用户名: 密码: 验证码:
氮化硅陶瓷回转曲面典型零件高效精密磨削工艺实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硅等陶瓷材料以其优越的物理和力学性能,在航空航天、国防军工等领域得到了广泛应用。当前采用金刚石砂轮进行磨削加工仍是陶瓷材料的主要加工手段。但是由于自身的硬脆特性和难加工性,氮化硅磨削加工时易产生表面亚表面损伤等缺陷,造成零部件的使用性能下降。应用于飞行器天线罩的氮化硅陶瓷某回转曲面典型零件,其结构和表面质量直接影响到天线罩的探测和制导性能。因此,本文以该典型零件为研究对象,针对其高精度、高效率、无损伤磨削加工的要求,提出了结合精密磨削、ELID磨削、化学机械抛光技术的氮化硅陶瓷回转曲面典型零件的高效精密磨削加工工艺,通过理论分析、数学建模和工艺实验,分析了工艺参数对表面质量和材料去除机理的影响规律,优化了工艺参数。具体所做的研究工作内容主要包括如下:
     基于数控坐标磨床建立了典型零件高效精密磨削加工实验台,可完成氮化硅回转曲面典型零件的精密磨削、ELID磨削和化学机械抛光。设计了工装夹具方案,制定了典型零件的成型工艺路线和工艺试验方案。
     采用砂轮法向跟踪磨削方法进行回转曲面零件精密磨削实验,研究分析了磨削工艺参数与凸凹两种回转曲面磨削表面残留高度关系的数学模型。采用响应曲面法和单因素实验法研究了工艺参数对磨削表面粗糙度的影响规律,建立了砂轮半径、砂轮进给速度、工件曲率半径对表面粗糙度的影响规律模型。分析了回转曲面零件磨削时,氮化硅陶瓷的材料去除机理。建立了氮化硅磨削亚表面损伤深度预测计算模型,提出了基于圆形截面抛光的回转曲面磨削亚表面损伤深度检测方法,并实验分析了磨削工艺参数对亚表面损伤深度的影响规律。
     设计制造了回转曲面零件ELID磨削试验装置,建立了阳极溶解厚度与电压、占空比、电解液导电率、阴阳两极间距、预修锐时间等诸多因素间相互影响的关系模型。采用田口实验方法考察了脉冲频率、占空比、电解液流量以及砂轮转速这四个可控因素对电解预修锐时间的影响规律。建立了ELID动态磨削条件下,电压与占空比同磨削系统参数的关系数学模型。通过实验分析了回转曲面零件ELID磨削时,电解参数和磨削工艺参数对表面质量的影响规律。
     提出了回转曲面零件化学机械抛光工艺方案,可实现对小尺寸回转曲面零件的化学机械抛光。采用单因素实验法,研究了抛光液浓度、抛光液流量、抛光轮转速和抛光时间对加工表面粗糙度的影响规律。以加工表面粗糙度Ra为主要评价指标,采用田口方法进行氮化硅陶瓷回转曲面零件化学机械抛光的工艺参数优化。根据信噪比的望小特性分析,得到了氮化硅陶瓷回转曲面零件化学机械抛光最优工艺参数组合。通过方差分析,在氮化硅陶瓷回转曲面零件的化学机械抛光中,抛光轮转速对表面粗糙度的影响程度最大,抛光液流量次之,抛光液浓度的影响程度相对最小。
     进行了氮化硅陶瓷回转曲面某典型零件毛坯精密磨削成型、ELID磨削、化学机械抛光加工相结合的高效精密磨削加工工艺试验,获得表面粗糙度Ra3nm的无损伤表面,并与单一ELID磨削和单一化学机械抛光加工试验结果对比,验证了该加工工艺在提高表面质量和加工效率等方面的优势。提出了基于亚表面损伤深度预测控制的高效精密磨削各加工阶段的余量分配方案,采用模糊算法结合遗传神经网络建立了磨削工艺参数的评价与优选模型,并通过加工实例验证了方法的可行性。
Silicon nitride ceramic material has been widely used in aerospace, nationaldefense industry and other fields due to its advanced physical properties andmechanics characteristics. Grinding with diamond wheel is the most commonlymethod used to machining ceramic material. For its high hardness, high brittlenessand hard to machine performance, silicon nitride is prone to generate sub-surfacedamage in grinding process, which has important influence on the using properties ofthe workpieces. One typical silicon nitride workpiece with rotary curved surfaces isapplied to the aircraft radome, whose structure and surface quality have a directimpact on detection and guidance performance of the radomes. In this case, this papertakes the typical silicon nitride workpiece as research subject. Aiming at th erequirement of high precision and efficiency grinding without damage, the highefficiency and precision grinding process of the typical silicon nitride workpiece withrotary curved surfaces were put forward, combining precise grinding, ELID grindingand chemical-mechanical polishing(CMP). Through theoretical analysis,mathematical modeling and experimental, the influences of the process parameters onthe surface quality and material removal mechanism were analyzed, and the processparameters were optimized. The main research work mainly includes:
     High efficiency and precision grinding experimental table of the typicalworkpiece with rotary curved surfaces was founded based on the grinding CNCmachine. Based on the analyzing of the machining technology characteristics of thetypical workpiece, the fixture was designed, and the process routes and experimentprogram about precise grinding of the typical workpiece were made.
