用户名: 密码: 验证码:
不同配置格局沙蒿灌丛防风阻沙效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被的防风蚀问题早已为学术界所关注,但过去的研究主要集中在植物覆盖度对土壤风蚀的影响方面,许多专家学者认为,较低的植被覆盖度不能完全固定流沙和阻止风沙流的形成。然而,在干旱、半干旱地区,由于水分条件的限制,植被的覆盖度不会很高。为达到防护效益最大并持续经营的目标,在保证林分多样性和稳定性的条件下,植被必须具有空间上布局的合理性和时间上的连续性。有必要对植被的配置结构进行研究,即通过合理配置,使植物在低覆盖度的情况下,既可减少水分的竞争,又达到防治土壤风蚀的效果。本文以毛乌素沙地常见植物种沙蒿为研究对象,通过对单株沙蒿周围流场的分布及输沙率的研究,分析其防治土壤风蚀机理。通过对不同盖度天然分布随机式沙蒿、不同盖度模拟均匀式沙蒿、不同水平配置行带式沙蒿的观测研究,对不同配置格局下风速、粗糙度、近地表输沙率等因子进行分析,从量化的角度探讨了不同水平配置格局沙蒿的防风阻沙效果及对土壤风蚀的防治机理。并通过风洞模拟实验,进一步分析了不同配置行带式沙蒿的防风效果。结果如下:
     (1)当风沙流流经单株沙蒿时,风速在其侧面表现出先增大后减少的趋势,在植株后形成减速区,背风面1H处风速减小程度最大,此后风速逐渐增大。风沙流在植株前后发生沉积,而在植株两侧发生轻微风蚀。单株沙蒿的防护距离在5-7H。天然灌草植被即是通过若干单一灌丛的集合效应而增强了其固沙机能,随着植被的生长从而逐渐控制了流沙运动。
     (2)通过对不同盖度天然随机式分布沙蒿样地的观测发现,在其他因素相同的情况下,随着植被盖度的增大,起沙风速呈指数函数增大,粗糙度和摩阻速率分别呈幂函数和线性函数增加。当地的警戒线盖度为41.5%-49.4%,土壤侵蚀的临界植被盖度为60%,即当天然随机式分布沙蒿盖度达到60%时,可基本控制地表风蚀。
     (3)控制地表风蚀方面,盖度50%是均匀式沙蒿的一个临界点。当均匀式分布沙蒿盖度在0-50%之间变化时,近地表风速逐渐降低,防风效能逐渐增强,地表粗糙度逐渐增大,近地表输沙率逐渐减小;当均匀式沙蒿盖度在50%-70%之间变化时,防风效能、地表粗糙度、近地表输沙率等并无显著不同。说明当均匀式沙蒿盖度达到50%时,可基本控制地表风蚀。
     (4)通过对不同行数人工模拟沙蒿灌丛观测发现:在一定范围内行数的增加增加了防护的范围,同时增强了各处的防护作用,对地表起到稳定的保护作用,但不是行数越多越好,三行配置防护效应较两行配置优势不明显,建议在实际设置中尽量选择两行的配置,两行配置的防护距离在7-10H。
     (5)同样为两行配置沙蒿灌丛,1H、2H、3H三种行距配置对1~7H段的防护效应差异不明显,均能较好的控制地表风蚀,降低风速;行距3H的配置能延缓7-12H段防护效应的衰减,但是行间部分地表会发生风蚀现象。实际营造中,应选用行距1H的配置,以防止行间出现风蚀。
     (6)对于两行一带的行带式配置沙蒿灌丛,带距4H、6H、8H、10H、12H配置下,带间的平均防风效能分别为61.2%、53.3%、45.4%、38.5%、29.2%,带间部分地表发生风蚀,随着带距的加大,风蚀地表面积加大,当带距加大到12H时,带间风蚀面积与堆积面积相当;带后阻沙效果明显,且随着距离的加大,阻沙效果逐渐减弱。4H、6H、8H、10H、12H带距的配置在带后7H处可分别降低输沙38.92%、35.24%、38.62%、39.69%、43.51%。
     (7)通过对不同行带式配置沙蒿进行风洞模拟实验观测,进一步验证了野外的结论。建议如下:在人工植被的建设中选用沙蒿时,应选择“两行一带”的多带式配置,考虑到沙区水分不足,沙蒿的带距应在8H-10H之间。此时防风阻沙效果较佳,又不至于过度消耗水分,引起沙蒿过早衰败死亡。
The problem about preventing wind erosion of vegetation has long been concerned for academia, but the previous studies always focus on the effect that the vegetation coverage to soil drifting,many experts thought that when the vegetation coverage is low, it can't completely fix shifting sand and prevent wind-sand flow.However, in arid and semi-arid region, because of the limit of water conditions, the vegetation coverage isn't very high. To obtain maximum protection benefit and sustainable management objectives,on the condition of ensuring forest diversity and stability, vegetation must have reasonable space layout and continuity time。It is necessary to study forest configstruct and layout, namely,to appropriately ploy plants,it can reduce water competition and control soil erosion on low vegetation coverage. With the common plant Artemisia sphaerocephala as research subject, through the research on the wind field distribution and sediment transport rate, this paper analyzes the mechanism of preventing soil erosion;Through the studies of naturally random distributed Artemisia with different vegetation coverage, evenly distributed Artemisia that simulated with different vegetation coverage, zonal distributed Artemisia with different horizontal distribution,it analyzes wind speed, aerodynamic roughness, near-surface sediment transport rate on different vegetation coverage, and investigates the mechanism of sand-arresting effect and soil erosion control of Artemisia with different horizontal distribution;Through wind tunnel simulation experiment, it analyzes different zonal distributed Artemisia wind control effect. The results are as follows:
     (1) When wind-sand flow through an individual Artemisia plant,wind speed in the side of it will first increases and then decreases,it will form a wind shadow after the shrub,wind speed behind leeside 1H have the largest decrease,behind it,wind speed increase gradually. Wind-sand flow is deposited both in front and back of the plant, and it erode slightly in both sides of plant. Natural shrub grass vegetations were set several individual plant together to enhance the sand fixing function,and along with the growing of plant to control drift sand gradually.
