模拟[J].西安建筑科技大学学报(自然科学版),2002,34(1):9-13.
    阮伏水,朱鹤健.福建省花岗岩地区土壤侵蚀与治理[M].北京:中国农业出版社,1997.
    施迅.坡地改良利用中活篱笆的种类选择和水平空间结构初步研究[J].生态农业研究,1995,3(2):49-53.
    史培军,袁艺,陈晋.深圳市土地利用变化对流域径流的影响[J].生态学报,2001,21(7):1041-1049.
    史志华,张斌.汉江中下游农业面源污染动态监测信息系统的建立与初步应用[J].遥感学报,2002,6(5):63-68.
    舒冬妮.南水北调东线山东段防治农业面源污染农业生态工程建设[J].农业环境与发展,.2003(6):21-23.
    索安宁,王天明,王辉等.基于格局-过程理论的非点源污染实证研究:以黄土丘陵沟壑区水土流失为例[J].环境科学,2006,27(12):2415-2420.
    唐亚,谢嘉穗,陈克明等.等高固氮植物篱技术在坡耕地可持续耕作中的应用[J].水土保持研究,.2001,8(1):104-109.
    汪忠善,王志强,刘志.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究[J].水土保持研究,1996,3(2):84-97.
    王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J].地理学报,2000,55(1):84-91
    王明珠,尹瑞龄.红壤丘陵区生态农业模式研究[J].生态学报,1998,18(6):595-600.
    王世岩,杨永兴,杨波.我国湿地农业可持续发展模式探析[J].中国生态农业学报,2005,13(2):176-178.
    王晓燕,王一峋,蔡新广等.北京密云水库流域非点源污染现状研究[J].环境科学与技术,2002,25(4):1-3.
    王晓燕.非点源污染定量研究的理论及方法[J].首都师范大学学报(自然科学版):1996,17(1):91-95.
    王晓燕.非点源污染及其管理[M].北京:海洋出版社,2003.
    王秀娟,刘瑞民,何孟常.土地利用及其变化对松辽流域非点源污染影响研究[J].地理科学,2009,29(4):555-560.
    王亚娟,杨亚娟,安国春.水土保持在农业非点源污染防治中的作用[J].水土保持应用技术,2007,(5):35-36.
    夏立忠,杨林章.太湖地区典型小城镇降雨径流N/P负荷空间分布研究[J].农业环境科学学报,2003,22(3):267-270.
    夏青,庄大邦,廖庆宜等.计算非点源污染负荷的流域模型[J].中国环境科学,1985,(4):23-30.
    肖笃宁,高峻.农村景观规划与生态建设[J].农村生态环境,2001,17(4):48-51
    肖宏宇.三峡库区几种不同土地利用类型对氮平衡的影响[D].华中农业大学硕士学位论文,2007.
    谢德体,丁恩俊.岩溶山地生态系统退化机制及恢复与重建:以重庆市为例[M].北京:科学出版社,2010.1
    胥彦玲.基于土地利用/覆被变化的陕西黑河流域非点源污染研究[D].西安理工大学博士学位论文,2007.
    许峰,蔡强国,吴淑安等.坡地等高植物篱带间距对表土养分流失的影响[J].土壤侵蚀与水土保持学报,1999b,5(2):23-29.
    许峰,蔡强国,吴淑安等高植物篱在南方湿润山区坡地的应用[J].山地学报,1999a,17(3):193-199.
    阎伍玖,鲍祥.巢湖流域农业活动与非点源污染的初步研究[J].水土保持学报,2001,15(4):129-132.
    阎伍玖,王心源.巢湖流域非点源污染初步研究[J].地理科学,1998,18(3):263-267.
    阎伍玖.巢湖流域不同土地利用类型、地表径流污染特征研究[J1.长江流域资源与环境,1998,7(3):274-277.
    杨金玲,张甘霖,张华等.丘陵地区流域土地利用对氮素径流输出的影响[J].环境科学,2003,24(1):16-23.
    杨林章,王德建,夏立忠.太湖地区农业面源污染特征及控制途径[J].中国水利,20:29-30.
    杨修,章力建,李正等.农业立体污染防治的生态学思考[J].生态学报,.2005,25(4):904-909.
    杨子生.滇东北山区坡耕地土壤侵蚀的水土保持措施因子[J].山地学报,1999,17(增):22-24.
    尹澄清.城市面源污染的控制原理和技术[M].北京:中国建筑工业出版社,2009.
    于兴修,杨桂山.典型流域土地利用/覆被变化及对水质的影响——以太湖上游浙江西苔溪流域为例[J].长江流域资源与环境,2006,12(3):
    于兴修,杨桂山,梁涛.西苕溪流域土地利用对氮素径流流失过程的影响[J].农业环境保护,2002,21(5):424-427.
    苑韶峰,吕军.流域农业非点源污染研究概况[J].土壤通报,2004,35(4):507-511.
    岳隽,王仰麟,李正国等.河流水质时空变化及其受土地利用影响的研究——以深圳市主要河流为例[J].水科学进展.2006,117(13):359-364.
    张宝文.积极发展生态农业、努力防治面源污染——在农业部纪念“6.5”世界环境日座谈会上的讲话[J].中国农业科技导报,2001,3(5):3-6.
    张殿发,王世杰,李瑞玲.土地利用/土地覆被变化对长江流域水环境的影响研究[J].地域研究与开发,2003,22(1):69-72.
    张淑荣,陈利顶,傅伯杰等.农业区非点源污染潜在危险性评价——以于桥水库流域磷流失为例[J].第四纪研究,2003,23(3):262-269.
    张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,17(6):51-55.
    张维理,冀宏杰,Kolbe H等.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制[J].中国农业科学,2004,37(7):1026-1033.
    张维理,徐爱国,冀宏杰等.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    张维理,徐爱国,冀宏杰等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,2004,37(7):1026-1033.
    张蔚文.农业非点源污染控制和管理政策研究:以平湖市为例的政策模拟与设计[D].浙江大学博士学位论文,2006.4
    张兴昌,邵明安.植被覆盖度对流域有机质和氮素径流流失的影响[J].草地学报,2000,8(3):198-203.
    张瑜芳,张蔚榛,沈荣开等.排水农田中氮素转化运移和流失[M].武汉:中国地质大学出版社,1997.
    张瑜芳,张蔚榛,沈荣开等.水动力学研究与进展[J].1996,11(3):251-260.
    张玉珍.九龙江上游五川流域农业非点源污染研究[D].厦门大学博士学位论文,2003.
    章力建,蔡典雄,王小彬等.农业立体污染及其防治研究的探讨[J].中国农业科学,2005,38(2):350-357.
    章力建,朱立志.我国“农业立体污染”防治对策研究[J].农业经济问题:2005,(2):4-7.
    赵本涛.中国农业面源污染的严重性与对策探讨[J1.环境教育,2004,(11):70-71.
    赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    郑丙辉,王丽婧,龚斌.三峡水库上游河流入库面源污染负荷研究[J].环境科学研究,2009,22(2):125-131.
    郑丙辉.流域非点源污染负荷模型及其对湖泊生态环境影响的研究[D].四川联合大学,1997.
    中华人民共和国环境保护部.2009年长江三峡工程生态与环境监测公报,2010.2.
    周慧平,许有鹏,葛小平.GIS支持下非点源污染模型应用分析[J].水土保持通报,2003,23(3):60-63.
    朱萱,鲁纪行,边金钟等.农田径流非点源污染特征及负荷定量化方法探讨[J].环境科学,1985,6(5):6-11.
    朱有为,段丽丽.浙江省农业面源污染现状与对策[J].全国农业面源污染与综合防治学术研讨会论文集,中国农学通报期社,2004,(11):51-52.