     Adopted the normal trace grinding method, the research on mathematical modelsof the grinding surface scallop height of the rotary curved surfaces (convex surfaceand concave surface) were set up. The influences of process parameters on grindingsurface roughness were carried out by using response surface methodology and singlefactor test method, and the mathematical model was founded to analyze the influencesof grinding wheel radius, wheel feed rate and workpiece radius of curvature onsurface roughness. The material removal mechanism of the silicon nitride ce ramicworkpiece with rotary curved surfaces was analyzed in grinding process. Grindingsub-surface damage depth model of the silicon nitride ceramic was founded. Thedetection method of rotary curved surface grinding sub-surface damage depth was put forward based on the circle section polishing. The experiment of grinding sub-surfacedamage depth of the typical workpiece was carried out.
     The ELID grinding experimental device for rotary curved surfaces workpieceswas designed. A model for the anodic dissolution thickness about voltage, duty cycle,conductivity ratio of electrolyte, interval between cathode and anode and thesharpening time was built. Using Taguchi method, the influence of the pulse frequency,duty cycle, electrolyte flow and wheel speed on the sharpening time was analyzed.Under the ELID dynamic grinding, a model for voltage, duty cycle and the grindingsystem parameters was established. Through the ELID experiment, the effect ofelectrolytic parameters and grinding process parameters on the surface quality ofrotary curved surfaces workpiece was studied.
     A CMP experiment process solution for workpiece with rotary curved surfaceswas put forward for the small size workpieces. Applying single factor experiment, theinfluence of polishing concentration, polishing flow, polishing wheel speed andpolishing time on surface roughness was discussed. The surface roughness ra as themain evaluation index, the process parameters of the CMP for rotary cured surfaceworkpiece was optimized using Taguchi method. The optimal process parameters onrotary surface workpieces of Si3N4ceramic were selected. The result showed thedescending order of selected process parameters impacting on surface roughness waspolishing wheel speed, polishing time, slurry flow rate and slurry concentration.
     The high efficiency and precision grinding process experiment was carried out onthe typical workpiece with rotary curved surfaces of silicon nitride ceramic, includingblank precision grinding forming, ELID grinding and CMP. A non-damage surfacewas obtained with ra3nm. By comparing the experiment results with single ELIDgrinding and CMP, the advantage of this comprehensive process on improving surfacequality and processing efficiency was verified. Based on the predictive control ofdepth of subsurface damage, the margin allocation scheme is proposed for theprocessing stages of efficient precision grinding. Using the fuzzy algorithm and thegenetic neural network, the evaluation and optimization model is established for thegrinding process parameters, and it has been verified by the experiment.