     (2) Through the studies of naturally random distributed Artemisia with different vegetation coverage,it is discovered that with other things equal, when vegetation conversation increase, the threshold wind velocity of sand movement increases by exponential function, aerodynamic roughness and friction velocity respectively increases by power function and linear function. Warning coverage in study area is 41.5%-49.4%,critical coverage of soil corrosion is 60%,namely,when coverage of naturally random distributed Artemisia reaches 60%, soil drifting can be controlled basically.
     (3) The coverage of 50% was a critical point on preventing soil wind erosion.When coeverage degree changes in 0-50%,near-surface wind speed decreased, wind control effect strengthen, roughness increased and near-surface sediment transport rate decreased. When the coverage degree was more than 50% and less than 70%,the wind speed, wind control effect, roughness, near-surface sediment transport rate have no obvious difference. It suggestes that:when the coverage of evenly distributed Artemisia shrub reaches 50%, it can prevent soil wind erosion effectively.
     (4) Within a certain range, when linage numbers of shelter forest increasing, not only protect distance has been enlarged, but also protective effects has been enhanced that makes a stable protection to ground surface, but the number of rows is not the more the better. The protective effect of three rows allocation was not obvious better than two rows allocation. In practice, two rows allocation is suggested to choose,and its protect distance is 7-10H.
     (5) Three kind of 2 belts allocation that 1H,2H,3H have no obvious diffent on protect effect in the distance of 7-12H,all can control wind erosion effectively,and reduce wind speed; line spacing of 3H can suspend the attenuation of protection effect in 7-12H,but row middle will be eroded.
     (6) For one belt with two lines, wind control effect of 4H,6H,8H,10H,12H line spacing is 61.2%,53.3%,45.4%,38.5%,29.2%,surface between two lines is partly eroded.When line spacing increases, area eroded increases, when the spacing increases to 12H, wind erosion area is nearly equivalent to accumulation area; sand-arresting effect behind the belt is obvious,but with line spacing increasing, sand-arresting effect decreases.For 4H,6H,8H,10H,12H line spacing, sediment transport rate that 7H behind the belt decreases 38.92%,35.24%,38.62%,39.69%,43.51%.
     (7) Through the simulation experimental observation of different zonal distributed Artemisia wind control effect in wind tunnel,we test further the conclusion got in field.The suggestions are as follow:When Artemisia is as artificial vegetation,multi-belt distribution with each belt two lines should be chosed.Consider for the limit of water, the line spacing of Artemisia should be 8H-10H.In this distribution,sand-arresting effect is well, and water consumption will be not exceeding, that avert Artemisia died too earlier.
引文
1.阿拉木萨,蒋德明,范士香等.人工小叶锦鸡儿(Caragana microphylla)安抚灌丛土壤水分动态研究[J],应用生态学报,2002,13(12):1537~1540;
    2.常兆丰,仲生年等.粘土沙障及麦草沙障合理间距的调查研究[J].中国沙漠,2000,20(4):455~457.
    3.陈广庭.北京平原土壤机械组成和抗风蚀能力的分析[J].干旱区资源与环境,1991,5(1):103~113.
    4.陈渭南,董光荣,董治宝.中国北方土壤风蚀问题研究的进展与趋势[J].地球科学进展,1994,9(5):6~11.
    5.陈渭南.蒙陕接壤地区土壤母质的风蚀实验研究[J].水土保持学报,1991,5(1):33-39.
    6.陈效逑,谭文垦,刘大平等.北京平原地区裸露土地的时空分布[J],水土保持研究,2003,32):18~25.