    庄咏涛.渭河临潼断面以上流域非点源总氮负荷研究[D].西安:西安理工大学,2001.
    邹桂红.基于AnnAGNPS模型的非点源污染研究——以大沽河典型小流域为例[D].中国海洋大学研究生学位论文,2007.6.
    邹伦,李佩武.降雨—产流过程与氮、磷流失特征研究[J].环境科学学报,1996,16(1):111-116.
    Boers P C M. Nutrient emissions from agriculture in the Netherlands:causes and remedies[J]. Water Science and Technology, 1996,33:81.
    CatsilloM M, Allan J D, Brunzell S. Nutrient concentrations and discharge in a midwesttern agricultural catchment[J].J Environ Qual,2000,29(4):1142-1151.
    David A, Howes D A. Modeling runoff and use in a desert shrub land ecosystem, Jornada Basin, New Mexico[J]. Geomorphology,2003,53:45-73.
    Dennis L.Corwin, Keith Loague, Timothy R. Ellsworth. GIS支持下的非点源污染模型[J].水土保持科技情报,1999,(1):14-16.
    European Environment Agency.Europe's water quality generally improving but agriculture still the main challenge[EB/OL]. http://www.eea.eu.int/,2003-11-17.
    Foy R H, Withers P J A.The contribution of agricultural phosphorus to eutrophication[J]. Proceedings of the Fertilizer Society, 1995:356.
    Kalfountzos l, Alexiou S. Effect of subsurface drip irrigation on cotton plantations[J]. Water Resource Manage.,2006,34(1): 278-283.
    Kronvang,B.,et al. Diffuse Nutrient Losses in Denmark[J]. Water Sci.Technol.(G.B.),33:81(1996)
    Lammert M, Allan J D. Assessing biotic integrity of streams effects of scale in measuring the influence of land use/cover and habitat structure on fish and macro-invertebrates [J]. Environ Manage,1999,23(2):257-270.
    Lena B V. Nutrient preserving in riverine transitional strip[J]. Journal of Human Environment,1994,3(6):342-347.
    Ministyr of the Environment of Finland. Sources, processes and effects of water pollution:Nutrient load on watercourses. http://www.vyh.fi/eng/environ/sustdev/indicat/inditaul.htm,2003.
    Phene C J, Davis K R and Hutmacher R B. Advantages of subsurface irrigation for processing tomatoes[J]. Acta Hort.,1987, 200:101-114.
    Prakash B, Lawrence D T. Relationships Between Landscape Characteristics and Nonpoint Source Pollution Inputs to Coastal Estuaries [J]. Environ Manage,1999,23(4):539-549.
    Sharpley A N, Chapra S C R, Wedepohl R et al. Managing agricultural phosphorus for protection of surface waters, issues and options[J]. Journal of Environment Quality,1994,23:427-451.
    Sharplry A N, Simth S J, Nancy J W. Environmental impact of agricultural nitrogen and phosphorus [J]. Agric Food Chem, 1987,35:812-817.
    Sponeseller R A, Benfield E F, Valett H M,et al. Relationships between land use, spatial scale and stream macro invertebrate communities [J]. Freshw Biol,2001,46:1409-1424.
    Udoyars S T, Robbert J. Evaluating agriculture non-point source pollution using integrated geographic information systems and hydrologic/water quality model[J]. Environment Quality,1994,23:25-35.
    Uunk E J B. Eutrophication of surface waters and the contribution of agriculture[J]. Proceedings of the Fertilizer Society, 1991,303:55.
    Vighi M, Chiaudani G. Eutrophication in Europe, the role of agricultural activities.ln:Hodgson E.Reviews of Environmental Toxicology[M].Amsterdam:Elsevier,1987:213-257.
    Vladimir Novotny. Integrating diffuse/nonpoint pollution control and water body restoration into waterrshed management[J]. Journal of the Ameriean Water Resources Association,1999,35(4):717-722.
    陈海生,崔绍荣.泰国的农业非点源污染[J].世界农业,2003,(4,总288):46-47.
    陈吉宁,李广贺,王洪涛.滇池流域面源污染控制技术研究[J].中国水利,2004,9:47-50.
    陈静,丁卫东,焦飞等.丹江口水库总氮含量较高的调查分析[J].中国环境监测,2005,21(3):54-57.
    陈利顶,李俊然,郭旭东等.蓟运河流域地表水质时空变化特征分析[J].环境科学,2000,21(6):61-64.
    陈利顶,丘君,张淑荣等.复杂景观中营养型非点源污染时空变异特征分析[J].环境科学,2003,24(3):85-90.
    崔键,马友华,赵艳萍等.农业面源污染的特性及防治对策[J].中国农学通报,2006,22(1):335-340.
    崔键,马友华,赵艳萍等.农业面源污染的特性及防治对策[J].中国农学通报,2006,22(1):335-340.
    丁恩俊,谢德体.基于农业面源污染控制的三峡库区保护性耕作技术[J].农机化研究,2009,(8):1-5.
    冯明磊,胡荣桂,许克翠等.三峡小流域水体硝态氮含量变化特征及其影响因素研究[J].环境科学,2008,29(1):13-18.
    官宝红,李君,曾爱斌等.杭州市城市土地利用对河流水质的影响[J].资源科学,2008,30(6):857-863.
    郭鸿鹏,朱静雅,杨印生等.农业非点源污染防治技术的研究现状及进展[J].农业工程学报,2008,24(4):290-295.
    郭青海,马克明,赵景柱等.城市非点源污染控制的景观生态学途径[J].应用生态学报,2005,16(5):977-981.
    郭青海,马克明,杨柳.城市非点源污染的主要来源及分类控制对策[J].环境科学,2006,27(11):2170-2175.
    国家发展和改革委员会.三峡库区经济社会发展规划([2004]2039号文).2004.9.
    国家环境保护总局.三峡库区及其上游水污染防治规划(2001年~2010年).2001.11.
    贺瑞敏,陆桂花,张建云.我国非点源污染研究进展与发展趋势[J].水文,2005,25(4):10-13.
    金相灿.中国湖泊富营养化.见:中国湖泊环境[M].北京:海洋出版社,1995.
    李恒鹏,刘晓玫,黄文钰.太湖流域浙西区不同土地利用类型的面源污染产出[J].地理学报,2002,57(4):389-396.
    李建忠,庞明,叶朝霞等.我国农业非点源污染研究进展及其防治措施[J].广州化学,2008,33(2):54-58,79
    李俊然,陈利顶,郭旭东等.土地利用结构对非点源污染的影响[J].中国环境科学,2000,20(6):506-510.
    李瑞雪.三峡库区小流域治理模式和决策支持系统研究[D].西南农业大学博士学位论文,2005.6.
    李兆富,杨桂山,李恒鹏.西苕溪流域土地利用对氮素输出影响研究[J].环境科学,2006,27(3):498-502.
    刘礼祥,刘真,章北平,等.人工湿地在非点源污染控制中的应用[J].华中科技大学学报(城市科学版),2004,21(1):40-43.
    龙天渝,李继承,刘腊美.嘉陵江流域吸附态非点源污染负荷研究[J].环境科学,2008,29(7):1810-1817.
    马立珊,汪祖强,张水铭等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,17(1):39-47.
    马志林.三峡库区坡耕地水土流失特征及防治效应研究[D].北京林业大学博士学位论文,2009.
    秦耀民,胥彦玲,李怀恩.基于SWAT模型的黑河流域不同土地利用情景的非点源污染研究[J].环境科学学报,2009,29(2):440-448
    宋泽芬,王克勤,杨云华等.澄江尖山河小流域不同土地利用类型面源污染输出特征[J].水土保持学报,2008,22(2):98-101.
