用户名: 密码: 验证码:
基于LTCC内埋式元件设计与建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温共烧陶瓷技术(LTCC)成长迅速已成为许多微电子封装领域的关键技术之一,利用低温共烧陶瓷技术制作的模块具有很多优异的性能:设计灵活性、可重新分配结构、紧密性、可靠性等,使得低温共烧陶瓷技术应用广泛,如医学检测微型化仪器,射频和微波通信模块等。
     近年来低温共烧陶瓷内埋式元件建模研究已经取得了很多成果,但随着内埋式被动元件复杂度增加,低温共烧陶瓷技术建模工作难度加大,如何建立合适的等效电路模型并且通过模型库完成集成电路模块的电路设计是的主要研究方向,目前这方面的研究在国内还很少。
     论文首先探讨低温共烧陶瓷技术、工艺制程和内埋式被动元件的设计流程,并且针对低温共烧陶瓷制做过程比较分析电磁模拟与量测软件的具体作用。其次重点探讨建立修正T型等效电路模型的理论过程,通过仿真得到修正T型等效电路模型可预测电感元件的并联谐振点、串联谐振点、接地谐振点。电感结构的不同会导致其物理性能和电气参数的变化,论文以π等效电路为基础量测低温共烧陶瓷内埋式元件的性能,归类出低温共烧陶瓷元件的结构与品质因数的关系,建立基本的低温共烧陶瓷元件模型资料库。最后利用内埋式元件资料库的建立经验,尝试在低温共烧陶瓷中进行初步的电路设计,架构出基于低温共烧陶瓷中的T原型带通滤波器,设计四种不同的带通滤波器。论文实现的基于LTCC的带通滤波器在信号检测和信号处理方面有很多优势,不仅此滤波器性能参数不易发生变化,而且所实现的功能模块尺寸微小,适用于医学检测仪器和通信检测模块。
     研究结果表明,本文实现的基于低温共烧陶瓷技术的带通滤波器,通带插入损耗和折返损耗皆能分别小于2dB及大于10dB,与商业化产品和类似应用文献报道作品中带通滤波器相比,设计尺寸微小化。
Low Temperature Cofired Ceramic technology developed fast and became a key technology of many micro-electronics encapsulation field. The module based on LTCC has many excellent features such as design flexibility, reconfigurable structure, compactness, reliability and so on. Due to the advantages mentioned, LTCC has been used in many applications, such as medical minisize detect instruments, radio frequency and microwave module and so on.
     A great many of achievements has been obtained on the modeling of embedded components for LTCC in recent years, with the complexity of embedded components, the work of modeling become difficult. How to set up appropriate model and finish circuit design according to the model library is the main research aspect, while little research is reported.
     The thesis discusses about LTCC, manufacture and design flow of embedded passives in the LTCC firstly. Comparison between electromagnetic simulations and measurements functions in the flow of LTCC. In second part we discuss theory and process of establishing modified-T equivalent-circuit model. This model can predict the parallel, series, and ground resonant frequencies via emulator. Different inductor structures will lead to different physical performance and electric parameters. The thesis test the performance of embedded components according to theπ-equivalent circuit, finding the relationship between structure of LTCC components and quality factors, setting up LTCC components model library. The finally part, we try to design embedded bandpass filters in LTCC based on the experience of establishing basic model library for the embedded components in LTCC. The thesis employs the T-prototype to design four type the LTCC bandpass, which has many advantages on signal detecting and signal processing, the performance parameter is stable and the size is small, so that it can be used in medical detect instrucment and communication detect module.
     For demonstration, this thesis implements the LTCC band-pass filters which insertion loss and return loss in the passband for these LTCC filters is less than 2dB and more than 10dB, respectively. The LTCC filter can meet the standard size, respectively, which are the smallest compared to the other LTCC filters reported for similar applications in the current literature and commercial media.