    7.程旭,祁海鹰,由长福等.沙丘表面的沙粒流动性分析—以北京市北郊沙地为例[J],干旱区资源与环境,2003,17(5):7~12.
    8.慈龙骏,梁远强.对喀什平原地区人民公社营造防护林的几点意见[J].新疆农业科学,1965(03):16~19.
    9.崔国发.固沙林水分平衡与植被建设可适度探讨[J].北京林业大学学报,1998,20(4):89~94.
    10.崔强,高甲荣,何明月.Effects of farmland shelterbelts in controlling wind and sand in sandy land of yanchi[J].生态与农村环境学报,2009(03):23-28.
    11.丁国栋,奥村武信.风沙流结构的风洞实验研究[J].内蒙古林学院学报,1994,16(1):40~46.
    12.丁国栋.野外风沙流结构的定量研究[J].内蒙古林业科技,1994,(4):38~40.
    13.董飞,刘大有,贺大良.风沙运动的研究进展和发展趋势[J].力学进展,1995,25:368~391.
    14.董光荣,陈惠忠,王贵勇等.150年以来中国北方沙漠、沙地演化和气候变化[J].中国科学B辑,1995(12):73-82.
    15.董光荣,李长治,金炯等.关于土壤风蚀风洞模拟实验的某些结果[J].科学通报,1987,32(4):297~301.
    16.董光荣,吴波,慈龙骏等.我国荒漠化现状、成因与防治对策[J].中国沙漠,1999,19(4):318~332.
    17.董玉祥,康国定.中国干旱半干旱地区风蚀气候侵蚀力的计算与分析[J].水土保持学报,1994,8(3):1~7.
    18.董治宝,Fryrear D W.直立植物防沙措施粗糙特征的模拟实验[J].中国沙漠,2000,20(3): 260~263.
    19.董治宝,陈广庭.内蒙古后山地区土壤风蚀问题初论[J].土壤侵蚀与水土保持学报,1997,3(2):85~90.
    20.董治宝,陈渭南,董光荣等.植被对风沙土风蚀作用的影响[J].环境科学报,1996,16(4):437~443.
    21.董治宝,陈渭南,李振山等.风沙土开垦中的风蚀研究[J].土壤学报,1997,34(1):74~80.
    22.董治宝,陈渭南.植被对土壤风蚀影响作用的实验研究[J].土壤侵蚀与水土保持学报,1996,2(2):2~8.
    23.董治宝,董光荣,陈广庭.风沙物理学研究进展与展望[J].大自然探索,1995,14(53):30~38.
    24.董治宝,董光荣,陈广庭.以北方旱作农田为重点开展我国的土壤风蚀研究[J].干旱区资源与环境,1996,10(2):31~37.
    25.董治宝,李振山,严平.国外土壤风蚀的研究历史与特点[J].中国沙漠,1995,15(1):100~104.
    26.董治宝,李振山.风成沙粒度特征对其风蚀可蚀性的影响[J].土壤侵蚀与水土保持学报,1998,4(4):1~5.
    27.董治宝,刘小平,李方.Impact entrainment relationship in a saltating cloud[J]. Earth Surface Processes and Land forms,2002,27(6):641~685.
    28.董治宝,刘小平,王洪涛.The flux profile of a blowing sand cloud:a wind tunnel investigation[J]. Geomorphology,2002,49(3~4):219~230.
    29.董治宝.建立小流域风蚀量统计模型初探[J].水土保持通报,1998,18(5):55~62
    30.董治宝.土壤风蚀预报简述[J].中国水土保持,1999,6:17~19.
    31.封斌,高保山,麻保林等.陕北榆林风沙区农田防护林结构配置与效益研究[J].西北林学院学报,2005,20(2):118~124.
    32.符亚儒,高保山,封斌,麻保林.陕北榆林风沙区防风固沙林体系结构配置与效益研究[J].西北林学院学报,2005,20(2):18~23.
    33.高可华,郑大玮.内蒙古阴山北部抗风蚀措施效应的初步研究[J].华北农学报,1998,13:97~102.
    34.高尚武.治沙造林学[M].北京:中国林业出版社,1984:34~46.
    35.郭柯,董学军,刘志茂等,毛乌素沙地沙丘土壤含水量特点——兼论老固定沙地上油蒿衰退原因[J].植物生态学报,2000,24(3)275~279.
    36.郭柯,毛乌素沙地油篙群落的循环演替[J].植物生态学报,2000,24(2):243-247.
    37.郭学斌.影响农田防护林防风效益的主导因子探讨.山西林业科技,2000(2):5-9.
    38.郭忠升.水土保持植被的有效盖度、临界盖度和潜势盖度[J].水土保持通报,2000,20(2):60-62.
    39.郭忠升.水土保持植被建设中的三个盖度:潜势盖度、临界盖度和有效盖度[J].中国水土保持,2000,4:30~31.