    唐莲,白丹.农业活动非点源污染与水环境恶化[J].环境保护,2003,(3):18-20.
    王夏晖,尹澄清,单保庆.农业流域“汇”型景观结构对径流调控及磷污染物截留作用的研究[J].环境科学学报,2005,25(3):293-299.
    王晓燕,王一峋,王晓峰等.密云水库小流域土地利用方式与氮磷流失规律[J].环境科学研究,2003,16(1):30-33.
    西南农业大学.三峡库区农业面源污染控制战略决策及关键控制技术研究报告(预研)[R].重庆:西南农业大学,2004.
    谢德体,张文,曹阳.北美五大湖区面源污染治理经验与启示[J].西南大学学报(自然科学版),2008,30(11):81-91.
    胥彦玲.基于土地利用/覆被变化的陕西黑河流域非点源污染研究[D].西安理工大学,2007.3.
    杨建云.洱海湖区非点源污染与洱海水质恶化[J].云南环境科学,2004,4(23):104.
    杨金玲,张甘霖,张华等.丘陵地区流域土地利用对氮素径流输出的影响[J].环境科学,2003,24(1):16-23.
    尹澄清.城市面源污染的控制原理和技术[M].北京:中国建筑工业出版社,2009.
    袁东海,王兆骞,陈欣等.红壤小流域不同利用方式氮磷流失特征研究[J].生态学报,2003,23(1):188-198.
    岳隽,王仰麟,李贵才等.基于水环境保护的流域景观格局优化理念初探[J].地理科学进展,2007,26(3):38-46.
    章立建,朱立志.我国“农业立体污染”防治对策研究[J].农业经济问题,2005,(2):4-7.
    赵同科,张强.农业非点源污染现状、成因及防治对策[A].全国农业面源污染与综合防治学术研讨会论文集.中国农学通报期社,2004,(11):14-17.
    郑丙辉,曹承进,秦延文等.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学,2008,29(1):1-6.
    中华人民共和国环境保护部,中华人民共和国国家统计局,中华人民共和国农业部.第一次全国污染源普查公报.2010.2.
    中华人民共和国环境保护部.2009年长江三峡工程生态与环境监测公报.2010.2.
    中华人民共和国统计局.2009年中国统计年鉴[M].北京:中国统计出版社,2009.
    周慧平,高超.巢湖流域非点源磷流失关键源区识别[J].环境科学,2008,29(10):2696-2702.
    朱兆良,诺斯(David Norse),孙波.中国农业面源污染控制对策[M].北京:中国环境科学出版社,2006.12.
    曹承进,秦延文,郑丙辉等.三峡水库主要入库河流磷营养盐特征及其来源分析[J].环境科学,2008,29(2):310-315.
    陈西平,黄时达.涪陵地区农田地表径流输出负荷定量化研究[J].环境科学,1991,12(3):75-79.
    陈西平.计算降雨及农田径流污染负荷的三峡库区模型[J].中国环境科学,1992,12(1):48-52.
    陈吉宁等.流域面源污染控制技术:以滇池流域为例[M].北京:中国环境科学出版社,2009.4.
    邓春光.三峡库区富营养化研究[M].北京:中国环境科学出版社,2007.5.
    丁恩俊,谢德体.基于农业面源污染控制的三峡库区保护性耕作技术[J].农机化研究,2009,(8):1-5.
    冯孝杰.三峡库区农业面源污染环境经济分析[D].西南大学博士学位论文,2005.11.
    郭鸿鹏,朱静雅,杨印生.农业非点源污染防治技术的研究现状及进展[J].农业工程学报,2008,24(4):290-295.
    国家环境保护总局.三峡库区及其上游水污染防治规划(2001年~2010年).2001.11.
    贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,]9(5):87-91.
    李崇明,黄真理.三峡水库入库污染负荷研究(Ⅱ)——蓄水后污染负荷现状研究[J].长江流域资源与环境,2006,15(1):97-106.
    李崇明,黄真理.三峡水库入库污染负荷研究(Ⅱ)——蓄水前污染负荷现状研究[J].长江流域资源与环境,2005,14(5):611-622.
    上饶县农业农村污染面源防控调研报告.http://www.srx.gov.cn/zwpd/i/200912/2741.html.
    孙阳,王里奥,袁辉.三峡水库氮磷污染贡献率估算[J].重庆大学学报,2004,27(10):138-141.
    温熙胜.三峡库区坡耕地农林复合种植模式与效益研究[D].西南农业大学硕士学位论文,2004.
    西南农业大学.三峡库区农业面源污染控制战略决策及关键控制技术研究报告(预研)[R].重庆:西南农业大学,2004.
    郑丙辉,曹承进,秦延文等.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学,2008,29(1):1-6.
    郑丙辉王丽婧,龚斌.三峡水库上游河流入库面源污染负荷研究[J].2009,22(2):125-131.
    郑一,王学军.非点源污染研究的进展与展望[J].水科学进展,,2002,13(1):105-110.
    中华人民共和国环境保护部.2008年长江三峡工程生态与环境监测公报,2008.5.
    中华人民共和国环境保护部.2009年长江三峡工程生态与环境监测公报,2010.2.
    Burrough P H. Soil variability:a late 20thcentury view[J]. Soils and Fertilizers,1993,56(5):529-562.
    Fu B J, Chen L, Ma K,et al. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China[J].Catena.2000,39:69-78.
    Heng 1 T, Gerard B M, Heuvelink.et al. A generic framework for spatialprediction of soilvariablesbased on regression-kriging[J]. Geoderma,2004,120:75-93.
    Hillel D. Research in soil physics:areview[J]. Soil Science,1991,151:30-34-
    Legendre P and Fortin M J. Spatial pattern and ecological analysis[J].Vegetatio,1989,80:107-138.
    Li H B and Reynolds J F. On definition and quantification of heterogeneity[J].Oikos,1995,73:280-284.
    Liu B Z, Li G L, Wu F Q et al. The regular patterns of the loss of soil nutrients on southern Loess Plateau[J]. Journal of Soil and Water Conservation,1995,9(2):77-86.
    Rossi R E, Mulla D J,et al. Geostatistical tools for modeling and interpreting ecological spatial dependence[J]. Ecological Monographs,1992,62(2):277-314.
    Wang J, Fu B J, Qiu Y,et al. Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China[J].Journal of Arid Environments,2001,48(4):537-550.
    Wang Jun, Fu Bojie, Qiu Yang,et al. Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China[J]. Journal of Arid Environments,2001,48(4):537-550-
    Webster R, OliverMA. Geostatistics for environmental scientists [M]. John Wiley&Sons, Ltd, West Sussex, UK,1990.
    Webster R.Quantitative spatial analysis of soil in the field[J].Adv Soil Sci,1985, (3):1-70
    程先富,史学正,于东升等.丘陵山区林地土壤养分状况研究——以江西省兴国县为例[J].水土保持学报,2003,17(2):28-30.
    高祥照,胡克林,郭焱等.土壤养分与作物产量的空间变异特征与精确施肥[J].中国农业科学,2002,35(6):660-666.
    龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报,1998,35(1):10-15.
    胡克林,李保国,林启美等.农田土壤养分的空间变异性特征[J].农业工程学报,1999,15(3):33-38.
    孔祥斌,张凤荣,齐伟等.集约化农区土地利用变化对土壤养分变化的影响——以河北省曲周县为例[J].地理学报,2003,58(3):333-342.
    李海东,张波,沈渭寿等.苏南山丘区小流域土壤养分特性空间分布[J].长江流域资源与环境,2009,18(9):831-
    李艳,史舟,徐建明等.地统计学在土壤科学中的应用及展望[J].水土保持学报,2003,17(1):178-182.
