用户名: 密码: 验证码:
渭河流域分布式水文模拟及水循环演变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是生命之源,也是经济和社会发展的命脉。近些年来受全球气候环境变化及人类活动影响,许多国家地区出现河流流量减少、水环境恶化以及水质污染等问题,严重制约了社会经济的可持续发展。渭河流域是资源性缺水地区,气候变化使气温、降水、径流等水循环要素在季节和空间上发生改变,增加了流域旱涝灾害的发生机率,导致水资源安全情势将更为严峻,未来流域供需矛盾将更加突出。随着气候变暖和用水需求日益增大,充分认识并分析气候变化下流域水循环演变规律显得尤为迫切和重要。
     本文首先利用分布式水文模型对渭河流域水文循环系统进行模拟,并在此基础上运用现代统计学手段对流域水循环演变特征进行分析,同时结合统计降尺度模型开展未来气候变化情景下水循环要素模拟及预测研究,以期为流域水资源综合开发利用及水量调度管理提供科学参考和依据。主要研究成果与结论如下:
     (1)根据渭河流域地理条件及气象水文特征,基于EasyDHM水文模拟平台建立渭河流域分布式水文模型,完成模型参数率定及验证工作,取得了较好的模拟效果。结果表明,EasyDHM在渭河流域具有较好的适用性,构建的模型能够客观描述该流域水循环过程,可以应用于实际问题研究。
     (2)在构建渭河流域分布式水文模型的基础上,采用多种统计检验手段,从年、季、汛期和枯水期等不同时段角度,对渭河流域近55年(1954~2008年)气温、降水及径流要素的时空分布特点及演变特征规律进行分析,结果表明:①从空间分布看,多年平均气温及降水量在空间上存在不均衡性,气温以西安站为中心向外呈辐射递减趋势,降水呈现由东部和南部向西北部逐渐减少的分布格局。②从均一性分析看,气温、降水及径流时间序列在95%置信水平下都存在均一性。③从趋势变化上看,流域年平均气温呈现显著上升趋势,降水量变化趋势不显著,径流量呈现显著减少趋势;除冬季的降水量呈现显著上升趋势以外,其余季节及汛、枯期变化趋势与年际大体相同,且上述变化趋势未来仍可能持续。④从突变分析上看,流域年平均气温及径流量存在明显突变情况,而降水量无显著突变现象发生;除冬季的降水量存在显著突变现象以外,其余研究时段突变分析结果与年际结果一致;⑤从周期分析上看,不同时段的气温、降水和径流要素均存在多个特征时间尺度,具有不同的周期成分,径流的周期变化特征与气温和降水的周期变化特征表现出很好的相关性。
     (3)基于统计降尺度模型SDSM建立渭河流域气温及降水要素的降尺度模型,并完成模型标定和验证期模拟能力评估,结果表明模型的模拟结果较为可靠,可以应用于渭河流域气温、降水等气候要素未来变化趋势的预估。选取A2和B2气候变化情景进行分析可知,两种情景下未来90年(2010~2099年)渭河流域的平均气温呈现较为显著的上升趋势,而降水量总体变化趋势不显著。将统计降尺度模型与已构建的分布式水文模型相耦合,对渭河流域未来径流量总体变化进行预测并对干支流上5个主要控制性水文站径流变化展开研究,结果显示:渭河流域未来径流量相对基准期(1961~2009年)多年平均水平总体上有所减少,其中A2情景下减少趋势十分明显,而B2情景变化趋势不显著。
Water is the source of life, also is the lifeblood of economic and socialdevelopment. In recent years, influenced by global climate change and humanactivities, many countries and regions have the problems of river flow reduction,water environment deterioration and water pollution, which restrict the sustainabledevelopment of social economy. Weihe River basin is a water-lacking area, andclimate change brings an important impact to water cycle factors such as temperature,precipitation and runoff in season and space, which will increase the occurrenceprobability of flood and drought in the river basin, lead to water security situationmore serious, and result in the imbalance between supply and demand more poignantin the future. With climate warming and water demand increasing, it is especiallyurgent and important to understand and analyze the evolution of dynamic water cycleunder climate change in Weihe River basin.
     This paper firstly established the distributed hydrological model to carry out thesimulation of water cycle process in Weihe River basin, and then used a variety ofmodern statistical methods to full-scale analyze the variation characteristics ofhydrologic and meteorological elements, and in addition, combining with statisticaldownscaling model, this paper carried out the research on simulation and predictionof water cycle elements under future climate change scenarios, so as to providescientific reference for reasonable development and utilization of basin waterresources and management of water regulation. The main results and conclusions areas follows:
     (1) According to the geographical conditions and meteorological hydrologicalcharacteristics of weihe river basin, and based on EasyDHM hydrological simulationplatform, this paper established the distributed hydrological model in Weihe Riverbasin, completed calibration and validation of parameters for14parameter subareas,and obtained a good simulation result. The results showed that EasyDHM had goodapplicability in Weihe River basin, and the established model described the innermechanism of hydrologic processes objectively, therefore it could be applied toresearch and solve practical problems.
     (2) Based on the distributed hydrological model in Weihe River basin, the paperused many kinds of statistical test methods to analyze the temporal-spatial distributionand evolution characteristics of temperature, precipitation and runoff during recent55 years (1954-2008) in the different period of time, such as year, season, flood seasonand dry season. The results showed,①There was an irregular spatial distribution ofannual mean temperature and precipitation. The temperature showed a decreasingtrend from the centre near the Xi’an station to all directions, and precipitationappeared a decreasing trend from the east and south to the northwest as a whole.②Inthe95%confidence interval, the temperature, precipitation and runoff time series ofWeihe River basin existed homogeneity.③As for trend change, mean temperaturedemonstrated a remarkable significant increasing trend, there was no significant trendin precipitation, and runoff showed a significant decreasing trend in annual. Thetrends are still likely to continue in future. Except in winter, when there were asignificant increasing trend in precipitation, the variation trends in the rest of theseasons, flood season and dry season were approximately the same as those in annual.④From sudden change analysis, there were significant mutation phenomenon inmean temperature and runoff time series, and precipitation had no significant suddenchange in annual. Except in winter, when the mutation phenomenon was very obviousin precipitation, the conclusions between in other study periods and in annual wereconsistent.⑤As far as period variation was concerned, temperature, precipitation,and runoff existed multi-time scale change characteristics with different periodcompositions, and the periodical variation characteristics in runoff appeared goodcorrelation with those in temperature and precipitation.