    40.哈斯,陈渭南.耕作方式对土壤风蚀的影响[J].土壤侵蚀与水土保持学报,1996,2(1):10~16.
    41.哈斯,额尔敦.风成沙丘表面过程与沉积组构[M].北京师范大学博士后研究工作报告,2001,6:37~47.
    42.哈斯,王贵勇.腾格里沙漠东南缘格状沙丘表面气流及其地貌学意义[J].中国沙漠,1996,16(1):216~221.
    43.哈斯.坝上高原土壤不可蚀性颗粒与耕作方式对风蚀的影响[J].中国沙漠,1994,14(4):92~97.
    44.韩德儒,杨文斌.人工柠条固沙林生长期水量平衡分析[J].干旱区资源与环境,1995,9(1):78~85.
    45.韩致文.半湿润地区风沙流结构的定量研究——以豫北沙地为例[J].中国沙漠,1993,13(3):25~31.
    46.贺大良,高有广.沙粒跃移运动的高速摄影研究[J].中国沙漠,1988,8(1):18~29.
    47.贺大良,凌裕泉.风沙研究的重要设备——沙风洞[J].中国沙漠,1981,1(1):49~51.
    48.贺大良,邹本功,李长治.地表风蚀过程风洞实验的初步研究[J].中国沙漠,1986,6(1):25~31.
    49.贺大良.输沙量与风速关系的几个问题[J].中国沙漠,1993,13(2):14~18.
    50.胡孟春,刘玉璋,乌兰等.科尔沁沙地土壤风蚀的风洞实验研究[J].中国沙漠,1991,11(1):22~29.
    51.胡小龙,张文军,樊文颖等,毛乌素沙地不同覆盖度油蒿群落土壤水分特征研究[J].内蒙古林业科技,1996,3:32-37.
    52.黄富祥,牛海山,王明星等.毛乌素沙地植被覆盖率与风蚀输沙率定量关系[J].地理学报,2001,56(6):700~710.
    53.黄富祥,王明星,王跃思.植被覆盖对风蚀地表保护作用研究的某些新进展[J].植物生态学报,2002,26(5):627~633.
    54.雷孝章等.深丘区防护林体系营建前后生态效益的初步研究.四川林业科技.1996,17(2):20.
    55.李恒鹏,陈广庭,李波.新月形沙丘迎风坡气流加速模拟[J].中国沙漠,2001,21(1):24~27.
    56.李清河,包耀贤,王志刚等.乌兰布和沙漠风沙运动规律研究[J].水土保持学报,2003,17(4):86~89.
    57.李小雁,李福兴,刘连友.土壤风蚀中有关土壤性质因子的研究历史与动向[J].中国沙漠,1998(1):91~95.
    58.李孝泽,董光荣.浑善达克沙地的形成时代与成因初步研究[J].中国沙漠,1998(01):18~23.
    59.李玉宝.宁夏土壤风蚀研究.博士论文,北京林业大学,2001.
    60.廖汝棠,张文军.毛乌素流动沙地植物的水分关系与适宜种植规模[J].内蒙古林业科技,1996,3(4):22~26.
    61.廖汝棠,张文军.毛乌素沙地适宜覆盖率研究——沙生植物的分布及盖度状况[A].呼和浩特:内蒙古大学出版社,1992:93~97.
    62.凌侠,董智,孙保平等,盐池沙地退化草场植被恢复与流沙防治效果分析[J].内蒙古农业大学学报,2004,25(4):38-42.
    63.凌裕泉,屈建军,金炯.稀疏天然植被对输沙量的影响[J].中国沙漠2003,23(1):12~17.
    64.凌裕泉,吴正.沙粒运动的动态摄影实验[J].地理学报,1980,35(2):174~181.
    65.凌裕泉.输沙量(率)水平分布的非均一性[J].实验力学,1994,9(4):352~356.
    66.刘芳.乌兰布和沙区的植物资源.内蒙古师大学报,2000,29(3):215~220.
    67.刘光祖.沙荒区造林树种选择与造林技术试验总结[A],1987:23~28.
    68.刘家诚,黄子琛,鲁作民等.对甘肃民勤人工梭梭林衰亡原因的几点意见[J].中国沙漠,1982,2(2):44-46.
    69.刘艳萍,高永.防护林降解近地表沙降尘机理的研究[J].水土保持学报,2003,17(1):162~165.
    70.刘媖心.沙坡头流动沙丘固沙植物引种栽培三十五年[J].中国沙漠,1991,11(1):24~31.
    71.刘永兵.北京市永定河沙地土壤风蚀与人工植被防风阻沙效益研究.硕士论文,北京林业大学,2004.
    72.刘玉平.毛乌素沙地飞播植被演替研究[J].中国草地,1996,4:24~27.