    连纲,郭旭东,傅伯杰等.黄土高原县域土壤养分空间变异特征及预测[J].土壤学报,2008,45(4):577-584.
    连纲,郭旭东,傅伯杰等.黄土高原小流域土壤养分空间变异特征及预测[J].生态学报,2008,.28(3):946-954.
    廖晓勇,陈治谏,刘邵权,等.三峡库区小流域土地利用方式对土壤肥力的影响[J].生态环境.2005,14(1):99-101.
    林春霞.泉州市不同利用类型土壤养分状况分析[J].福建农业,2009,(12):13
    龙训建,钱鞠,张春敏等.高寒草甸区典型景观单元土壤养分空间变异性研究[J].冰川冻土,2008,30(1):139-146.
    马云,何丙辉,陈晓燕等.不同土地利用方式下坡面土壤养分分布特征[J].水土保持学报,2009,(06):118-122.
    秦鱼生,涂仕华,冯文强等.成都平原水旱轮作种植下土壤养分特性空间变异研究[J].土壤学报,2008,45(2):355-359.
    邱杨,傅伯杰,王军等.黄土高原小流域土壤养分的时空变异及其影响因子[J].自然科学进展,2004,14(3):294-299.
    沈德福,史学正,吕成文等.江苏沿江地区土壤肥力空间分布及其区域对比研究[J].长江流域资源与环境,2005,14(3):316-321.
    史利江,郑丽波,柳云龙.农田土壤养分空间变异特征研究[J].河南农业大学学报,2008,42(1):51-56,70.
    史利江,郑丽波,柳云龙等.长三角地区农田土壤养分空间变异及养分综合评价[J].长江流域资源与环境,2008,17(6):839-839.
    孙波,赵其国,闾国年.红壤肥力的时空变异[J].土壤学报,2002,39(2):190-197.
    汪璇,王成秋,唐将等.基于地统计学和GIS的三峡库区土壤微量营养元素空间变异性研究[J].土壤通报,2009,40(2):359-365.
    王军,傅伯杰,邱杨等.黄土高原小流域土壤养分的空间分布格局-Kriging插值分析[J].地理研究,2004,22(3):373-379.
    王军,傅伯杰,邱杨等.黄土高原小流域土壤养分的空间异质性[J].生态学报,2002,22(8):1173-1177.
    王军德,王根绪,陈玲.高寒草甸土壤水分的影响因子及其空间变异研究[J].冰川冻土,2006,28(3):428-433.
    王清华.大黑山土地不同利用方式对土壤特性的影响[J].科技信息,2009,(28):492-493
    王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    王宗明,张柏,宋开山等.东北平原典型农业县不同利用方式对耕地土壤养分状况的影响研究[J].农业系统科学与综合研究,2009,(04):433-436.
    谢德体.土壤地理学[M].成都科技大学出版社,1996.
    许尚平,陶澎,徐福留等.内蒙土壤微量元素含量的空间结构特征[J].地理学报,2000,55(3):337-345.
    许咏梅,冯耀祖,张小玲.土壤速效养分空间变异研究[J].新疆农业科学,2003,40(2):103-105
    杨剑虹,王成林,代亨林等.土壤农化分析与环境监测[M].北京:中国大地出版社,2008.
    张伟,陈洪松,王克林等.典型喀斯特峰丛洼地坡面土壤养分空间变异性研究[J].农业工程学报,2008,24(1):67-73.
    张伟,陈洪松,王克林等.喀斯特峰丛洼地土壤养分空间分异特征及影响因子分析[J].中国农业科学,2006,40(9):1829-1835.
    张有山,林启美,秦耀东等.大比例尺区域土壤养分空间变异定量分析[J].华北农学报,1998,13(1):122-128.
    郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J].水土保持学报,2004,18(3):53-56.
    中国科学院南京土壤研究所[M].土壤理化分析.上海科学技术出版社,1978.
    中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
    朱益玲,刘洪斌,谢德体等.江津紫色土壤养分空间变异性研究——地统计学方法[J].西南农业大学学报,2002,24(3):207=210.
    Alm A L. Non-point Sources of Water Pollution[J]. Environmental Science and Technology.1990,24(7):967.
    Capenter S R, et al. Non-point Pollution of Surface Waters With Phosphorus and Nitrogen[J]. Ecology,1998,8(3) 559-566.
    Gillil and M W. AGeographical Information Systemto Predict Non-point Sources Pollution Potential[J]. Water Resources Bulletin.1987,23(2):281-291.
    Mankin K R, et al. Watershed and Lake Water Quality Assessment:An Integrated Modeling Approach[J]. Journal of the American Water Resources Association,1999,35(5):1069-1079.
    Peter H Gleick. Water in Crisis:Paths to Sustainable Water Use[J]. Ecological Applications,1998,8(3):571-575.
    World Health Organization(WHO). Environmental levels and human exposure [I]. http//www.who.int/water-sanitation-health/GDWQ/Chemicals/nirtatenitriteful. html.Environmental, http://www.who.int/, 2001.
    Xing G X, Cao Y C,Shi S L, et al.N pollution sources and denitrification in water bodies in Taihu Lake region[J]. Science in China (Series B),2001,44(3):304-314.
    Ye W, Bates B C,Vmey N R,et al. Performance of concep tual rainfall-runoff models in lows-yielding ephemeral catchments [J]. Water Resource Research,1997,33 (1):153-166
    鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,16(1):66-71.
    陈克亮,方琳,朱波等.川中丘陵区小流域非点源氮污染特征——以中国科学院盐亭紫色土农业生态试验站小流域为例[J].西南农业学报,2003,16(增刊):116-121.
    单保庆,尹澄清,白颖等.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报,2000,20(1):33-37.
    黄民生.略论地下水硝酸盐氮污染及其防治措施[J].上海环境科学,1995,9(14):26-28.
    金相灿,刘鸿亮,屠清瑛等.中国湖泊富营养化调查[M].北京:中国环境科学出版社,1990.
    李恒鹏,杨桂山,刘晓玫等.太湖地区蠡河流域不同用地类型面源污染特征[J].自然灾害学报,2008,17(1):143.150.
    李俊然,陈利顶,傅伯杰等.于桥水库流域地表水非点源N时空变化特征[J].地理科学,2002,22(2):238-242.
    李佩武,姚玉君.于桥水库以上流域地形、坡度与N、P输出关系初探[J].天津师范大学学报(自然科学版),1994,14(4):50-54.
    刘宏斌,张云贵,李志宏等.北京市平原农区深层地下水硝态氮污染状况研究[J].土壤学报,2005,42(3):411-418.
    吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15.
    罗璇,史志华,尹炜等.小流域土地利用结构对氮素输出的影响[J].环境科学,2010,31(1):58-62.
    罗泽娇,靳孟贵.地下水三氮污染的研究进展[J].水文地质工程地质,2001,4:65-69.
    罗专溪,朱波,唐家良等.自然沟渠控制村镇降雨径流中氮磷污染的主要作用机制[J].环境科学学报,2009.29(3):561-568.
    马立珊,钱敏仁.太湖流域水环境硝态氮和亚硝态氮污染的研究[J].环境科学,1987,8(2):60-65.
    马立珊,汪祖强,张水铭等.苏南太湖水系农业面源污染及其控制对策研究[J1.环境科学学报,1997,17(1):39-47.
    马立珊.农田氮素管理与环境质量和作物品质[M]∥朱兆良,文启孝,中国土壤氮素.南京:江苏科技出版社,1992:267-287.
    潘峰,孙天云,刘铁民.京杭(杭州段)运河亚硝酸盐氮污染分布初探[J].江苏环境科技,1998,(4):17.19.《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,1989.