引文
[1] Albert Sutono, Deukhyoun Heo, Yi-Jan Emery Chen, and Joy Laskar. High-Q LTCC-Based Passive Library for Wireless System-on-Package (SOP) Module Development IEEE Transactionson Theory and Technology, vol. 49, No. 10, October 2001
    [2] Tzyy-Sheng Horng, Jian-Ming Wu, Li-Qun Yang, and Shyh-Tirng Fang. A Novel Modified-T Equivalent Circuit for Modeling LTCC Embedded Inductors With a Large Bandwidth IEEE Transaction on Microwave Theroy and Techniques, Vol. 51, No. 12, 2003
    [3] Tzyy-Sheng Horng, Jian-Ming Wu, Li-Qun Yang, and Shyh-Tirng Fang, A Novel Modified-T Equivalent Circuit for Modeling LTCC Embedded Inductors With a Large Bandwidth IEEE MTT-S International Microwave Symposium Digest, 2003, pp. 1015 -1018
    [4] Albert Sutono, Anh-Vu H. Pham, Joy Laskar, and William R.Smith, RF/Microwave Characterization of Multilayer Ceramic-Based MCM Technology IEEE Transaction on Advanced Packaging, Vol. 22, No 3, August 1999
    [5] Seogoo Lee, Jongseong Choi, Gary S. May, Ilgu Yun, Modeling and Analysis of 3-D Solenoid Embedded Inductors IEEE Transactions On Electionics Packaging Manufacturing, Vol. 25, No. 1, January 2002
    [6] Kwang Lim Choi, Nanju Na, and Madhavan Swaminathan, Characterization of Embedded Passives Using Macromodels in LTCC Technology IEEE Transactions On Components, Packaging, and Manufacturing Technology—Part B, Vol. 21, No. 3, 1998
    [7] D. Heo, A. Sutono, E. Chen, Y. Suh, and J. Laskar, Senior Member, IEEE, A 1.9-GHz DECT CMOS Power Amplifier with Fully Integrated Multilayer LTCC Passives IEEE Microwave and Wireless Components Letters , Vol. 11, No. 6, 2001
    [8] A. Ruehli, Partial element equivalent circuit (PEEC) method and its application in the frequency and time domain, IEEE Int. Symp. Electromagn. Compat, 1996, pp. 128
    [9] K.L.Choi, M.Swaminathan, Utilization of fast algorithm to analyze embedded passive components using commercial EM solvers, IEEE 6th Topical Meeting Elect. Perf. Electron. Packag, Oct. 1997, pp. 240–243.
    [10]Ching.Wen.Tang, Chi-Yang.Chang, phycomp Taiwan Ltd, Taiwan, R.O.C.Department of Communication Engineering, National Chiao Tung University Hsinchu 300, Taiwan,R. O.C
    [11]Liam Devlin, Graham Pearson, Jonathan Pittock Plextek Ltd, London Road, Great Chesterford Essex, Bob Hunt, C-MAC MicroTechnology RF and Microwave Compon ent Development in LTCC
    [12] 低温共烧陶瓷中电容与电感之自动合成[J]. 国立台湾大学系统芯片中心通讯. 2005.4
    [13] 魏启甫,孟庆鼐,郑建彬. LTCC及其在三维微波集成电路中的应用[J]. 微波学报. 2005. Vo1.21 No.50
    [14] 王瑞庭. LTCC技术的发展和应用[J]. 2001.Vo1.17.No.2