引文
[1]邓朝晖,万林林,张荣辉.难加工材料高效精密磨削技术研究进展.中国机械工程,2008,19(24):3018-3023
    [2]袁哲俊.精密和超精密加工技术.北京:机械工业出版社,1999,
    [3]袁巨龙,张飞虎,戴一帆等.超精密加工领域科学技术发展研究.机械工程学报,2010,46(15):161-177
    [4]袁巨龙,王志伟,文东辉.超精密加工现状综述.机械工程学报,2007,(1):35-48
    [5] Parshuram B, Zatttye, Ashok Kumar. Chemical mechanical planarzation formicroelectronics applications. Material Science and Engineering,2004,45(3-5):189-220
    [6] Frank L, Riley. Silicon Nitride and Related Materials. Journal of the AmericanCeramic Society,2000,83(2):245-265
    [7] Wang ChongMin, Pan Xiaoqing, Rühle M.,et al. Silicon nitride crystal structureand observations of lattice defects. Journal of Materials Science,1996,31(20):5281-5298
    [8]金卫东.硬脆材料氮化硅陶瓷的ELID超精密磨削技术研究:[天津大学博士学位论文].天津:天津大学,2005
    [9] Crone G.A.E, Rudge A.W., Mem Sen, et al. Design and performance of airborneradomes:a review. IEE PROC,1981,128:451-464
    [10]潘立,谢伟东.陶瓷材料磨削加工的技术研究与发展现状.机械,2003,30(6):4-7
    [11]于思远,林彬.工程陶瓷材料的加工技术及其应用.北京:机械工业出版社,2008
    [12]马里内斯库.先进陶瓷加工导论.北京:国防工业出版社,2010,
    [13]Inasaki I. Grinding of hard brittle materials. Annals of the CIRP,1997,36(2)
    [14]任敬心,康仁科,史兴宽.难加工材料的磨削.北京:国防工业出版社,1999,
    [15]邓朝晖.纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究:[湖南大学博士学位论文].长沙:湖南大学,2004,
    [16]Zhang B, Zheng X L. Grinding induced damage in ceramics. Journal of MaterialProcessing Technology,2002,132:352-364
    [17]杨俊飞,田欣利,吴志远等.结构陶瓷材料加工技术的新进展.兵工学报,2008,29(10):1249-1255
    [18]Mohri N, Fukuzawa Y, Tani T. Some considerations to machining characteristicsof insulating ceramics towards practical use in industry. Annals of the CIRP,2002,51(1):161-164
    [19]森勇藏.次世代を担ぅ原子.电子しミノしの先端技術.精密工学会誌,1996,62(6):766-772
    [20]徐文骥,方建成,卢毅申.水磁综合约束等离子弧加工陶瓷方法研究.大连理工大学学报,2004,43(1):57-60
    [21]吴志远.工程陶瓷高效加工技术与方法研究:[装甲兵工程学院博士学位论文].北京:装甲兵工程学院,2004
    [22]Jerby E, Dikhtyar V, Aktushev O. The microwave drill. Science,2002,(298):587-589
    [23]佟富强. TN85金属陶瓷球面偶件ELID超精密磨削技术研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2010,
    [24]Keith Puttick. Brttile to duetile transition in machining. Kye Enginee ringMaterials.,2003,233-234:59-70
    [25]Bifano T G. Ductile-regime grinding:a new technology for machining brittlematerials. Trans ASME,1991,113:184-191
    [26]纳米尔,林滨,关强等.几种工程陶瓷的延性域磨削.天津大学学报,1999,32(4):486-491
    [27]向道辉,刘建慧,支新涛等.纳米Zr02陶瓷的超声振动延性域磨削特性研究.工具技术,2009,43(8):30-34
    [28]Jin T, Cai G Q, Jeong H D. Study on heat transfer in super-high-speed grinding:energy partition to the workpiece in HEDG. journal of materials processingtechnology,2001,111:261-264