    王晓燕,王晓峰,汪清平等2004.北京密云水库小流域非点源污染负荷估算[J].地理科学,24(2):227-231.
    邢光熹,施书莲,杜丽娟等.苏州地区水体氮污染状况[J].土壤学报,2001,38(4):540-546.
    熊正琴,邢光熹,沈光裕等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境,2002,18(2):29-33.
    许其功,刘鸿亮,沈珍瑶等.三峡库区典型小流域氮磷流失特征[J].环境科学学报,2007,272:326-331.
    阎伍玖,王心源.巢湖流域非点源污染初步研究[J].地理科学,1998,18(3):263-267.
    杨爱玲,朱颜明.城市地表饮用水源保护研究进展[J].地理科学,2000,20(1):72-77.
    于兴修,杨桂山,梁涛西苕溪流域土地利用对氮素径流流失过程的影响[J].农业环境保护.2002,21(5):424-427.
    袁新民,同延安,杨学云等.不同施氮量对土壤N03-N累积的影响[J].干旱地区农业研究.,2000,19(1):8-13.
    张荣保,姚琪,计勇等.太湖地区典型小流域非点源污染物流失规律[J].长江流域资源与环境,2005,14(1):94-98.
    张胜,张云,张凤娥等.地下水N03-污染的原位微生态修复技术试验研究[J].农业环境科学学报,2004,23(6):1223-1227.
    张维理,田哲旭,张宁等.我国北方农用氮肥造成地下水硝态氮污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    中华人民共和国环境保护部.2008年长江三峡工程生态与环境监测公报.2008.
    Costanza R, Rd'Arge, de Groot R, et al. The value of the world's ecosystem services and natural capital[J]. Nature,1997,387: 253-260.
    GLP Science Plan and Implementation Strategy. IGBP Report No.53/IHDP Report No.19[R]. IGBP Secretariat, Stockholm: 2005.
    GranatL.1975. Principles in network design for precipitation chemistry measurements[J]. GreatLakesRes,2(Suppl):42-55.
    Guan W B,Xie C H,Ma KM,et a l.Landscape ecological restoration and rehabilitation is a key app roach in regional pattern design for ecological security[J]. Acta Ecologica Sinica,2003,23(l):64-73.
    Haycock N E and Muscutt A D. Landscape management strategies for the control of diffuse pollution[J]. Landscape and Urban Planning,1995,31:313-321.
    Honisch M C, Hellmeier KW eiss. Response of surface and subsurface water quality to land use changes[J]. Geoderma,2002, 105:277-298.
    IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry[M], Kanagawa Japan, Institute for Global Environmental Strategies(IGES) for the IPCC,2003.
    Rice R W, Izuno F T, Garcia R M. Phosphorus load reductions under best management practices for sugarcane cropping system s in the Everglades agricultural area[J]. Agri. Wat. Manage.,2002,56:17-39.
    RyszkowskiL, Barto szewicz A, Kedziora A. Management of matter fluxes by biogeochemical barriers at the agricultural landscape level[J]. Landscape Ecol.,1999,14:479-492.
    Sharpley AN, Chapra S C, Wedepoh 1 R, et al. Managing agricultural phosphorus for protection of surface waters:issues and options[J]. J. Environ. Qual.,1994,23:437-451.
    UNCED:Earth Summit Agenda 21:Prograunne of Action for Sustainable Development[M]. New York:UNEP,1992.
    William J Y, Frances M M. Nutrient exports and land use in Australian catchments[J]. Journal of Environmental Management,1996,47:165-183.
    鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,16(1):66-71.
    曹广明,张金霞.高寒草甸生态系统磷素循环[J].生态学报.1999,19(4):515-518
    陈治谏,刘邵权,廖晓勇等.三峡库区山地生态系统优化调控[J].山地学报,21(1):85-89.
    陈仲新,张新时.中国生态系统效益的价值[J].科学通报.2000,45(1):17-22.
    傅伯杰,陈利顶,马克明等.景观生态学原理及应用[M].北京:科学出版社,2002:150~51,202-207
    高超,朱继业,窦贻俭等.基于非点源污染控制的景观格局优化方法与原则[J].生态学报,2004,24(1):109-116.
    李文华,欧阳志云,赵景柱.生态系统服务功能研究[M].北京:气象出版社,2002
    李文华,张彪,谢高地.中国生态系统服务研究的回顾与展望[J].自然资源学报,2009,24(1):1~10.
    李文华等.生态系统服务功能价值评估的理论、方法与应用[M].北京:中国人民大学出版社,2008.
    梁常德,龙天渝,李继承等.三峡库区非点源氮磷负荷研究[J1.2007,16(1):26-30.
    刘黎明.黄土高原小流域土地利用系统结构优化与生态设计[J].资源科学,1995(6):51~61.
    刘彦随.基于景观类型格局的退化土地利用优化配置[J].干旱区地理,1998,,21(4):28~33.
    倪绍祥,刘彦随.区域土地资源优化配置及其可持续利用[J].农村生态环境,1999,15(2):8-12,21.
    秦向东,闵庆.元胞自动机在景观格局优化中的应用[J].资源科学,2007,29(4):85~91.
    沈珍瑶,刘瑞民,叶闽等.长江上游非点源污染特征及其变化规律[M].北京:科学出版社,2008.
    王汉花,刘艳芳.基于MOP-CA整合模型的土地利用优化研究[J].武汉大学学报·信息科学版,2009,34(2):174-177,247.
    吴次芳,叶艳妹.20世纪国际土地利用规划的发展及其展望[J].中国土地科学.2000.,14(1):15-20,33.
    肖庆文,倪晋仁,李天宏.基于土壤水分分布的土地利用空间优化方法——以黄土高原杏子河流域为例[J].自然资源学报,2005,20(3):317-325.
    岳德鹏,王计平,刘永兵等.GIS与RS技术支持下的北京西北地区景观格局优化[J].地理学报,2007,.62(11):122
    张小飞,王仰麟,李正国.基于景观功能网络概念的景观格局优化——以台湾地区乌溪流域典型区为例[J].生态学报,2005,25(7):1707~1713.
    中华人民共和国国家质量监督检验检疫总局.土地利用现状分类(GB/T 21010-2007),2007.
    Cai Q H and Hu Z Y. Studies on eutrophication problem and control strategy in the Three Gorges Reservoir[J], Acta Hydrobiologica Sinica 30 (1) (2006), pp.7-11.
    Gburek W J, Sharpley A N, Heathwaite L et al. Phosphorus management at the watershed scale:A modification of the phosphorus index[J]. Journal of Environmental Quality,2000,29:130-144
    Gburek W J, Sharpley A N, Heathwaite L.et al. Phosphorus management at the watershed scale:a modification of the phosphorus index [J]. J Environ Qual,2000,29:130-144.
    H. Bouwer. Integrated water management:emerging issues and challenges[J]. Agric. Water Manage.2000,45:217-228.
    Hughes K J, Magette WL, Kurz I. Identifying critical source areas for phosphorus loss in Ireland usingfield and catchment scale ranking schemes [J]. Journal of Hydrology,2005,304:430-445.
    Lemunyon J L, Gilbert R G Concept and need for a phosphorus assessment tool [J]. J Prod Agric,1993,6:483-486.
    United States Environmental Protection Agency. National Water Quality Inventory 1998 Report to Congress [M].Washington D C, U S A:Office of Water Washington D C, June 2000.
    USEPA,1997. U.S. Environmental Protection Agency[M].1997. Non-point pointer No.7:Fact Sheet. EPA841-F-S-00-001.
    蔡崇法,丁树文,史志华等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19~24.