    73.刘玉璋,董光荣,李长治.影响土壤风蚀主要因素的风洞实验研究[J].中国沙漠,1992,12(4):41-49.
    74.陆凡,赵静,董旺远,沙坡头试验区沙层水分动态及混播油蒿、柠条的生态意义分析[J].甘肃广播电视大学学报,1999,42(3):47-48.
    75.麻保林,漆建忠.几种灌木固沙林的效益研究水土保持通报1994,14(7):22~28.
    76.马世龙.植被覆盖对土壤风蚀影响机理的研究.硕士论文,北京林业大学,2006.
    77.马世威.风沙流结构的研究[J].中国沙漠,1988,8(2):8~22.
    78.马玉明,王林和,姚云峰等.风沙运动学[M].内蒙古:远方出版社,2004;
    79.孟平,宋兆民,张劲松.农林复合系统防尘效应的研究[J].1998,34(2):11~16.
    80.慕青松,陈晓辉.临界侵蚀风速与植被盖度之间的关系[J].中国沙漠,2007,27(4):535~538;
    81.彭鸿嘉,傅伯杰,陈利顶等,甘肃民勤荒漠区植被演替特征及驱动力研究——以民勤为例[J].中国沙漠,2004,24(5):628-633.
    82.齐化龙,张维江,毛乌素沙地沙生植物蒸腾规律探讨[J].农业科学研究,61-65.
    83.钱亦工.新疆经济发展模式的选择[J].新疆经济研究,1990,(1):22~26.
    84.屈建军等.半隐蔽格状沙障的综合防护效益观测研究[J].中国沙漠,25(3):229~233.
    85.屈志强,张莉,丁国栋等.不同配置方式沙蒿灌丛对土壤风蚀影响的对比分析[J].水土保持学报,2008,22(3):1~4.
    86.屈志强.植物配置对土壤风蚀影响的研究.硕士论文,北京林业大学,2007.
    87.邵玉琴,赵吉,内蒙古库布齐沙带东段油蒿固定沙丘土壤微生物数量的垂直分布研究[J].内蒙古大学学报,2000,31(2):198-200.
    88.史培军,严平,袁艺.中国土壤风蚀研究的现状与展望.第十二届国际水土保持大会邀请学术报告.2002:1~9.
    89.孙保平主编.荒漠化防治工程学[M].北京:中国林业出版社,2000.
    90.孙显科,郭志中.沙障固沙原理的研究.甘肃林业科技.1999,24(2):7~12.
    91.妥德宝,段玉,赵沛义.带状留茬间作对防治干旱地区农田风蚀沙化的生态效应[J].华北农学报2002,17(4):63~67.
    92.王葆芳,刘星晨,任培政.乌兰布和沙地人工绿洲防护林体系模式生态和经济效益评价[J].干旱区资源与环境.2002,(2):60~67.
    93.王葆芳,熊士平.乌兰布和沙地新开发人工绿洲防护林体系综合效益评价[J].林业科学,1998,34(6):12~21.
    94.王继和,马全林,刘虎俊等,干旱区沙漠化土地逆转植被的防风固沙效益研究[J].中国沙漠,2006(6)903-909.
    95.王君厚,周士威.乌兰布和荒漠人工绿洲小气候效应研究[J].干旱区研究.1998b,15(1):27-34.
    96.王礼先.全球荒漠化防治现状及发展趋势[J].世界林业研究,1994,7(1):10~17.
    97.王庆锁,董学军,陈旭东等.油蒿群落不同演替阶段某些群落特征的研究[J].植物生态学报,1997,21(6)531~538.
    98.王庆锁,梁艳英等.油蒿群落植物多样性动态[J].中国沙漠,1997,17(2):159~163.
    99.王涛,吴薇.我国北方的土地利用与沙漠化[J].自然资源学报,1999,14(4):355~358.
    100.王晓东,岳德鹏,刘永兵.土壤风蚀与植被防护研究[J].西部林业科学,2005,34(2),108-112.
    101.王新平,李新荣,康尔泗等,沙坡头地区固沙植物油蒿、柠条蒸散状况的研究[J].中国沙漠,2002,22(4):363-367.
    102.王妍,吴波,卢琦,毛乌素沙地油蒿群落的物种组成与数量分类[J].北京林业大学学报,2006,28(增2):52-56.
    103.王振亭,郑晓静,草方格沙障尺寸分析的简单模型,中国沙漠,2002,22(3):229~232.
    104.王志刚.乌兰布和沙漠东北部风沙灾害与防护林带参数探讨[J]中国沙漠,1995,15(1):79~ 82.
    105.王志刚.乌兰布和沙漠东北部绿洲防护林要素设计研究综述[J]内蒙林业调查设计.1994,2:1~6.
    106.王忠林,高国雄,李会科等.毛乌素沙地农田防护林结构配置研究[J].水土保持研究,1995,2(2):99~108.