    [29]Kovch J A, Blau P J, Malkin S. A feasibility investigation of high speed,lowdamage grinding process for advanced ceramics.5th International GrindingConference,1993,(1):113-117
    [30]Inoue K, Sakm Y, Ono K. Super high speed grinding for ceramics with vtrifieddiamond wheel. Int J Japan Soc Pre Eng,1994,28(4):45-48
    [31]Malkin S H, Wang T W. grinding mechanisms for ceramics. Annals of CIRP,1996,45(2):569-579
    [32]Yin Ling, Huang Han, Ramesh K. High speed versus conventional grinding inhigh removal rate machining of alumina and alumina–titania. InternationalJournal of Machine Tools and Manufacture,2004,45(7-8):897-907
    [33]谢桂芝,尚振涛,盛晓敏等.工程陶瓷高速深磨磨削力模型的研究.机械工程学报,2011,47(11):169-176
    [34]Xie Guizhi, Huang Han. An experimental investigation of temperature in highspeed deep grinding of partially stabilized zirconia. International Journal ofMachine Tools&Manufacture,2008,48(14):1562-1568
    [35]Chen Jianyi, Shen Jianyun, Huang Hui,et al. Grinding characteristics in highspeed grinding of engineering ceramics with brazed diamond wheels. Journal ofMaterials Processing Technology,2010,210:899-906
    [36]杜建华,刘永红,李小朋等.工程陶瓷材料磨削加工技术.机械工程材料,2005,29(3):1-3
    [37]Rajurkar K P, Wang Z Y, Kuppattan A. Micro removal of ceramicmaterial(A12O3)in the precision ultrasonic macromilling. Precision Engineering,1999,(23):73-78
    [38]Ghahramani B, Wang Z Y. Precision ultrasonic machining process:a case study ofstress analysis of ceramic(Al2O3). International Journal of Machine Tools&Manufacmre,2001,(41):1189-1208
    [39]Yan Yanyan, Zhao Bo, Liu Junli. Ultraprecision surface finishing of nano-ZrO2ceramics using two-dimensional ultrasonic assisted grinding The InternationalJournal of Advanced Manufacturing Technology,2009,43(5-6):462-467
    [40]Azarhoushang Bahman, Tawakoli Taghi. Development of a novel ultrasonic unitfor grinding of ceramic matrix composites. The International Journal of AdvancedManufacturing Technology,2011,57:945-955
    [41]王扬,吴雪峰,张宏志.激光加热辅助切削技术.航空制造技术,2011,(8):42-45
    [42]Westkamper E. Grinding Assisted by Nd:YAG Lasers. Annals of the CIRP,1995,44(1):317-320
    [43]Chang Wenlong, Luo Xichun, Zhao QingLiang. Laser assisted micro grinding ofhigh strength materials. Key Engineering Materials,2011,(496):44-49
    [44]Kumara M, Melkotea S, Lahotib G. Laser-assisted microgrinding of ceramics.Annals of the CIRP,2011,60(1):367-370