     (3) Based on statistical downscaling model SDSM, this paper established thedownscaling model for temperature and precipitation respectively in Weihe Riverbasin, and carried out the calibration and validation of the model. It showed that thesimulation results were reliable and the model could be applied to predict thevariation trend of meteorological elements such as temperature and precipitation. Thepaper chose A2and B2climate change scenarios for research, and the resultsindicated that in the next90years (2010-2099), mean temperature demonstrated aremarkable significant increasing trend, and variation trend of precipitation was notobvious as a whole under the two scenarios in Weihe River basin. The statistical downscaling model and the distributed hydrological model were coupled to predict thefuture runoff changes of the whole basin and5control hydrological stations onmainstream and tributary. The results showed that the total runoff would be less thanthe average value of reference period (1961-2009) and the decreasing trends in thefuture were very obvious under A2scenario and not significant under B2scenario.
引文
[1]周祖昊,仇亚琴,贾仰文等,变化环境下渭河流域水资源演变规律分析,水文,2009,29(1):21~25
    [2]夏军,水文学科发展与思考:21世纪中国水文科学研究的新问题新技术和新方法,北京:科学出版社,2001
    [3]贾仰文,高辉,牛存稳等,气候变化对黄河源区径流过程的影响,水利学报,2008,29(1):52~58
    [4] Nearing M A. Potential changes in rainfall crosivity in the United States withclimate change during the21s century. Journal of Soil and Water Conservation,2001,56(3):229~232
    [5]刘昌明,郑红星.黄河流域水循环要素变化趋势分析,自然资源学报,2003,18(2):129~135
    [6]雷晓辉,廖卫红,蒋云钟等,分布式水文模型EasyDHM(Ⅰ):理论方法,水利学报,2010,41(7):786~794
    [7] Freeze R.A., HarlanR.L. Blue print for a physically-based digital simulatedhydrologic response model. J Hydrol,1969,9:237~258
    [8]陈暘,分布式水文模型EasyDHM在南水北调中线受水区的应用研究:[硕士学位论文],天津:天津大学,2010
    [9]王书功,康尔泗,李新,分布式水文模型的进展及展望,冰川冻土,2004,26(1):61~65
    [10] Hewlett, J D, Nutter W L. The varying source area of streamflow from uplandbasins. Proceedings of the Symposium on Interdisciplinary Aspects of WatershedManagement held in Bozeman, MT,1970:65~83
    [11] Beven K J, Kirkby M J. A physically based variable contributing area model ofbasin hydrology. Hydrological Science Bulletin,1979,24(1):43~69
    [12] Beven K J, Calver A, Morris E M.The Institute of Hydrology Distributed Model.Wallingford, England: Institute of Hydrology Report No.98,1987
    [13] Abbot M B, Bathurst J C, Cunge J A, et al.An Introduction to the EuropeanHydrological System-Systeme Hydrologique European,"SHE",2.Structure of aphysically-based distributed modeling system.Journal of Hydrology,1986,87:61~77
    [14] Bathhurst J C, Wicks J M, O’Conell P E. The SHE/SHESED basin scale waterflow and sediment transport modeling system. In: V P Singh. Chapter16inComputer Models of Watershed Hydrology. Water Resources Publications,Littleton, Co.,1995
    [15]雷晓辉,蒋云钟,王浩等,分布式水文模型EasyDHM,北京:中国水利水电出版社,2010
    [16] Decoursey D G.'ARS' Small Watershed Model. Am.Soc.Agric.Eng.Paper.1982,2094
    [17] Huber W C, Dickinson R E. Storm Water Management Model User’s Manual.EPA,1998
    [18] VERTESSY, R.A., HATTON, T.J., O'SHAUGHNESSY, P.J. and JAYASURIYA,M.D.A. Predicting water yield from a mountain ash forest catchment using aterrain analysis based catchment model. J. Hydrology,1993,(150):665~700
    [19] Arnold, J.G., R. Srinivasin, R.S. Muttiah, J. R. Williams. Large Area HydrologicModeling and Assessment: Part I. Model Development. JAWRA,1998,34(1):73~89
    [20] Arnold, J.G., Williams, J.R., Maidment D.A. Continuous-Time Water andSediment-Routing Model for Large Basins. Journal of Hydraulic Engineering,1995,121(2):171~183
    [21] Bergstrom, S. The HBV model. In: Computer Models of Watershed Hydrology.Singh, V.(ed.). Water Resources Publications, Littleton, Colorado,1995,443~476
    [22] Hydrologic Engineering Center, US Army Corps of Engineers. HEC-HMS User’sManual. Davis, CA: US US Army Corps of Engineers,2006
    [23]刘昌明,李道峰,田英等,基于DEM的分布式水文模型在大尺度流域应用研究,地理科学进展,2003,22(5):437~445
    [24]王晓云,流域土地利用变化对径流影响问题的研究:[硕士学位论文],天津:天津大学,2008
    [25]冯夏清,章光新,尹雄锐,基于SWAT模型的乌裕尔河流域气候变化,地理科学进展,2010,29(7):827~832
    [26]邓慧平,李秀彬,流域土地覆被变化水文效应的模拟—以长江上游源头区梭磨河为例,地理学报,2003,58(1):53~62
    [27]符传君,黄国如,陈永勤,用TOPMODEL模型模拟流域枯水径流,应用基础与工程科学学报,2007,15(4):509~516
    [28]王力,赵红莉,蒋云钟,HEC-HMS模型在南水北调东线水资源调度中的应用,南水北调与水利科技,2007,5(6):58~61