    107.乌拉,张国庆,辛智鸣,单个天然灌丛防风阻沙机理与效应[J].内蒙古林业科技,2008,34(2)36-39.
    108.吴正,凌裕泉.风沙运动的若干规律及防止风沙危害问题的初步研究[A].治沙研究第七号[c],北京:科学出版社,1964.
    109.武建伟.亚湿润干旱区荒漠化防治工程环境影响评价.硕士论文,北京林业大学,2000.6.
    110.夏训诚.罗布泊科学考察与研究.北京:科学出版社,1987.
    111.夏训诚等.新疆沙漠化与风沙灾害治理[J].北京:科学出版社,1991.
    112.向开馥.东北西部内蒙古东部防护林研究(第一集).东北林业大学出版社,1989.
    113.刑茂,郭烈锦.紊流风场中起跳沙粒的轨迹特征[J].中国沙漠,2003,23(6):628~631.
    114.严平,董光荣,董治宝等.青海共和盆地达连海湖积物的137Cs示踪,地球化学,2000.29(5):469~473.
    115.严平,董光荣,邹学勇.土壤风蚀容忍(T值)研究的现状与问题[J].水土保持通报,1998,18(1):13~17.
    116.杨红艳,戴晟懋,乐林等.不同分布格局低覆盖度油蒿群丛防风效果[J].林业科学,2008,44(5):11~16.
    117.杨明元.对地表粗糙度测定的分析与研究[J].中国沙漠,1996,16(4):383~387.
    118.杨婷婷,姚国征,王满才等,乌兰布和沙漠天然灌丛防风阻沙效益研究[J].干旱区资源与环境,2008,22(1):194-197.
    119.杨婷婷.乌兰布和沙漠绿洲风蚀防护体系效益评价及模式探讨.硕士论文,北京林业大学,2006.
    120.杨文斌,丁国栋,王晶莹等.行带式柠条固沙林防风效果[J].生态学报,2006,26(12):4106~4112.
    121.杨文斌,赵爱国,王晶莹等.低覆盖度沙蒿群丛的水平配置结构与防风固沙效果研究[J].中国沙漠,2006,26(1):108~112.
    122.姚洪林,廖茂彩.毛乌素流动沙地适宜植被覆盖率研究[A].中国治沙及沙产业学会主编.北京:北京师范大学出版社,1995.
    123.岳德鹏,刘永兵.北京市永定河沙地人工植被防风阻沙效益分析北京林业大学学报.2004,26(2):21~24.
    124.岳德鹏.北京市大兴县景观格局的研究.博士论文,北京林业大学,1997.
    125.岳高伟,黄宁,郑晓静.沙粒形状的不规则性及静电力对起沙风速的影响[J].中国沙漠,23
    (6):621~627.
    126.曾德慧.樟子松人工固沙林经营基础研究兼论樟子松沙地引种区划[M].沈阳:中国科学院沈阳应用生态研究所,1996.
    127.詹科杰,王继和,马全林等,沙蒿、油蒿空间构件及固沙机制研究[J].甘肃林业科技,2005,30(4):1-4.
    128.张春来,邹学勇,董光荣等.植被对土壤风蚀影响的风洞实验研究[J].水土保持学报,2003,17(3):32~33.
    129.张德二.我国历史时期以来降尘的天气气候学初步分析[J].中国科学,1984,24(3):278~288.
    130.张德军,张廓玉等.防风固沙林营造技术[J].内蒙古林业科技,2000,(增刊):30~33.
    131.张国平,张增祥,刘纪远.中国风力侵蚀空间格局及驱动力因子分析[J].地理学报,2001,56(2):146~158.
    132.张国盛.干旱、半干旱地区乔灌木树种耐旱性及林地水分动态研究进展[J],中国沙漠,2000,20(4):363~368.
    133.张华,何红,李锋瑞等,科尔沁沙地灌木对风沙土壤的生态效应[J].地理研究,2005,24(5)708-716.
    134.张华,李锋瑞,张铜会等.科尔沁沙地不同下垫面风沙流结构与变异特征[J].水土保持学报,2002,16(2):20~28.
    135.张劲松,孟平,宋兆民.“京九”铁路大兴段绿化模式动力效应的研究[J].林业科学研究,2002,15(3):317~322.
    136.张伟民,李孝泽,屈建军等.金字塔沙丘地表气流场及其动力学过程研究[J].中国沙漠,18(3):215~220.
    137.张小由.沙河洼农田地表风沙运动与土壤风蚀的初步研究[J].干旱区研究,1996,13(1):76~79.
    138.朱朝云,丁国栋,杨明远.风沙物理学[M].北京:中国林业出版社,1991.
    139.朱教君,姜凤岐,范志平等.林带空间配置与布局优化研究[J],应用生态学报,2003,14(8):1205~1212.