    [45]Kirchner H P. Damage penetration at elongated machining grooves in hot-pressedSi3N4. J.Amer. Ceram.Soc,1984,67:127-132
    [46]Regiani I, Fortulan C A, Purquerio B M. Abrasive machining of advance ceramics.Industrial Diamond Review,2000,(1):37-42
    [47]邓朝晖,张璧,孙宗禹等.陶瓷磨削材料去除机理的研究进展.中国机械工程,2002,13(18):1608-1611
    [48]Liu X B, Zhang B. Grinding of nanostructured ceramic coatings: damageevaluation. International Journal of Machine Tools&Manufacture,2003,(43):161-167
    [49]Zhang B. Surface integrity in machining hard-brittle materials. Journal of JapanSociety for Abrasive Technology,2003,47(3):131-134
    [50]Zhang B, Howes T D. Material-removal mechanisms in grinding ceramics. Annalsof the CIRP,1994,43(1):305-308
    [51]Ohmori H., Li W, Makinouchi A, et al. Efficient and precision grinding of smallhard and brittle cylindrical parts by the centerless grinding process combined withelectro-discharge truing andelectrolytic in-process dressing. Journal of MaterialsProcessing Technology,2000,98:322-327
    [52]李约铃.氮化硅陶瓷某典型零件回转曲面精密磨削工艺实验研究:[湖南大学硕士学位论文].长沙:湖南大学,2010
    [53]袁哲俊.国内外精密加工技术最新进展.工具技术,2008,42(10):5-13
    [54]Erdim H, Lazoglu I, Ozturk. Feedrate scheduling strategies for free-form surfaces.International Journal of Machine Tools and Manufacture,2006,(8):747-757
    [55]贾振元,郭东明,傅南红.摇摆式凸轮轴数控磨削插补算法及控制策略研究.机械工程学报,2001,(2):70-73
    [56]Xie J, Xu W W. Arc envelope grinding of non-axisymmetric aspheric surfaceusing equal-envelope height. Materials Science Forum,2006,(3):189-192
    [57]Kuriyagawa T, Sepasy M S, sy0ji K. A new grinding method for aspheric ceramicminors. Journal of Materials Processing Technology,1996,62(2):387-392
    [58]阎秋生,林彬,张自强.缓变自由曲面圆弧包络加工法的表面误差分析.天津大学学报,2001,34(5):619-622
    [59]谢晋,阮兆武.光学自由曲面反射镜模芯的镜面成型磨削.光学精密工程,2007,15(3):344-349
    [60]周旭光,戴珏,阎秋生.金刚石与磨料磨具工程.高精度回转曲面的砂轮磨削点运动规律研究,2009,(2):18-21
    [61]吴琦,胡德金,张永宏.精密数控曲线磨削中的砂轮法向跟踪建模及实验.上海交通大学学报,2006,40(10):1707-1710
    [62]罗玉梅,吴琦,胡德金.曲线点磨削中的砂轮法向跟踪研究.中国机械工程,2008,(1):18-27
    [63]Lawn B R, Evans A G. A model for crack initiation in elastic/plastic indentationfield Journal of Materials Science,1977,12:2195-2199
    [64]刘超.工程陶瓷磨削表面/亚表面损伤的模型建立和实验研究:[天津大学硕士学位论文].天津:天津大学,2007
    [65]熊志庆.碳化钨-钴陶瓷亚表面裂纹扩展预测模型的建立:[湖南大学硕士学位论文].长沙:湖南大学,2005
    [66]刘子旭.陶瓷磨削机理.磨床与磨削,1998,(1):36-42
    [67]Zhang B, Howes T D. Subsurface evaluation of groud ceramics. Annals of theCIRP,1995,44(1):23-30
    [68]金群英.纳米结构陶瓷涂层材料的磨削损伤研究:[湖南大学硕士学位论文].长沙:湖南大学,2004