    [29]于磊,顾鎏,李建等,基于SWAT模型的中尺度流域气候变化水文响应研究,水土保持通报,2008,28(4):152~154
    [30]黄晴,张万昌,改进型TOPMODEL在不同尺度和气候条件流域上的适用性研究,水土保持通报,2008,28(5):48~54
    [31]张建军,纳磊,张波. HEC-HMS分布式水文模型在黄土高原小流域的可应用性,北京林业大学学报,2009,31(3):52~57
    [32]沈小东,基于栅格数据的流域降雨径流模型,地理学报,1995,(3):264~269
    [33]黄平,赵吉国,流域分布型水文数学模型的研究及应用前景展望,水文,1997,17(5):5~10
    [34] Jia Y W. Integrated analysis of water and heat balances in Tokyo metropolis witha distributed model. Ph.D.Dissertation, Univ.of Tokyo,1997.1
    [35] Jia Y W, Ni G H, Kawahara Y, et al. Development of WEP Model and ItsApplication to an Urban Watershed. Hydrological Process,2001,15:2175~2194
    [36] Jia Y W, Ni G H, Yoshitani J, Kawahara Y, et al. Coupling Simulation of Waterand Energy Budgets and Analysis of Urban Development Impact. Journal ofHydrologic Engineering, ASCE,2002,7(4):302~311
    [37]中国水利水电科学研究院水资源研究所,“十五”国家重点科技攻关项目“黑河流域水资源调配管理信息系统研究”课题“黑河流域水资源调配管理信息系统研究”第二专题“黑河流域水资源合理配置评价研究”(2001BA610A-02-03)研究报告,北京:中国水利水电科学研究院水资源研究所,2004
    [38]贾仰文,王浩,严登华,黑河流域水循环系统的分布式模拟(Ⅰ)—模型开发与验证,水利学报,2006,37(5):534~542
    [39]贾仰文,王浩,严登华,黑河流域水循环系统的分布式模拟(Ⅱ)—模型应用,水利学报,2006,37(6):655~661
    [40] Yang D W, Herath S, Musiake K. Comparison of different distributedhydrological models for characterization of catchment spatial variability.Hydrologic Processes,2000,14:403~416
    [41] Yang D W. Distributed hydrologic model using hillslope discretization based oncatchment area function: development and applications. Tokyo: the University ofTokyo,1998
    [42]杨大文,李翀,倪广恒等,分布式水文模型在黄河流域的应用,地理学报,2004,59(1):143~154
    [43]许继军,分布式水文模型在长江流域的应用研究:[博士学位论文],北京:清华大学,2007
    [44]李兰,郭生练,流域水文分布动态参数反问题模型,中国水利学会优秀论文集,宜昌:中国三峡出版社,2000,48~54
    [45]李兰,钟名军,基于GIS的LL-Ⅱ分布式降雨径流模型的结构,水电能源科学,2003,21(4):35~38
    [46]杨超,李兰,赵英虎等,LL-Ⅲ分布式水文模型在国际分布模型比较计划中的应用,中国农村水利水电,2008,8:52~56.
    [47]赵英虎,李兰,周浩澜等,LL-Ⅲ模型在美国Baron Fork流域的应用,人民长江,2008,39(6):46~48
    [48]郭生练,熊立华,基于DEM的分布式流域水文物理模型,武汉水利电力大学学报,2000,33(6):1~5
    [49]熊立华,郭生练,田向荣,基于DEM的分布式流域水文模型及应用,水科学进展,2004,15(4):517~520
    [50]任立良,刘新仁,基于DEM的水文物理过程模拟,地理研究,2000,19(4):369~376
    [51]夏军,水文非线性系统理论与方法,武汉:武汉大学出版社,2002
    [52]刘昌明,夏军,郭生练等,黄河流域分布式水文模型初步研究与进展,水科学进展,2004,15(4):495~500
    [53]雷晓辉,蒋云钟,王浩等,分布式水文模型EasyDHM(Ⅱ):应用实例,水利学报,2010,41(8):893~907
    [54]雷晓辉,廖卫红,蒋云钟等,分布式水文模型EasyDHM模型,水利信息化,2010,2:31~37
    [55]张俊娥,陆垂裕,秦大庸等,基于分布式水文模型的区域“四水”转化,水科学进展,2011,22(5):595~604
    [56]穆方驰,渭河下游洪水预报模型开发及应用研究:[硕士学位论文],南京:河海大学,2006
    [57]许明一,渭河流域水文模型研制及应用:[硕士学位论文],南京:河海大学,2007
    [58]张荔,赵串串,林金辉等,分布式水文模型在渭河流域水环境分析中的应用,西安建筑科技大学学报(自然科学版),2007,39(1):61~65
    [59]赵串串,分布式水文模型在渭河流域水资源综合管理中的应用研究:[硕士学位论文],西安:西安建筑科技大学,2007
    [60]林金辉,基于GIS的数字化渭河流域地理特性研究:[硕士学位论文],西安:西安建筑科技大学,2007
    [61]林金辉,张荔,王晓昌等,基于DEM的数字化渭河流域水系构建,西安建筑科技大学学报(自然科学版),2008,40(2):260~264
    [62]赵串串,王晓昌,马宏瑞等,基于径流量模拟的渭河流域有机污染负荷削减方案研究,干旱区资源与环境,2010,24(6):164~168
    [63]张荔,分布式水文模型构建及在渭河流域水环境解析中的应用研究:[博士学位论文],西安:西安建筑科技大学,2010
    [64]贾仰文,周祖昊,雷晓辉,渭河流域水循环模拟与水资源调度,北京:中国水利水电出版社,2009
    [65]郝春沣,贾仰文,王浩等,气象水文模型耦合研究及其在渭河流域的应用,水利学报,2012,43(9):1042~1049
    [66]徐宗学,左德鹏,渭河流域蓝水绿水资源量多尺度综合评价,2012全国水资源合理配置与优化调度技术专刊,2012
    [67]左德鹏,徐宗学,基于SWAT模型和SUFI-2算法的渭河流域月径流分布式模拟,北京师范大学学报(自然科学版),2012,48(5):490~496
    [68]胡宏昌,王根绪,李志等,渭河径流对LUCC和气候波动的响应研究,人民黄河,2008,30(7):25~26
    [69]李家科,刘健,秦耀民等,流域非点源污染负荷定量化研究,西安理工大学学报,2008,24(3):278~285
    [70]李家科,流域非点源污染负荷定量化研究:[博士学位论文],西安:西安理工大学,2009
    [71]张博,红梅,贾仰文等,基于MODFLOW的流域分布式水文模型研究——以渭河中下游地区为例,湿地科学,2009,7(2):148~154
    [72] Kite G W, Haberlandt U. Atomospher ic Model Data for Macroscale Hydrology.Journal of Hydrology,1997,217:303~313
    [73] Coulibaly P, Burn D H. Wavelet analysis of variability in annual Canadianstreamflows. Water Resources Research,2004,40:1~14
    [74] Burn D H, Cunderlik J M. Hydrological trends and variability in the Liard Riverbasin. Hydrological Sciences-Journal-des Sciences Hydrologiques,2004,49(1):53~67
    [75] Boulain N, Cappelaer e B, Seguis L, et al. Water Balance and Vegetation Changein the Sahel: A Case Study at the Watershed Scale with an EcohydrologicalModel. Journal of Arid Enviroments,2009,73:1125~1135
    [76] Karpouzos D K, Kavalieratou S, Babajimopoulos C. Trend Analysis ofPrecipitation Data in Pieria Region(Greece). European Water,2010,30:31~40
    [77] Tabari H, Somee B S, Zadeh M R. Testing for long-term trends in climaticvariables in Iran. Atmospheric Research,2011,100:132~140