    140.朱廷曜,关德新,周广胜等.农田防护林生态工程学[M].北京:中国林业出版社,2001.
    141.朱兴运,任继周,沈禹颖.河西走廊山地—绿洲—荒漠草地农业生态系统的运行机制与模式[J].草业科学,1995,12(3):1~5.
    142.朱震达,陈广庭.中国土地沙质荒漠化[M].北京:科学出版社,1994.
    143.朱震达,刘恕.中国的荒漠化及其治理[M].北京:科学出版社,1989.
    144.朱震达,赵兴梁,凌裕泉等.治沙工程学[M].北京:中国环境科学出版社,1998.
    145.朱震达.三十年来中国沙漠研究的进展[J].地理学报,1979,34(4):305-313.
    146.邹学勇,董光荣.风沙物理学的发展与展望[J].地球科学进展,1993,8(6):44-49.
    147.邹学勇,朱九江,董光荣等.风沙流结构中起跃沙粒垂直初速度分布函数[J].科学通报,1992,37(23):2175~2177.
    148. Abdulkasimov.Zonal differentiation and structure of oasis landscape in Central Asia[J]. Mapping Sciences and Remote Sensing,1991,28(1):77~89.
    149. Bagnold R A.The physics of blown sand and desert dunes [M], Methuen, London,1943.
    150. BerndtssonR, ChenH. V ariability of soil water content along a transecte in a desert area. Journal of Arid Environments,1994, (27):127~139.
    151. Bornkamm R. Flora and vegetation of some small oasis in Egypt [J]. phytocoenologia,1986, 14(2):275~284.
    152. Brazel A J & W G Nickling. Dust storms and their relation to moisture in the Sonoran-Mojave desert region of the South-Western United States[J]. Journal of Environmental Management,1987, 24:279~291.
    153.Buerkert A, Lamers J P A. Soil erosion and deposition effects on surface characteristics and pearl millet growth in the west african sahel[J]. Plant and Soil,1995,215:239~253.
    154. Butterfield G R. Grain transport rates in steady and unsteady turbulent airflow[J]. Acte Mechanica,1991, (suppl.1):97~122.
    155. Butterfield G R. transitional behavior of saltation:wind tunnel observations of unsteady wind. Journal of Arid Environments,1998.39:377~394.
    156. Chen W N, Yang Z T and Dong Z B. Vertical distribution and grainsize parameters of drafting sand particles during sandstorms in the Taklamakan Desert, Central Asia. Physical Geography, 1995,16(6):503~552.
    157. Chepil W S, N P woodruff. The physics of wind erosion and its control [J]. Advances in Agronomy,1963,15:211~302.
    158. Chepil W S, Siddoway F H, and Armbrust D V. Prevailing wind erosion direction[J]. Soil and Water Cons,1964,19:67~70.
    159. Chepil W S.Properties of soil which influence wind erosion:Dry aggregate structure as an index of erodibility [J]. Soil Science,1950a,69:403~414.
    160. Chepil W S, et al. Climatic for estimating wind erodibility. Journal of Soil and Water Conservation,1962.17(4):162~165.
    161. Chepil W S. Dynamics of wind erosion:Nature of movement of soil by wind[J]. Soil Science, 1945,60:305~320.
    162. D W. Fryrear, J D Bibro, A Saleh, et al. RWEQ:Improved wind erosion technology[J]. Journal of soil and water conservation,1999, Second Quarter:183~189.
    163. Dong Y, Kang G. Study on the wind erosion and climatic erosivity in arid and semiarid areas in China[J]. Acta Conserverationis. soil et Aqace Sinica,1994,8(3):1~7.
    164. Dong Z B, X M and Liu L Y. Wind erosion in arid and semiarid China:an overview. Journal of Soil and Water Conservasoin,2000,55(4):430~444.
    165.Eimern J Van et al.,Windbreaks and shelterbelts[J]. W M OTechnial Note.1964, (59).
    166. Faragalla A A. Impact of agro desert on a desert ecosystem [J]. Journal of arid environment,1988, 15(1):99~102.
    167. Findlater P A, D J Carter & W D Seott. A model to predict the effects of prostrate ground cover on wind erosion. Australian Journal of Soil Research,1990.28:609~622.
    168.Fryear D W. Soil cover and wind erosion[J]. Trans-actions of the ASAE,1985,28(3):781~ 784.
    169. Fryrear D W, Stout J E, Hagen L J. Wind erosion field measurement and analysis[J], Trans.1991, ASAE,34:155~160.
    170. Fryrear D W, Merzouk A, Gupta J P. Mechanics, measurement and prediction of wind erosion[A]. Challenges in dry land agriculture-A global perspective [R]. Texas agricultural experiment station, college station, Texas,1988.77~78.