    [69]高玉飞,葛培琪.单晶硅线锯切片亚表面损伤层厚度预测与测量.中国机械工程,2009,20(14):1731-1735
    [70]Li Shengyi, Wang Zhuo, Wu Yulie. Relationship between subsurface damage andsurface roughness of optical materials in grinding and lapping processes. journalof materials processing technology,2008,205:34-41
    [71]鲍雨梅.一种陶瓷材料表面/亚表面损伤表征方法及其在磨削损伤检测中的应用:[浙江工业大学博士学位论文].杭州:浙江工业大学,2009
    [72]林滨,张光秀,刘超.工程陶瓷磨削表面损伤模型的研究.稀有金属材料与工程,2008,37(1):821-824
    [73]任莹晖.纳米结构硬质合金磨削理论和工艺实验研究:[湖南大学博士学位论文].长沙:湖南大学,2009
    [74]王卓,吴宇列,戴一帆等.光学材料磨削加工亚表面损伤层深度测量及预测方法研究.航空精密制造技术,2007,43(5):1-5
    [75]李改灵,孙开元,冯仁余,et al.亚表面损伤机理以及常用测量方法研究.煤矿机械,2008,29(12):99-100
    [76]周正干,魏东.空气耦合式超声波无损检测技术的发展.机械工程学报,2008,44(6):9-14
    [77]Robert-Jaap M, Bijl Van Der, Oliver W. In-process monitoring of grinding andpolishing of optical surfaces. Applied Optics,2000,39:3300-3303
    [78]田爱玲,党娟娟,王春慧.光学元件亚表层损伤检测和规律研究.西安工业大学学报,2011,1(24-28)
    [79]程玉华.探测亚表面缺陷的磁-光显微成像检测技术研究:[四川大学博士学位论文].成都:四川大学,2007,
    [80]李圣怡,王卓,吴宇列.基于研磨加工参数的亚表面损伤预测理论和试验研究.机械工程学报,2009,45(2):192-198
    [81]Murata R, Okano k, Tsutsumi C. Grinding of structura ceramics. GrindingSymposium PED,1985,(16):261-272
    [82]曾宪良.喷嘴电解方式ELID磨削的工艺试验及其机理研究:[湖南硕士学位论文].长沙:湖南大学,2010
    [83]LEE EUN-SANG, KIM JEONG-DU. A study on the analysis of grindingmechanism and development of dressing system by using optimum in-processelectrolytic dressing. International Journal of Machine Tools&Manufacture,1997,37:1673-1689
    [84]Lim H.S. A fundamental study on the mechanism of electrolytic in-processdressing(ELID)grinding. International Journal of Machine Tools&Manufacture,2002,42:935-943
    [85]Chen Hong, Li James C M. Anodic metal matrix removal rate in electrolyticin-process dressing II: Protrusion effect and three-dimensional modeling. Journalof Applied Physics,2000,87(6):3159-3164
    [86]Chen Hong, Li James C M Anodic metal matrix removal rate in electrolyticin-process dressing I: Two-dimensional modeling. Journal of Applied Physics,2000,87(6):3151-3158
    [87]Pavel Radu, Pavel Madalina, Marinescu Ioan. Investigation of pre-dressing timefor ELID grinding technique. Journal of Materials Processing Technology,2004,149:591-596
    [88]Fathima K, Kumar A S, Rahman M. A study on wear mechanism and wearreduction in grinding wheels used for ELID grinding. Wear,2003,254(12):1247-1255
    [89]Raffles M H, Stephenson D J, Shore P,et al. Electrolytic in-process dressingsuperfinishing of spherical bearings using metal–resin bond ultra-fine CBNwheels. Proc. IMechE Part B: J. Engineering Manufacture,2010,225:112-122