    [78] Tabari H, Talaee P H. Temporal variability of precipitation over Iran:1966–2005.Journal of Hydrology,2011,396:313~320
    [79] Tabari H, Marofi S, Aeini A, et al. Trend analysis of reference evapotranspirationin the western half of Iran. Agricultural and Forest Meteorology,2011,151:128~136
    [80]刘昌明,郑红星,黄河流域水循环要素变化趋势分析,自然资源学报,2003,18(2):129~135
    [81]王浩,贾仰文,王建华等,人类活动影响下的黄河流域水资源演化规律初探,自然资源学报,2005,20(2):157~162
    [82]贾仰文,王浩,“黄河流域水资源演变规律与二元演化模型”研究成果简介,水利水电技术,2006,37(2):45~52
    [83] Yangwen Jia, Hao Wang, Zuhao Zhou, et al.. Development of the WEP-LDistributed Hydrological Model and Dynamic Assessment of Water Resourcesin the Yellow River Basin. Journal of Hydrology,2006(331):606~629
    [84]仇亚琴,水资源综合评价及水资源演变规律研究:[博士学位论文],北京:中国水利水电科学研究院,2006
    [85]胡安焱,郭生练,陈华,基于小波变换的汉江径流量多时间尺度分析,人民长江,2006,37(11),61~62
    [86] Xu J J, Yang D W, Yi Y H, et al. Spatial and temporal variation of runoff in theYangtze River basin during the past40years. Quaternary International,2007,1~11
    [87]王宗志,王银堂,胡四一,流域水资源演化模式识别与分析,水利学报,2007.10增刊,388~392
    [88] Chen H, Guo S L, Xu C Y, et al. Historical temporal trends of hydro-climaticvariables and runoff response to climate variability and their relevance in waterresource management in the Hanjiang basin. Journal of Hydrology,2007,344:171~184
    [89] Zhang S R, Lu X X, Higgitt D L, et al. Recent changes of water discharge andsediment load in the Zhujiang (Pearl River) Basin, China. Global and PlanetaryChange,2008,(60):365~380
    [90]刘敏,沈彦俊,海河流域近50年水文要素变化分析,水文,2010,30(6):74~77
    [91]邱临静,郑粉莉,尹润生,1952-2008年延河流域降水与径流的变化趋势分析,水土保持学报,2011,25(3):49~53
    [92]刘勇,王银堂,陈元芳等,太湖流域梅雨时空演变规律研究,水文,2011,3(31):36~43
    [93]朱佳君,张珏,唐颖丰等,洮河干流径流变化特征分析,人民黄河,2012,1(34):27~30
    [94]王玉新,嫩江流域径流演变规律及其归因分析:[硕士学位论文],吉林:吉林大学,2012
    [95]张建云,王国庆,贺瑞敏等,黄河中游水文变化趋势及其对气候变化的响应,水科学进展,2009,20(2):153~158
    [96] WMO.Water resources and climate change: sensitivity of water resources systemto climate and variability.Geneva: WMO/TO,1987
    [97]田鹏,气候与土地利用变化对径流的影响研究:[博士学位论文],咸阳:西北农林科技大学,2012
    [98] Waggoner P E. Climate Change and US Water Resource. New York: Wiley-Interscience,1990
    [99] Arnell N W. Climate change and global water re-sources: SRES emissions andsocioeconomic scenarios. Global Environmental Change,2004,14(1):31~52
    [100] Chiew F, McMahon T. Modeling the impacts of climate change on Australianstream flow. Hydrological Process,2002,16:1235~1245
    [101]施雅风,气候变化对西北华北水资源的影响,济南:山东科学技术出版社,1995
    [102]张建云,短期气候异常对我国水文水资源的影响评估,水科学进展,1996,7(增刊),1~3
    [103]王国庆,张建云,气候变化对水文水资源影响研究综述.中国水利,2008(2):47~51
    [104]刘春蓁,气候变化对陆地水循环影响的研究,地球科学进展,2004,19(1):115~119
    [105] Benioff R, Guill S, Lee J. Vulnerability and Adap tation Assessments (Version1.1, An International Handbook). Environmental Science and TechnologyLibrary, KluwerAcademic Publishers, Dordrecht, The Netherlands,1996:421
    [106] Benioff R, Guill S, Lee J. Vulnerability and Adap tation Assessments (Version1.1, An International Handbook). Environmental Science and TechnologyLibrary, KluwerAcademic Publishers, Dordrecht, The Netherlands,1996:421
    [107] Mimikou M. A., Baltas E., Varanou E., et al. Regional impacts of climatechange on water resources quantity and quality indicators. Journal of Hydrology,2000,(234):95~109
    [108] NIET O S, FRIAS M D, RODRIGU EZ-PUEBLA C. Assessing t o differentclimatic models and the NCEP-NCAR reanalysis data f or the description ofwinter precipitation in the Iberian Penin sula. International Journal ofClimatology,2004,24(3):361~376
    [109]刘春蓁,气候变化对我国水文水资源的可能影响,水科学进展,1997,8(3):220~225
    [110]徐影,丁一汇,赵宗慈,近30年人类活动对东亚地区气候变化影响的检测与评估,应用气象学报,2002,(5):513~525
    [111] Zhou, T J, R. Yu. Twentieth century surface air temperature over China and theglobe simulated by coupled climate models, Journal of Climate,2006,19(22):5843~5858
    [112]曹颖,张光辉,大气环流模式在黄河流域的适用性评价,水文,2009,29(05):1~5
    [113]刘绿柳,刘兆飞,徐宗学,21世纪黄河流域上中游地区气候变化趋势分析,气候变化研究进展,2008(3):167~172
    [114]赵芳芳,徐宗学,黄河源区未来气候变化的水文响应,资源科学,2009,31(5):722~730
    [115]丁相毅,贾仰文,王浩等,气候变化对海河流域水资源的影响及其对策,自然资源学报,2010,(04):604~613
    [116]於凡,曹颖,全球气候变化对区域水资源影响研究进展综述,水资源与水工程学报,2008,19(4):92~97
    [117] Giorgi F, Francisco R.2000.Evaluating uncertainties in the prediction ofregional climate change. Geophysical Research Letters27:1295~1298.