    171. Fryrear D W. Wind erosion research:accomplishmenta and needs. Transactions of the ASAE, 1985,20(5):916~918.
    172. Gary Tibke.Basic principles of wind erosion control [J]. Agriculture, Ecosystems and Enviroment,1988:22~23.
    173. Gibbens R P, J M Tromble, J T Hennessy. Soil movement in mesquite dunelands and f ormer grasslands of southern New Mexico from 1933 to 1980[J]. Journal of Range Management,1983, 36:145~148.
    174. Grant P F, W G Nicking. Direct field measurement of wind drag on vegetation for application to windbreak design and modeling. Land Degradation and Development,1998,9:57~66.
    175. Hagen L J. Crop residue effects on aerodynamic processes and wind erosion [J]. Theor Appl Climatol,1996,54:39~46.
    176. Higgitt, D. Soil erosion and soil problems. Progress in Physical Geography,1993,17:461~ 472.
    177. Horany M L. Charged dust currents on the surface of Mars.physica Scripta,2001,89:130~ 132.
    178. Horning L B, Stetler L D, Saxton K E. Surface residue and soil roughness for wind erosion protection[J]. Trans~actions of the ASAE,1998,41(4):1061~1065.
    179. Lancaster N, A. Baas. Influence of vegetation cover on sand transport by wind:field studies at Owens Lake, California[J]. Earth Surface Processes and Landforms,1998.23:69~82.
    180. Less Sang Joon, Kim Hyoung Bum. Laboratory measurements of velocity and turbulence field behind porous fences[J]. Journal of Wind Engineering and induustrial Aerodynamics,1999,80: 311-326.
    181. Leys, J. F. The threshold friction velocities and soil flux rates of selected soils in south-west New South Wales[J], Australia. Acta Mechanical,1991b:103~112.
    182. McTainsh G H, Lynch A W, Tews E K. Climate controls upon dust storm occurrence in eastern Australia [J]. Journal of Arid Environments,1998,39:457~466.
    183.Musick H B, D A Gillette. Field evaluation of relationships between a vegetation structural parameter and sheltering against wind erosion. Land Degradation and Rehabilitation,1990.2: 87-94.
    184. Naylor J N. Understorey vegetation in shelterbelts of eastern North Dakota. Abstract of Thesis in Dissert. Ab str. int.1970,31,8(6):221~333.
    185. Pankov E I, Kuzmina Z V, Treshkin, S E. The water availiability effect on the soil and vegetation cover of Southern Gobi oasis [J]. Water Resource,1994,21(3):358~364.
    186.R.A.拜格诺.风沙和荒漠沙丘物理学[M].北京:科学出版社,1959.28~52.
    187. Raupach M R, D A Gillette, J F Leys. The effect of roughness elements on wind erosion threshold[J]. Journal of Geophysical Research,1993.98:3023~3029.
    188. Saleh and D W. Soil roughness for the revised wind erosion equation, Journal of soil and water conservation,1999, Second Quarter:473~476.
    189. Shao Y, M R Raupach and J F Leys. A model for predicting Aeolian sand drift and dust entrainment on scales from paddock to region[J]. Australian journal of soil research 1996,34: 309~342.
    190. Siddoway F H, W S Chepil, D V Armbrust. Effect of kind amount and placement of residue on wind erosion control Transactions of the ASAE,1965,8:327~331.
    191.SKidmore E L. Wind erosion climatic erosivity[J]. Climatic Change,1986b,9(12):195~ 208.
    192. Skidmore E L.Wind erosion direction factors as influenced by field shape and wind proponderance[J], Soil Sci. Soc. Am. J.1987,51,198~202.
    193. Stount J E Zobeck T M. intermittent saltation. Sedimentology,1997,44:959~970.
    194. United Nations Environment Program(UNEP)and International Soil Research Information Center(ISRIC) [J]. World map of the statue of human induced soil degradation.1990.
    195.Vande V, A M T, Fryrear D W et al. Vegetation characteristics and soil loss by wind[J]. Journal of Soil and Water Conservation,1989,44:347~349.
    196. Wang, S. & E. S. Takle. A numerical simulation of boundary~layer flows near shelterbelts.Boundary~layer Meteorology,1995.75:141~173.
    197. Wang, S. & E. S. Takle. On three~dimensionality of shelterbelt structure and its influences on shelter effects. Boundary~layer Meteorology,1996.79:83~105.
    198. Wasson G J, Nanninga P M. Estimating wind transport of sand on vegetation surface[J]. Earth surface Processes and Landforms,1996, N(1):505~514.
    199. Wasson R J and Nanninga P M.Estimating wind transport of sand on vegetated suifaces. Earth Surface Processes and Landforms,1986.11(5):505~514.
    200. Wolfe S A, W G Nickling. The protective role of sparse vegetation in wind erosion[J]. Progress on Physical Geography,1993,17:50~68.
    201. Woodruff N P, Siddoway F H. A wind erosion equation[J]. Soil Science Society of America Proceedings,1965,39:602~608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700