    [90]张飞虎,朱波,栾殿荣. ELID磨削硬脆材料精密和超精密加工的新技术.宇航材料工艺,1999,1:51-55
    [91]张春河,袁哲俊,张飞虎.在线电解修整(ELID)超精密镜面磨削的影响因素初探.金刚石与磨料磨具工程,1996,93(3):21-23
    [92]朱波,袁哲俊,张飞虎. ELID超精密磨削钢结硬质合金及其表面质量分析.中国机械工程,2000,11(8):866-868
    [93]周曙光,关佳亮,郭东明等. ELID镜面磨削技术——综述.制造技术与机床,2001,(2)
    [94]郐吉才,张飞虎,张勇. ELID磨削砂轮表面氧化膜力学性能.纳米技术与精密工程,2010,8(5):447-451
    [95]关佳亮,郭东明,袁哲俊. ELID镜面磨削中砂轮生成氧化膜特性及其作用的研究.机械工程学报,2000,36(5):89-92
    [96]尚振涛,谢桂芝,盛晓敏.工程陶瓷高效深磨ELID进程控制策略初探.湖南大学学报(自然科学版),2011,38(7):31-36
    [97]尚振涛,黄含,盛晓敏.氮化硅陶瓷的ELID高速磨削工艺试验研究.湖南大学学报(自然科学版),2007,34(12):30-34
    [98]尚振涛.高速深磨(HSDG)工艺中关键应用技术的研究与开发:[湖南大学博士学位论文].长沙:湖南大学,2008,
    [99]尹韶辉,陈逢军,张导成等.结合ELID磨削与磁流变光整加工的单晶硅反射镜超精密制造技术.纳米技术与精密工程,2007,5(3):220-223
    [100]尹韶辉,陈逢军,盛晓敏等.应用在线电解修整磨削和磁流变光整加工组合工艺进行碳化硅的纳米加工.中国机械工程,2007,18(21):2547-2550
    [101]Yin Shaohui, Ohmori Hitoshi, Dai Yutang,et al. ELID grinding characteristics ofglass-ceramic materials. International Journal of Machine Tools&Manufacture,2009,49:333-338
    [102]肖强,李言,朱育权. SiC单晶片ELID超精密磨削氧化膜特性研究.人工晶体学报,2010,39(4):1055-1059
    [103]王银霞. ELID磨削砂轮表面氧化膜厚度在线检测:[西安工业大学硕士学位论文].西安:西安工业大学,2011,
    [104]高大晓. ELID磨削砂轮的电火花精密整形与氧化膜状态识别:[天津大学博士学位论文].天津:天津大学,2008,
    [105]Rahman, Kumar Senthil, A.Lim,et al. Nano finish grinding of brittle materialsusing electrolytic in-process dressing(ELID) grinding. Sadhana-Acad.Proc.EngngSci.,2003,28(5):957-974
    [106]雷红,雒建斌,张朝辉.化学机械抛光技术的研究进展.上海大学学报(自然科学版),2003,9(6):494-500
    [107]童志义.化学机械抛光技术现状与发展趋势.电子工业专用设备,2004,(6):26-30
    [108]杨杨,王领航,介万奇. HgInTe晶片表面化学抛光研究.人工晶体学报,2009,38(2):535-538
    [109]雷红,雒建斌,马俊杰.化学机械抛光技术的发展应用及存在的问题.润滑与密封,2002,(4):73-76
    [110]陈勇,李攀.高准确度玻璃光学元件的CMP技术研究.光子学报,2008,37(12):2049-2052
    [111]Basim G B, Adler J J, Mahajan U. Effect of Particle Size of ChemicalMechanicalPolishing Slurries for Enhanced Polishing with Minimal Defect. Jo urnal of theElectrochemical Society,2000,147(9):3523-3528
    [112]连军.超大规模集成电路二氧化硅介质层的化学机械抛光技术的研究.河北工业大学博士学位论文,2002,天津:河北工业大学
    [113]苏建修. IC制造中硅片化学机械抛光材料去除机理研究.大连理工大学博士学位论文,2006,大连:大连理工大学
    [114]刘玉岭,檀柏梅,张楷亮.超大规模集成电路衬底材料性能及加工测试技术工程.北京:冶金工业出版杜,2002
    [115]Stavreva Z, Zeidler D, Mlohter K. Chemical mechanical polishing of copper formultilevel metallization.1995,91(192-196)
    [116]Michael Elirk, Julian Sera.半导体制造技术.韩郑生等译.北京:电子工业出版社,2004
    [117]Tsai Hung-Jung, Huang Pay-Yau, Tsai Hung-Cheng,et al. Chemical MechanicalPolishing in Elastic Contact and Partial Hydrodynamic Lubrication: Modeling andExperiments. Materials and Manufacturing Processes,2011,26(2):319-324