    [15] 赵琳,延波. LTCC埋置电容的设计与仿真[J]. 中国科技信息2005年. 第23期. 工程论坛
    [16] 严伟,禹胜林,房迅雷. 基于LTCC技术的三维集成微波组件[J]. 电子学报. 2005. Vol 33. No.1
    [17] 肖智,张纪明. 一种基于LTCC技术的螺旋电感带通滤波器[J]. 电子科技. 2006年第1期(总第196期)
    [18] 胡兴军. 低温共烧陶瓷技术前景[J]. 现代技术陶瓷
    [19] 刘永宁. 微波多层电路与低温共烧陶瓷[J]. 现代雷达. 2000.12
    [20] 项玮. 用ADS设计LTCC带状线滤波器[J]. 2002. Vo1.17 .No.1
    [21] 严伟,符鹏,洪伟. LTCC微波多芯片组件中键合互连的微波特性[J]. 微波学报. 2003.9 Vo1.19 No.3
    [22] 孙龙杰,杨波,郭理辉. 基于硅氧化层的嵌入式传输线制造[J]. 半导体学报. 2006.Vol.27.No.1
    [23] 李鸿辉,陈清远,容锦泉. 印制电路板中嵌入式无源器件研究进展[J]. 西北大学学报.2005.Vol2.No.1
    [24] 傅佳辉,吴群. 微波EDA电磁场仿真软件评述[J]. 微波学报. 2004. Vo1.20 No.2
    [25] 林奇梁,洪子圣. 有机及软性基板内埋被动式组件设计与模型化研究[D]. 国立中大学电机工程研究所硕士论文. 2005
    [26] 邱基综,洪子圣. 多层有机封装基板上螺旋电感器之可比例伸缩宽带模型[D]. 国立中山大学电机工程研究所硕士论文. 2003
    [27] 罗建国,游治. 基于史密斯圆图分析射频放大器的设计[J],武汉大学学报. 2005. Vol.51. No.1
    [28]Kyutae Lim, Stephane Pinel, Mekita Davis, Albert Sutono, Chang-Ho Lee, Deukhyoun Heo, Ade Obatoynbo, Joy Laskar, Emmanouil M. Tantzeris, Rao Tummala .RF–Syste m-On-Package (SOP) for Wireless Communications
    [29] 杨邦朝. 多芯片组件(MCM)技术及其应用[M]. 西安电子科技大学出版社. 2001.8
    [30] 刘永宁. 微波多层电路与低温共烧陶瓷(LTCC)[J]. 现代雷达. 2001.12 (6)
    [31] 范寿康. 微波技术与微波电路[M]. 北京:机械工业出版社. 2003.261—285
    [32] 张克潜. 微波与光电子学中的电磁理论[M]. 北京:电子工业出版社. 2001.167—201
    [33] 徐世烨. 具有多个传输零点之微型化LTCC带通滤波器电路合成设计与实现[D]. [学位论文]. 国立中山大学电机工程学系. 2006
    [34] 墨晶岩,马哲旺. 低温共烧陶瓷四级低通滤波器设计[J]. 电波科学学报. 2005,20-5
    [35]L. H. Hsieh and K. Chang, Compact, low insertion loss, sharp rejection wideband band pass filters using dual-mode ring resonators with tuning stubs, Electron. Lett., vol. 37, pp. 1345-1347, Oct. 2001.
    [36]D. M. Pozar, Microwave Engineering, 2nd ed, John Wiley & Sons Inc, 1998. ch. 8.
    [37]R. Levy, R. V. Snyder, and G. Matthaei, Design of microwave filters, IEEE Trans.Mi crowave Theory Tech. vol.50, pp.783-793, Mar.2002
    [38]A. Sutono, J. Laskar, and W. R. Smith, Design of miniature multilayer on-package integrated image-reject filters, IEEE Trans. Microwave Theory Tech, vol. 51, pp.156-162, Jan. 2003.
    [39] R. Rhea, Transmission Zeros in Filter Design, Applied Microwave & Wireless, vol. 13, pp. 92-96, Jan. 2001
    [40]C. Bowick, RF Circuit Design, Newnes, Indianapolis Inc, 1982.2
    [41]LFB322G45SN1A504 Filters for Communication Equivalent Data Sheet, Murata Manufacturing, Japen, 2001.
    [42]MDR746F Multilayered Filters Data sheet, Compotron Ltd, UK, 2000
    [43]SDB2442A0122 Multilayered Filters Data sheet, Sanyo Electric Co. Ltd, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700