    [118]范丽军,统计降尺度方法的研究及其对中国未来区域气候情景的预估:[博士学位论文],北京:中国科学院研究生院大气物理研究所,2006.
    [119] Wilby, R.L., Wigley, T.M.L. Downscaling general circulation model output:areview of methods and limitations. Prog. Phys. Geogr,1997,21,530~548
    [120] Khan S M, Coulibaly P, Dibike Y. Uncertainty analysis of statistical downscaling methods using Canadian global climate modelpredictors.HydrologicalProcess,2006,20(14):3085~3104.
    [121] Wilby R L, Dawson C W, Barrow E M. SDSM—A decision support tool forthe assessment of regional climate change impacts. Environ Model Soft,2002,17:147~159
    [122] Winkler J A, Palutikof J P, Andresen J A, et al. The simulation of dailytemperature time series from GCM output: Part Ⅱ:Sensitivity analysis of anempirical transfer function methodology. J Climate,1997,10:2514~2535
    [123] Hay L E, Wilby R L, Leavesley G H. A comparison of delta change anddownscaled GCM scenarios for three mountainous basins in the United States. JAmer Water Resour Assoc,2000,36(2):387~397
    [124] Palutikof J P, Godess C M, Watkins S J, et al. Generating rain-fall andtemperature scenarios at multiple sites: examples fromthe Mediterranean. JClimate,2002,15:3529~3548
    [125]赵芳芳,徐宗学,统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析,气象学报,2007,65(4):653~662
    [126]赵芳芳,徐宗学,黄河源区未来地面气温变化的统计降尺度分析,高原气象,2008,27(11):53~161
    [127]褚健婷,夏军,许崇育,SDSM模型在海河流域统计降尺度研究中的适用性分析,资源科学,2008,30(12):1825~1832
    [128]赵传燕,南忠仁,程国栋等,统计降尺度对西北地区未来气候变化预估,兰州大学学报:自然科学版,2008,44(5):12~18.
    [129]黄俊雄,徐宗学,刘兆飞等,统计降尺度法分析太湖流域未来气候变化情景,资源科学,2008,30(12):1811~1817
    [130]郭靖,郭生练,张俊,陈华,陈桂亚,汉江流域未来降水径流预测分析研究,水文,2009,29(5):18~22
    [131]郭家力,郭生练,郭靖等,鄱阳湖流域未来降水变化预测分析,长江科学院院报,2010,27(8):20~24
    [132]王冀,宋瑞艳,郭文利,统计降尺度方法在北京月尺度预测中的应用,气象,2011(6):693~700
    [133]刘敏,王冀,刘文军,SDSM统计降尺度方法对江淮地区地面气温模拟能力评估及其未来情景预估,气象科学,2012,32(5):500~507
    [134]和宛琳,徐宗学,渭河流域气温与蒸发量时空分布及其变化趋势分析,北京师范大学学报(自然科学版),2006(1):102~106
    [135]和宛琳,徐宗学,渭河流域近40年降水量变化规律及干旱预测,人民黄河,2007(1):36~37,40
    [136]刘燕,胡安焱,渭河流域近50年降水特征变化及其对水资源的影响,干旱区资源与环境,2006(1):85~87
    [137]张宏利,陈豫,任广鑫等,近50年来渭河流域气温变化特征分析,西北农业学报,2008(2):106~109,113
    [138]张宏利,陈豫,任广鑫等,近50年来渭河流域降水变化特征分析,干旱地区农业研究,2008(4):236~241
    [139]王生雄,魏红义,王志勇,渭河径流序列趋势及突变分析,人民黄河,2008(9):26~27,29
    [140]魏红义,李靖,王江等,渭河流域径流变化趋势及其影响因素分析,水土保持通报,2008(1):76~80
    [141]焦彩强,王飞,穆兴民等,渭河流域气候变化与区域分异特征,水土保持通报,2010(5):27~32
    [142]毛明策,王琦,渭河流域近40a来汛期降水特征分析,人民黄河,2010(12):64~65
    [143]姚小英,蒲金涌,乔艳君等,近39年来渭河上游主要气候因子变化特征,安徽农业科学,2010(34):19636~19637+19721
    [144]姚玉璧,张秀云,段志勇等,渭河源区气候变化及其对水资源的影响,干旱地区农业研究,2011(5):247~252
    [145]占车生,王会肖,徐宗学等,渭河流域气候变异和人类活动水文响应定量化研究,发挥资源科技优势保障西部创新发展——中国自然资源学会2011年学术年会,中国新疆乌鲁木齐,2011:752~753
    [146]刘晓玲,渭河下游径流量对气候变化及人类活动的响应研究:[硕士学位论文],西安:陕西师范大学,2011
    [147]侯钦磊,白红英,任园园等,50年来渭河干流径流变化及其驱动力分析,资源科学,2011,33(8),1505~1512
    [148]郑爱勤,王文科,段磊,渭河流域基流及降雨的多尺度特征和突变分析,干旱区资源与环境,2012(6):144~148
    [149]牛最荣,赵文智,刘进琪等,甘肃渭河流域气温、降水和径流变化特征及趋势研究,水文,2012(2):78~83,87
    [150]刘引鸽,郭叶红,卫旭东等,渭河流域地表水资源未来变化趋势分析,水土保持通报,2005(5):85~88
    [151]刘兆飞,徐宗学,基于统计降尺度的渭河流域未来日极端气温变化趋势分析,资源科学,2009(9):1573~1580
    [152]张荔,贺基瑞,基于情景分析法的流域径流特性研究,西安建筑科技大学学报(自然科学版),2011(4):541~545
    [153]左德鹏,徐宗学,李景玉等,气候变化情景下渭河流域潜在蒸散量时空变化特征,水科学进展,2011(4):455~461
    [154] Wang Z M, Batelaan O, De Smedt F. A Distributed Model for Water and EnergyTransfer Between Soil, Plants and Atmosphere (WetSpa). Physics and Chemistryof the Earth,1996,21(3):189~193
    [155] Arnold J G, Srinivasan R, Ramanarayanan T S, et al. Water Resources of theTexas Gulf Basin. Wat. Sci. Tech,1999,39(3):121~133
    [156]赵人俊,流域水文模拟,北京:水利电力出版社,1984
    [157] George C,Leon L F,WaterBase:SWAT in an open source GIS. The OpenHydrology Journal,2008,2:1~6
    [158] S.L. Neitsch, J.G. Arnold, J.R. Kiniry, J.R. Williams.Soiland water assessmenttool theoretical documentation (Version2005).2005,1
    [159] McKay M D,Beckman R J,Conover W J. A comparison of three methods forselecting values of input variables in the analysis of output from a computer code.Technometrics,1979,21(2):239~245
    [160] George C,Leon L F,WaterBase:SWAT in an open source GIS. The OpenHydrology Journal,2008,2:1~6
    [161] McKay M D,Beckman R J,Conover W J. A comparison of three methods forselecting values of input variables in the analysis of output from a computer code.Technometrics,1979,21(2):239~245.