    郭鸿鹏,朱静雅,杨印生.农业非点源污染防治技术的研究现状及进展[J].农业工程学报,2008,24(4):290-295.
    贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,19(5):87~91.
    李琪.陈利顶,齐鑫等.妫水河流域农耕区非点源磷污染危险性评价与关键源区识别[J].环境科学,2008,29(1):32~37.
    刘枫,王华东,刘培桐.流域非点源污染的量化识别方法及其在于桥水库流域的应用[J].地理学报,1988,43(4):329-340.
    刘光德,李其林,黄昀.三峡库区面源污染现状与对策研究[J].长江流域资源与环境,2003,12(5):462-466.
    庞靖鹏,徐宗学,刘昌明等.基于GIS和USLE的非点源污染关键区识别[J].水土保持学报,2007,21(2):
    水利部水土保持司.土壤侵蚀分类分级标准SL 190-96(中华人民共和国行业标准).中国水利水电出版社,1998.7
    西南农业大学.三峡库区农业面源污染控制战略决策及关键控制技术研究报告(预研)[R].重庆:西南农业大学,2004.
    张淑荣,陈利顶,傅伯杰等.农业区非点源污染潜在危险性评价——以于桥水库流域磷流失为例[J].第四纪研究,2003,23(3):262-269.
    张淑荣.于桥水库流域农业非点源污染评价——以P元素流失为例[D].北京:中国科学院研究生院,2002.43.
    郑一,王学军.非点源污染研究的进展与展望[J].水科学进展,2002,13(1):105-110.
    中华人民共和国行业标准土壤侵蚀分类分级标准:SL 190-2007.中国水利水电出版社,2008.4.
    周伏建,陈明华,林福兴等.福建省降雨侵蚀力指标R值[J].水土保持学报,1995,9(1):13-18.
    周慧平,高超,朱晓东.关键源区识别:农业非点源污染控制方法[J].生态学报,2005,25(12):3368-3374.
    A. Sharpley, P. Kleinman and J. Weld, Assessment of best management practices to minimize the runoff of manure-borne phosphorus in the United States, New Zealand J[J]. Agri. Res,2004. (47):461-477.
    Arnold J G, Srinivasan P, Muttiah R S, et al. Large area hydrologic modeling and assessment.Part Ⅰ. Model development[J]. J.Am. Water Resour.Assoc.,1998,34:73-89.
    Arnold J G, Williams J R,Srinivasan R,et al. SWAT-Soil and water assessment tool-user manual [R].Agricultural Researeh Service.Grassland,Soil and Water Research Lab,US Department of Agriculture,1994.
    B. D'Arcy, A. Frost. The role of best management practices in alleviating water quality problems associated with diffuse pollution[J]. The Science of The Total Environment, Volume 265, Issues 1-3,29 January 2001, Pages 359-367.
    B. D'Arcy, A. Frost. The role of best management practices in alleviating water quality problems associated with diffuse pollution[J]. The Science of The Total Environment,2001,265(1-3):359-367.
    Ballo Siaka. Comparative Study of Best Management Practices for Urban Stormwater Runoff of Bamako (Mali) and Shanghai (China) [D]. East China Normal University, Shanghai, China,2007.
    Beasley K B, Huggins L F, Monke E J. ANSWERS:A model for watershed planning[J]. Transactions of the American Society of Agricultural Engineers,1980,23(4):938-944.
    Bhaduri,B.,Harbor,J.,EngeI,B.,Grove,M. Assessing watershed-scale, longterm hydrologic impacts of land-use change using a GIS-NPS model.Environ[J]. Manag.,2000,26(6):643-658.
    Bottcher A B, Tremwel Terry K, Campbell Kenneth L. Best management practices for water quality improvement in the Lake Okeechobee Watershed[J]. Ecol Eng,1995, (5):341-356.
    Bouraoui F, Dillaha T A. ANSWERS-2000:Runoff and sediment transport model[J]. J. Environ. Eng. ASCE.,1996,122(6): 493-502.
    Brown T C, Brown D, Binkely D. Law and programs for controlling nonpoint source pollution in forest areas[J]. Water Resource Bulletin,1993,29:1-3.
    C H House, S W Broome, M T Hoover. Treatment of nitrogen and phosphorus by a constructed uplant wetlant wastewater treatment system [J].Wat. Sci. Tech.,1994,29(4):177-184.
    C. Nendel. Evaluation of Best Management Practices for N fertilisation in regional field vegetable production with a small-scale simulation model[J]. European Journal of Agronomy,2009,30(2):110-118.
    Centner T J, Houston J E, Keeler A G, et al. The adoption of best management practices to reduce agriculture water contamination[J]. Limnologica-Ecology and Management of Inland Waters,1999,29(3):366-373.
    Cullum R F, Knight S S, Cooper C.M; et a.l. Combined effects of best management practices on water quality in Oxbow from agricultural watershed[J]. Soil & Tillage Research,2006,90(1-2):212-221.
    Denise L. Stanley. The economics of the adoption of BMPs:the case of mariculture water management. Ecological Economics,2000,35(2):145-155.
    Donigian,A.S.,Imhoff,J.C.,Bicknell,B.R.,Kittle,J.L.,1984. Application Guide for Hydrological Simulation Program-Fortran(HSPF). EPA600/3-84-065.U.S. Environmental Protection Agency(EPA), Washington D.C.
    Edgar L,Villarreal. Annette Semadeni-Davies Lars Bengtsson, Inner citystormwater control usinga combination of best management practices[J]. Ecological Engineering,2004,22(4-5):279-298.
    Edgar L,Villarreal. Annette Semadeni-Davies Lars Bengtsson, Inner citystormwater control usinga combination of best management practices[J]. Ecological Engineering,2004,22(4-5):279-298.
    F. Morari, E. Lugato, M. Borin. An integrated non-point source model-GIS system for selecting criteria of best management practices in the Po Valley, North Italy[J]. Agriculture, Ecosystems & Environment,2004,102(3):247-262.
    Frankenberger,J.R.,Brooks,E.S.,Walter,M.T.,Walter,M.F.,Steenhuis,T.S. A GIS-based variable source area hydrology model[J]. Hydro.Proc.,1999,13:805-822.
    Gitau M W, Gbure W J, Jarrett A R. A tool for estimating best management practices effectivenss for phosphorus pollution control[J]. Journal of Soil and Water Conservation,2005, (1):1-9.
    Haith,D.A.,Shoemaker,L.L.Generalized watershed loading function for stream flow nutrients[J].Water Resour. Bull.1987, 23(3):471-478
    Henglun Sun, Jack Houston, John Bergstrom.加姆河流域水质最佳管理措施的效益分析[J].水土保持科技情报,1998,(1):13.16.
    Huber W C,Dickinson R E.Storm water management model version 4:User's manual[M].US Environmental Protection Agency,1988.569.
    J.M. Hamlett and D.J. Epp, Water quality impacts of conservation and nutrient management practices in Pennsylvania[J]. J. Soil Water Conserv.49 (1) (1994), pp.59-66
    James Zollweg, Joseph C. Makarewicz. Detecting effects of Best Management Practices on rain events generating nonpoint source pollution in agricultural watersheds using a physically-based stratagem[J]. Journal of Great Lakes Research,2009, 35(Supplement 1):37-42.
    Jeffery L. Vowell. Using stream bioassessment to monitor best management practice effectiveness[J]. Forest Ecology and Management,2001,143(1-3):237-244.