    [162]雷晓辉,周祖昊,丁相毅等,分布式水文模型子流域划分中界河、海岸线的处理研究,水文,2009,29(6):1~5
    [163] Pfafstetter O. Classification of hydrographic basics: coding methodology,unpublished manuscript, Departamento Nacional de Obras de Saneamento,August18,1989.
    [164]罗翔宇,贾仰文,王建华等,基于DEM与实测河网的流域编码方法,水科学进展,2006,17(2):259~264
    [165] Xiaohui Lei, Yu Tian, Yunzhong Jiang, et al. General catchment delineationmethod and its application into the Middle Route Project of China’sSouth-to-North Water Diversion. The Hong Kong of Engineers Transactions,2009,17(2):27~33.
    [166]雷晓辉,王海潮,田雨等,南水北调中线受水区分布式水文模型子流域划分研究,南水北调与水利科技,2009,7(3):10~13
    [167]王旭,雷晓辉,廖卫红,蒋云钟,自适应距离反比法及其在滦河流域的应用,南水北调与水利科技,2010,8(4):79~82
    [168] Van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan S. Aglobal sensitivity analysis tool for the parameters of multi-variable catchmentmodels. Journal of Hydrology,2006,324:10~23
    [169] McKay, M.D., Beckman, R.J., Conover, W.J., A comparison of three methodsfor selecting values of input variables in the analysis of output from a computercode. Technometrics1979,21(2):239~245
    [170] Morris M.D. Factorial sampling plans for preliminary computationalexperiments.Technometrics,1991,33(2):161~174
    [171] Tolson B A, Shoemaker C A. Dynamically dimensioned search algorithm forcomputationally efficient watershed model calibration. Water Recourses andResearch,2007,43: W01413, doi:10.1029/2005WR004723
    [172] Duan Q Y. Global optimization for watershed model calibration. In Calibrationof Watershed Models, Water Science Application,2004,6:89~104
    [173]初京刚,基于多源信息的分布式水文模拟及优化算法应用研究:[博士学位论文],大连:大连理工大学,2012
    [174] Nash J E, Sutcliffe J V. River forecasting through conceptual models: Part ⅠA discussion of principles. Journal of Hydrology,1970,10(3):282~290
    [175]张利平,曾思栋,王任超等,气候变化对滦河流域水文循环的影响及模拟,资源科学,2011,33(5):966~974
    [176]张利平,秦琳琳,胡志芳等,南水北调中线工程水源区水文循环过程对气候变化的响应,水利学报,2010,41(11):1261~1271
    [177]徐智鑫,王大钧,高杰,辽宁省气温序列均一性检验,安徽农业科学,2010,(27):11515~15149
    [178] Alexandresson H. A homogeneity test applied to precipitation data. Journal ofClimatology,1986,6:661~675
    [179] Buishand T A. The analysis of homogeneity of long-term rainfall records in theNetherlands C.De Bilt, The Netherlands: KNMI Scientific Report WR81-7,1981
    [180] PETTITT A N.A non-parametric approach to the change-pointdetectionJ.Applied Statistics,1979,28:126~135
    [181]鞠晓慧,屠其璞,李庆祥,我国太阳总辐射月总量资料的均一性检验及订正,南京气象学院学报,2006,29(3):336~341
    [182]宋超辉,刘小宁,李集明,气温序列非一均性检验方法研究,应用气象学报,1995,6(3):289~296
    [183]刘小宁,我国40年年平均风速的均一性检验,应用气象学报,2000,11(2):27~34
    [184]田雨,长江上游复杂水库群联合调度技术研究:[博士学位论文],天津:天津大学,2012
    [185] Tabari H, Talaee P H. Temporal variability of precipitation over Iran:1966~2005. Journal of Hydrology,2011,396:313~320
    [186]孙佳,47年来石羊河流域气候变化趋势及突变分析,兰州:兰州大学,2008
    [187] Mann H B. Nonparametric tests against trend.. Econometrica,1945,13:245~259
    [188] Kendall M G. Rank Correlation Methods. London: Charles Griffin,1975
    [189]魏凤英,现代气候统计诊断预测技术,北京:气象出版社,1999
    [190] Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelateddata. Journal of Hydrology,1998,204:182~196
    [191] Yue S, Hashino M. Temperature trends in Japan:1900-1996. Theoretical andApplied Climatology,2003,75:15~27
    [192] Yue S, Wang C. The Mann-Kendall test modified by effective sample size todetect trend in serially correlated hydrological series. Water ResourcesManagement,2004,18:201~218
    [193] MANDELBROT B B. Statictical methodology for non-periodic cycles: fromthe covariance to R/S analysis. Annals of Economic and Social Measurement,1972,1(12):257~288
    [194]宋廷山等,应用统计学:以Excel为分析工具,成都:西南财经大学出版社,2006
    [195] Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelateddata. Journal of Hydrology,1998,204:182~196
    [196]孙霞,吴自勤,黄畇,分形原理及其应用,合肥:中国科学技术大学出版社,2003
    [197]江田汉,邓莲堂,Hurst指数估计中存在的若干问题——在气候变化研究中得应用为例,地理科学,2004,24(2):177~182
    [198]徐宗学,米艳娇,李占玲等,和田河流域气温与降水量长期变化趋势及其持续性分析,资源科学,2008,30(12):1833~1838
    [199]王洁,徐宗学,白洋淀流域气温与降水量长期变化趋势及其持续性分析,资源科学,2009,31(9):1498~1505
    [200]邹燕,中国沪市长期记忆过程实证研究,成都:西南财经大学,2006
    [201]张鑫,蔡焕杰,尹晓楠,应用重标度极差分析法(R/S)分析无定河流域水沙变化,农业工程学报,2010,26(增刊2):212~217
    [202]符淙斌,王强,气候突变的定义和检测方法,大气科学,1992,16(4):482~492
    [203]于兴杰,孙金丹,张树田等,分布式水文模型的发展、现状及前景,山西水利科技,2009,2:63~67
    [204]张建军,Mann-Kendall突变检验法中杂点的去除—以合肥降水突变为例,气象与减灾,2007,6
    [205] Pettitt. A N. A non-parametric approach to the change-point problem. AppliedStatistics,1979,28:126~135
    [206]丁晶,刘权授,随机水文学,北京:中国水利水电出版社,1997
    [207]张利平,朱存稳,夏军,华北地区降水变化的多时间尺度分析,干旱区地理,2004,27(4):548~552
    [208]张济世,刘立昱,程中山等,统计水文学,郑州:黄河水利出版社,2006
    [209]翟劭燚,张建云,刘九夫等,海河流域近50年降水变化多时间尺度分析,海河水利,2009,(1):1~3210郑爱勤,王文科,段磊,渭河流域基流及降雨的多尺度特征和突变分析,干旱区资源与环境,2012,26(6):144~148
    [211]邵晓梅,许月卿,严昌荣,黄河流域降水序列变化的小波分析,北京大学学报(自然科学版),2006,42(4):503~509
    [212] IPCC,关于评估气候变化影响和适应对策的技术指南.WMO.UNEP.1994.
    [213]王顺久,全球气候变化对水文与水资源的影响,气候变化研究进展,2006,2(5):223~227
    [214] Nash I, Gleick P H. Sensitivity of Streamflow in the Colorado Basin to climatechange. Journal of Hydrology,1991,125:221~241
    [215]贾仰文,高辉,牛存稳等,气候变化对黄河源区径流过程的影响,水利学报,2008,39(1):52~58
    [216] Young C A, Marisa I, Escobar-Ariasm M, Fernandes M. Modeling thehydrology of climate change in California’s Sierra Nevada for subwatershedscale adaptation. Journal of the American Water Resources Association,2009,45(6):1409~1423
    [217] Beyene T, Lettenmaier D P, Kabat P. Hydrologic impacts of climate change onthe Nile River basin:Implications of the2007IPCC scenarios. Climate Change,2010,10:433~461
    [218]蒋元春,李栋梁,近50年黄河上游径流量与气候变化特征研究,气象与减灾研究,2011,8(2):51~57
    [219] IPCC.2000. Emissions Scenarios2000. Cambridge University Press:Cambridge,570.
    [220]刘春蓁,气候自然变异与气候强迫变化对径流影响研究进展,中国水利,2008,(2):41~46
    [221] Malcolm R. Haylock, Gavin C. Downsccaling heavy precipitation over theUnited Kingdom: A Comparision of dynamical and statistical method and theirfuture scenarios, International Journal of Climatology,2006
    [222]郭靖,气候变化对流域水循环和水资源影响的研究:[博士学位论文],武汉:武汉大学,2010
    [223]司东,丁一汇,柳艳,全球海气耦合模式BCCCM10对江淮梅雨降水预报的检验,气象学报,2009,67(6):947~960
    [224] Murphy J M. Transient response of the Hadley Centre coupledocean-atmosphere model to increasing carbon dioxide. Part I: Control climateand flux adjustment. J. Climate,1995,8:36~56
    [225] Johns T C, Carnell R E, Crossley J F, et al. The second Hadley Centre coupledocean-atmosphere GCM: Model description, spin up and validation. ClimateDyn.,1997,13(2):103~134
    [226] Gordon C, Cooper C, Senior C A, et al. The simulation of SST, sea ice extentsand ocean heat transports in a version of the Hadley Centre coupled modelwithout flux adjustments. Climate Dyn.,2000,16(2-3):147~168
    [227] Kioutsioukis I, Melas D, Zanis P. Statistical downscaling of daily precipitationover Greece. International Journal of Climatology,2008,28(5):679~691
    [228] Murphy J. Prediction of Climate Change over Europe Using Statistical andynamical Downscaling Techniques. International Journal of Climatology,2000,20(5):489~501
    [229] Sailor D J, Li X. A semiempiral downscaling approach for predicting regionaltemperature impacts associated with climatic change. Journal of Climate,1999,12:103~114
    [230] Hellstrōm Cecilia, Deliang Chen, Christine Achberger, et al. Comparison ofclimate change scenarios for Sweden based on statistical and dynamicaldownscaling of monthly precipitation. Climate Research,2001,19:45~55
    [231] Busuioc Aristita, Deliang Chen, Cecilia Hellstrōm. Preformance of StatisticalDownscaling Models in GCM Validation and Regional Climate Change Estimate:Application for Swedish Precipitation. International Journal of Climatology,1999,21:557~578
    [232] Hertig E, Jacobeit J. Assessments of Mediterranean precipitation changes forthe21st century using statistical downscaling techniques. International Journal ofClimatology,2008,28(8):1025~1045
    [233] Oshima Naoko, Hisashi Kato, Shinji Kadokura. An application of StatisticalDownscaling to Estimate Surface Air Temperature in Japan. Journal ofGeophysics Research,2002,107(D10):14-1~14-10.