    Joseph C. Makarewicz, Theodore W. Lewis, Isidro Bosch, Mark R. Noll, Nathan Herendeen, Robert D. Simon, James Zollweg, Anthony Vodacek. The impact of agricultural best management practices on downstream systems:Soil loss and nutrient chemistry and flux to Conesus Lake, New York, USA[J]. Journal of Great Lakes Research,2009,35(Supplement 1): 23-36
    Lentz R D, Sojka R E. Field results using polyacrylamide to manage furrow erosion and infiltration[J].Soil Sci.1994,158(4):274-282.
    Logan T J. Agricultural best management practices and groundwater quality [J]. Journal of Soil Water Conservation.1990, 45:201-206.
    Logan T J.Agricultural best management practices for water pollution control:current issues[J].Agriculture, Ecosystems and Environment.1993,46:223-231.
    M. Palace, J. Hannawald, L. Linker, G Shenk, J. Storrick and M. Clipper, Chesapeake Bay Watershed Model Application and Calculation of Nutrient and Sediment Loadings Appendix h:Tracking Best Management Practice Nutrient Reductions in the Chesapeake Bay Program, Chesapeake Bay Program Office, Annapolis, MD (1998) EPA 903-R-98-009, CBP/TRS 201/98.
    M.W. Gitau, W.J. Gburek and A.R. Jarrett, A tool for estimating best management practice effectiveness for phosphorus pollution control[J]. J. Soil Water Conserv,2005,60 (1):1-10.
    Martin C, Ruperd Y, Legret M. Urban stormwater drainage management:The development of a multicriteria decision aid approach for best management practices [J]. European Journal of Operational Research,2006,232(1-3):179-187.
    Michael L Clar, Billy J Barfield, Thomas P O' Connor. Stormwater Best Management Practice Design Guide Volume 1-3[M]. USA:U.S. Environment Protection Agency,2004.
    Nalini S. Rao, Zachary M. Easton, Elliot M. Schneiderman, et al. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading[J]. Journal of Environmental Management,2009,90(3):1385-1395.
    Nalini S. Rao, Zachary M. Easton, Elliot M. Schneiderman, Mark S. Zion, David R. Lee, Tammo S. Steenhuis. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading[J]. Journal of Environmental Management,2009,90(3):1385-1395.
    P. J. Wallbrink, J. Croke. A combined rainfall simulator and tracer approach to assess the role of Best Management Practices in minimising sediment redistribution and loss in forests after harvesting[J]. Forest Ecology and Management,2002,170(1-3): 217-232.
    P.L. Bishop, W.D. Hively, J.R. Stedinger, M.R. Rafferty, J.L. Lojpersberger and J.A. Bloomfield, Multivariate analysis of paired watershed data to evaluate agricultural best management practice effects on stream water phosphorus[J]. J. Environ. Qual.2005,34 (3):1087-1101.
    Robert D. Simon, Joseph C. Makarewicz. Storm water events in a small agricultural watershed:Characterization and evaluation of improvements in stream water microbiology following implementation of Best Management Practices[J]. Journal of Great Lakes Research,2009,35(Supplement 1):76-82.
    Schulz C, Gelbrecht J, Rennert B. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow[J]. Aquaculture,2003,217(1-4):207.
    Smith,R.A.,Schwartz,GE.,Alexander,R.B.Regional interpretation of water-quality monitoring data[J].Water Resour.Res.,1997,33(12):2781-2798.
    Swarna Muthukrishnan, Bethany Madge, Ari Selvakumar, et al. The Use of Best Management Practices(BMPs) in Urban Watersheds[M]. USA:U.S. Environment Protection Agency,2004.
    United States Department of Transportation-Federal Highway Administration. Stormwater best management practices in an ultraurban setting:selection and monitoring [EB/OL]. http://www.fhwa.dot.gov/environment/ultraurb,2003.
    USEPA. Preliminary data summary of urban stormwater best management practices [EB/OL]. http://www.epa.gov/ost/stormwater/usw_a.pdf,1999.
    V. Novotny and H. Olem, Water Quality. Prevention, Identification, and Management of Diffuse Pollution, Van Nostrand Reinhold, New York, NY (1994).
    V. Novotny, Water Quality:Diffuse Pollution and Watershed Management(second ed.), John Wiley and Sons, Inc., New York, NY (2003).
    Victoria Gallego-Diaz, Gary C Schoenwolf, Lgnacio S Alvarez. The effects of BMPs on early chick embryos suggest a conserved signaling mechanism for epithelial and neural induction among vertebrates[J]. Brain Res Bull,2002,57(4): 289-291.
    Williams J R, Nicks A D, Arnold J G Simulator for Water Resources in Rural Basins[J]. J. Hydraul. Eng.,1985,111(6): 970-186.
    Williams,J.R.,Williams,C.A.,Dyke,P.T.Modeling approach to determining the relationship between erosion and soil productivity[J]. Trans.ASAE,1984,27(1):127-144.
    Young R A, Onstad C A, Bosch D et al. AGNPS:A non-point source pollution model for evaluating agricultural watersheds[J]. Journal of Soil and Water Conservation,1989,44(2):168-173.
    Zollweg,J.A.,Gburek,W.J.,Steenhuis,T.S. SMDR-a GIS-integrated rainfall runoff model.Trans[J]. ASAE,1996,39: 1299-1307.
    仓恒瑾,许炼峰,李志安等.农业非点源污染控制中的最佳管理措施及其发展趋势[J].生态科学,2005,24(2):173-177.
    曹丽花,赵世伟,梁向锋等.PAM对黄土高原主要土壤类型水稳性团聚体的改良效果及机理研究[J].农业工程学报, 2008,24(1):45-49.
    陈洪波,王业耀.国外最佳管理措施在农业非点源污染防治中的应用[J].环境污染与防治,2006,28(4):279-282.
    陈能汪,洪华生,曹文志等.中国东南丘陵地区小农业流域农业最佳管理措施模拟评价.第4届流域管理和城市供水国际会议论文集(A),2004.
    代才江,杨卫东,王君丽等.最佳管理措施(BMPs)在流域农业非点源污染控制中的应用[J].农业环境与发展,2009,(4):65-67.
    范小华,谢德体,魏朝富.河岸带生态系统管理模型研究进展[J].中国农学通报,2005,22(1):277-282.
    范小华,谢德体,魏朝富.三峡水库消落区生态环境保护与调控对策研究[J].长江流域资源与环境,2006,15(4):495-501.
    范小华,谢德体,魏朝富.三峡水库消落区生态环境保护与利用对策研究[J].水土保持学报,2006,20(2):165-169.
    方志发,王飞儿,周根娣.BMPs在千岛湖流域农业非点源污染控制中的应用[J].农业环境与发展,2009,(1):69-72.
    冯大兰,刘芸,钟章成.芦苇的生态功能与经济利用价值[J].西南农业大学学报增刊,2005,22:3-5,14.
    冯大兰,刘芸,钟章成.三峡库区消落带现状与对策研究[J].中国农学通报,2006,22(6):378-381
    冯大兰,刘芸,钟章成等.三峡库区消落带芦苇(Phragmites communis (reed))的光合生理响应和叶绿素荧光特性[J].生态学报,2008,28(5):2013-2021.
    付斌,胡万里,屈明等.不同农作措施对云南红壤坡耕地径流调控研究[J].水土保持学报,2009,23(1):17-20.
    付斌.不同农作处理对坡耕地水土流失和养分流失的影响研究[D].西南大学,2009.
    郭怀成,黄凯,刘永等.河岸带生态系统管理研究概念框架及其关键问题[J].地理研究,2007,26(4):789-798.
    郭青海,马克明,杨柳.城市非点源污染的主要来源及分类控制对策[J].环境科学,2006,27(11):2170-2175.
    郭青海,马克明,赵景柱等.城市非点源污染控制的景观生态学途径[J].应用生态学报,2005,16(5):977-981.