    [234] Liu X L, Coulibaly P, Evora N. Comparison of data-driven methods fordownscaling ensemble weather forecast. Hydrology and Earth System Science,2008,12(2):615~624
    [235] Fernandez-Ferrero A, Saenz J, Ibarra-Berastegi G, et al. Evaluation of statisticaldownscaling in short range precipitation forecasting. Atmospheric Research,2009,94(3):448~461
    [236] Mpelasoka F S, Mullan A B, Heerdegen R G. New Zealand Climate ChangeInformation Derived by Multivariate Statistical and Artificial Neural NetworksApproaches. International Journal of Climatology,2001,21:1415~1433
    [237] Ramírez M C, Ferreira N J, Velho H F C. Linear and nonlinear statisticaldownscaling for rainfall forecasting over Southeastern Brazil. Weather andForecasting,2006,21(6):969~989
    [238] Chen H, Guo J, Xiong W, et al. Downscaling GCMs using the smooth supportvector machine method to predict daily precipitation in the Hanjiang Basin.Advances in Atmospheric Sciences,2010,27(2):274~284
    [239] Anandhi A, Srinivas V V, Nanjundiah R S, et al. Downscaling precipitation toriver basin in India for IPCCSRES scenarios using support vector machine.International Journal of Climatology,2008,28(3):401~420
    [240]刘永和,郭维栋,冯锦明等,气象资料的统计降尺度方法综述,地球科学进展,2011,26(8):837~847
    [241]范丽军,符淙斌,陈德亮,统计降尺度法对未来区域气候变化情景预估的研究进展,地球科学进展,2005,20(3):320~329
    [242] Lamb H H. British Isles weather types and a register of daily sequence ofcirculation patterns,1861-1971. Geophysical Memoir116, HMSO, London,1972
    [243] Conway D, Jones P D. The use of weather types and air flow indices for GCMdownscaling. Journal of Hydrology,1998,212~213,348~361
    [244] Wilson L L, Lettenmaier D P, Skyllingstad E. A hierarchical stochastic model oflarge atmospheric circulation patterns and multiple station daily rainfall. Journalof Geophysics Research,1992,97(3):2791~2809
    [245] Bogárdi I, Matyasovszky I, Bárdossy A, et al. A hydroclimatologicalmodel of areal drought. Journal of Hydrology,1994,153:245~264.
    [246] Silas Chr Michaelides, Constantinos S Pattichis, Georgia Kleovoulou.Classification of rainfall variability by using artificial neural networks.International Journal of Climatology,2001,21:1401~1414
    [247] Bárdossy A. Downscaling from GCMs to local climate through stochasticlinkages. In: G.Paoli ed., Climate Change, Uncertainty and Decision Making.Institute for Risk Research, Waterloo,1994
    [248] Bárdossy András, Jiri Stehlík, Kans-Joachim Caspary. Automatedobjectiveclassification of daily circulation patterns for precipitation and temperaturedownscaling based on optimized fuzzy rules. Climate Research2002,23:11~22
    [249] Zorita E, Hughes J, Lettenmaier D, et al. Stochastic characterization of regionalcirculation patterns for climate model diagnosis and estimation of localprecipitation. Journal of Climate,1995,8:1023~1042
    [250] Zorita E, Hans Von Storch. The Analog Method as a simple StatisticalDownscaling Technique: Comparison with More Complicated Methods. Journalof Climate,1999,12:2474~2489
    [251] Wilks D S. Interannual variability and extreme-value characteristics of severalstochastic daily precipitation models. Agricultural and Forest Meteorology,1999,93(3):153~169
    [252] Wu J indong, Wang Futang. Study on the creation of climate change scenariofor in pact analysis: A review. M eteorological M onthly,1998,24(2):328
    [253] Wilks D S. Conditioning stochastic daily precipitation models on total monthlyprecipitation. Water Resources Research,1989,25:1429~1439
    [254] Richardson C W. Stochastic simulation of daily precipitation, temperature andsolar-radiation. Water Resources Research,1981,17(1):182~190
    [255] Hughes J P, Guttorpi P, Charles S P. A non-homogeneous hidden Markov modelfor precipitation occurrence. Journal of Applied Statistics,1999,48:15~30
    [256] Hughes J P, Lettenmaier D P, Guttorp P. A stochastic approach for assessing theeffect of changes in synoptic circulation patterns on gauge precipitation. WaterResource Research,1993,29(10):3303~3315
    [257] Lettenmaier D. Stochastic Modeling of precipitation with applications toclimate model downscaling. In: von Storch H, Navarra A eds.”Analysis ofClimate Variability: Applications of Statistical Techniques”, Springer Verlag,1995.
    [258] Wilks D S. Interannual variability and extreme-value characteristics of severalstochastic daily precipitation models. Agriculture Forest Meteorology,1999,93:153~169
    [259] Woolhiser D A, Roldan J. Stochastic daily precipitation models. A comparisonof distributions of amounts. Water Resources Research,1982,18(5):1461~1468
    [260] Woolhiser D A, Roldan J. Seasonal and regional variability of parameters forstochastic daily precipitation models-south-Dakota, USA. Water ResourcesResearch,1986,22(6):965~978
    [261] Wilby R L, Hay L E, LeavesleyG H. A comparison of downscaled and rawGCM output: impl ications for climate change scenarios in the San Juan Riverbasin, Colorado. Journal of Hydrology,1999,225:67~91
    [262] Wilby R L, Dawson C W, Barrow E M. SDSM2a decision support tool for theassessment of regional climate change impacts. Environmental Modelling&Software,2002,17:147~159
    [263]Wilby R L, Tomlinson O J, Dawson C W. Multi-site simulation of precipitationby conditional resampling. Climate Research,2003,23:183~194
    [264] Harpham C, Wilby RL.2005. Multi-site downscaling of heavy dailyprecipitation occurrence and amounts. Journal of Hydrology312(1–4):235~255.
    [265] Khan, M.S., Coulibaly, P., Dibike, Y.,2006.Uncertainty analysis ofstatisticaldownscaling methods. J. Hydrol.319(1-4):357~382.
    [266]高红霞,我国区域气候变化的统计降尺度方法研究:[博士学位论文],南京:南京大学,2011
    [267]王冀,中国地区极端气温变化的模拟评估及其未来情景预估:[硕士学位论文],南京:信息工程大学,2008
    [268] Ferdi Hellweger, David Maidment. Agree-DEM surface reconditioning system.http://www. Ce. Utexas.edu. Feb.26,2006
    [269] O'Callaghan J.F, D.M. Mark. The extraction of drainage networks from digitalelevation data Computer Vision Graphics and Image Processing,1984,28,328~344
    [270]张峰,廖卫红,雷晓辉等,分布式水文模型子流域划分方法,南水北调与水利科技,2011,9(3):101~105
    [271]张瑞祥,渭河上游20世纪90年代以来水量持续锐减成因分析,甘肃水利水电技术,2009,45(6):9~10
    [272]高红燕,蔡新玲,贺皓等,西安城市化对气温变化趋势的影响,地理学报,,2009,64(9):1093~1102
    [273]郑爱勤,王文科,段磊,渭河流域基流及降雨的多尺度特征和突变分析,干旱区资源与环境,2012,26(6):144~148
    [274]刘绿柳,刘兆飞,徐宗学,21世纪黄河流域上中游地区气候变化趋势分析,气候变化研究进展,2008(3):167~172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700