    郭青海,杨柳,马克明.基于模型模拟的城市非点源污染控制措施设计[J].环境科学,2007,28(11):2425-2431.
    韩秀娣.最佳管理措施在非点源污染防治中的应用[J].上海环境科学,2002,19(3):102-104,128.
    贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,19(5):87-91,96.
    洪华生,黄金良,曹文志.九龙江流域农业非点源污染机理与控制研究[D].北京:科学出版社,2008.
    黄凯,郭怀成,刘永等.河岸带生态系统退化机制及其恢复研究进展[J].应用生态学报,2007,18(6):1373-1382.
    黄委会水土保持局.加姆河流域水质最佳管理措施的效益分析[J].水土保持科技情报,1998,(1):13-16.
    蒋鸿昆,高海鹰,张奇.农业面源污染最佳管理措施(BMPs)在我国的应用[J].农业环境与发展,2006(4):64-67.
    金可礼,陈俊,龚利民.最佳管理措施及其在非点源污染控制中的应用[J].水资源与水工程学报,2007,18(1):37-40.
    金可礼,赵彬斌,陈俊等.茜坑水库流域面源污染最佳管理措施研究[J].水资源与水工程学报,2008,19(5):94-97.
    柯强,赵静,王少平等.最大日负荷总量(TMDL)技术在农业面源污染控制与管理中的应用与发展趋势[J1.生态与农村环境学报,2009,25(1):85-91,111.
    李贵宝,尹澄清,单宝庆.非点源污染控制与管理研究的概况与展望[J].农业环境保护,2001,20(3):190-191.
    李剑.保护茜坑水库水质的最佳管理措施(BMPs)研究[D].南昌大学硕士学位论文,2006.6.
    李志敏,刘东辉,王明国.评价减少磷污染最佳管理措施有效性模型[J].水土保持应用技术,2005,(6):17-18.
    林和平.水平沟耕作在不同坡度上的水土保持效应[J].水土保持学报,1993,7(2):63-69.
    林莉峰,张善发,李田.城市面源污染最佳管理方案及其在上海市的实践[J].中国给水排水,2006,22(6):19-22.
    刘纪根,雷廷武.坡耕地施加PAM对土壤抗冲抗蚀能力影响试验研究[J].农业工程学报,2002,18(6):59-62.
    刘建昌,张珞平,张玉珍等.控制农业非点源污染的最佳管理措施的优化设计[J].厦门大学学报(自然科学版),2004,43(S1增刊):269-274.
    刘元保,唐克丽,等.坡耕地不同覆盖的水土流失试验研究[J].水土保持学报,1990,4(1):26-29.
    罗在波.PAM对紫色土坡地氮素迁移流失的控制效应[D].西南大学硕士学位论文,2008;
    潘英华,雷廷武,张晴雯.土壤结构改良剂对土壤水动力学参数的影响[J].农业工程学报,2003,19(4):37-39.
    邱卫国,王超,陈剑中等.美国农业面源污染控制最佳管理措施探讨[A].第十二届中国海岸工程学术讨论会论文集,2005.
    任霖光,潘文斌,蔡芫镔.基于非点源污染负荷模型PLOAD的最佳管理措施模拟研究[J1.福州大学学报(自然科学版),2005,33(6):825-829.
    唐泽军,雷廷武,张睛雯等.聚丙烯酰胺增加土壤降雨入渗减少侵蚀的模拟试验研究[J].土壤学报,2003,178(8):178-185.
    滕玲玲.PAM对紫色土坡地土壤磷素流失的控制效应与机理分析[D].西南大学硕士学位论文,2008.
    万金保,胡倩如,王嵘等.串联式BMPs在面源污染控制中的应用[J].南昌大学学报·工科版,2008,30(3):209-211.
    王嵘,李剑,万金保.BMPs在面源污染控制中的应用[J].江西能源,2008,(3):44-48.
    王晓燕,张雅帆,欧洋等.最佳管理措施对非点源污染控制效果的预测——以北京密云县太师屯镇为例[J].环境科学学报,2009,29(11):2440-2450.
    王晓燕.非点源污染定量研究的理论及方法[J].首都师范大学学报(自然科学版),1996,(01)
    王兴祥,张桃林,张斌等.红壤旱坡地农田生态系统养分循环和平衡[J].生态学报,1999,19(3):335-341.
    西南农业大学.三峡库区农业面源污染控制战略决策及关键控制技术研究报告(预研)[R].重庆:西南农业大学,2004.
    西南农业大学.重庆市经济社会发展决策咨询研究项目:消落区对三峡库区水土环境的影响及对策[R].重庆:西南农业大学,2005.1.
    肖宏宇.三峡库区几种不同土地利用类型对氮平衡的影响[D].华中农业大学硕士学位论文,2007.
    谢德体,陈绍兰.水田自然免耕的理论与技术[M].重庆:重庆出版社,2002.
    谢德体,范小华,魏朝富.三峡水库消落区对库区水土环境的影响研究[J].西南大学学报(自然科学版),2009,29(1):39-47.
    闫伟伟,陈小红,顾睿等.生态与治污相结合的最佳管理措施的应用设计[J].中国给水排水,2008,24(18):50-53.
    闫伟伟.最佳管理措施在办公楼集水区面源污染治理中的应用[D].南昌大学硕士学位论文,2007.6.
    杨林章,李运东,郑钦玉等.三峡库区复合农业生态系统及其建设途径[J].长江流域资源与环境,1999,8(2):205-209.
    杨勇.BMPs在苏州市住宅小区非点源污染控制中的应用研究[D].河海大学硕士学位论文,2007.3.
    尹澄清,兰智文,晏维金.白洋淀水陆交错带对陆源营养物质的截留作用初步研究[J].应用生态学报,1995,6(1):76-80.
    袁东海,王兆骞,陈欣等.不同农作措施红壤坡耕地水土流失特征的研究[J].水土保持学报,2001,15(4):66-69.
    袁东海,王兆骞,陈欣等.不同农作措施下红壤坡耕地土壤钾素流失特征的研究[J].应用生态学报,2003,14(8):1257-1260.
    袁东海,王兆骞,郭新波等.红壤小流域不同利用方式水土流失和有机碳流失特征研究[J].水土保持学报,2002,16(2):24-28.
    袁俊吉,马永玉,蒋先军等.模拟稻田生态系统对农村污水中磷的消纳[J].水土保持学报,2009,23(4):28-32,
    袁俊吉,马永玉,周鑫斌等.稻田生态系统对污水中无机态氮的消纳[J].西南大学学报(自然科学版),2009,31(9):7-14.
    张凤凤,李土生,卢剑波.河岸带净化水质及其生态功能与恢复研究进展[J].农业环境科学学报,2007,(S2):459-464.
    张建春,彭补拙.河岸带及其生态重建研究[J].地理研究,2002,21(3):373~383.
    张雅帆.非点源污染最佳管理措施的环境经济评价——以密云县太师屯镇为例[D].首都师范大学硕士学位论文,2008.5.
    张燕,张志强,张俊卿等.密云水库土门西沟流域非点源污染负荷估算[J].农业工程学报,2009,25(5):183-191.
    张玉珍,陈能汪,曹文志等.南方丘陵地区农业小流域最佳管理措施模拟评价[J].资源科学,2005,27(6):151-155.
    章茹,周文斌,金可礼.深圳茜坑水库生态草沟对非点源污染物去除效率的评价[J].南昌大学学报(理科版),2009.
    章茹.流域综合管理之面源污染控制措施(BMPs)研究[D].博士学位论文,2008.
    郑涛,穆环珍,黄衍初等.非点源污染控制研究进展[J].环境保护,2005(2):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700