    [118]Walsllr J, Herzog A H. Process for polishmg serniconductor atenals. US,3170273[P].1965—02-23
    [119]陆中,陈杨.化学机械抛光浆料研究进展.半导体技术,2009,34(2):1157-1161
    [120]Wang S, Ly J, Lu Yl. Study on chemical mechanical polishing technology ofcopper. Key Engineering Materials,2008,(36):820-823
    [121]宋晓岚,王海波,曲鹏.水相体系纳米Y-Al2O3浆料的分散稳定性能研究.材料科学与工艺,2005,13(5):506-512
    [122]陈志刚,陈杨,陈爱莲.硅片化学机械抛光中的化学作用机理.半导体技术,2006,31(2):110-114
    [123]Song X L, Jano N. Synthesis of CeO2coated SiO2naroparticle and dispersionstability of its suspension. Materials Chemistry,2008,110(1):128-135
    [124]朱从容,吕冰海,袁巨龙.氮化硅陶瓷球化学机械抛光机理研究.中国机械工程,2010,21:1245-1249
    [125]Coutinho C A, Mudhivarthi S R, Kuniar A. Novel ceria-polymer microcomposites for chemical mechanical polishing. Applied Surface Science,2008,255(5):3090-3096
    [126]Yeornans D R. Effect of pad groove designs on the frictional and removal ratecharacteristics of CMP. Journal of the Electrochemical Society,2005,152(1):62-67
    [127]宋晓岚,李宇焜,江楠.化学抛光技术研究进展.化工进展,2008,27:26-31
    [128]Muldowney G P. Modeling Transport and Kinetics at the Pad GrooveSc ale.Materials Research Society Symposium Proceeding,2004,8(16):159-164
    [129]Tregub A, Moinpour M, Sorooshian T M. Effect of groove orientation on thermaland mechanical properties of CMP polishing pads. Chemical MechanicalPolishing,2001:115-162
    [130]葛励冲. CMP系统技术及市场.电子工业专用设备,2003,23(1):17-24
    [131]胡建东.铈基抛光粉的制备及其在CMP中的应用:[南昌大学博士学位论文].南昌:南昌大学,2007
    [132]Seiichi K. Abrasive-free polishing for copper damascene intenconnecrion.Journal of the Electrochemical Society,2000,147(10):3907-3711
    [133]Thomas L, Malwlm G. Characterization and optimization of copperchemicalmechanical planarization. Electron Mater,2002,31:1059-1064
    [134]刘向阳,王立江,高春甫.光学材料无磨料低温抛光的实验研究.机械工程学报,2002,38(6):47-50
    [135]张健,史宝军,杜运东.化学机械抛光技术研究现状与展望.山东建筑大学学报,2009,24:168-174
    [136]Jiang Ming, Wood Nelson O, Komanduri R. On chemo-mechanical polishing(CMP) of silicon nitride (Si3N4) workmaterial with various abrasives. Wear,1998,220:59-71
    [137]韩潇,朱嘉琦,韩杰才等.红外窗口与整流罩的雨蚀研究进展.摩擦学学报,2006,26(5):498-504
    [138]宋银锁.导弹天线罩的雨蚀及试验研究.制导与引信,1998,(1):9-15
    [139]刘建杰.雷达型空空导弹陶瓷天线罩结构设计与失效分析:[南京航空航天大学硕士学位论文].南京:南京航空航天大学,2004
    [140]石毓锬,胡晓兰,梁国正等.飞行器天线罩的雨蚀及防护.化工新型材料,2000,29:7-10
    [141]庞和喜.波导内壁表面粗糙度对电磁波传输性能的研究:[西安电子科技大学硕士学位论文].西安:西安电子科技大学,2008,
    [142]肖钢,刘曙红.气压烧结——一种大有前途的氮化硅陶瓷制备方法.硬质合金,2001,18:187-192
    [143]李伯民,赵波.现代磨削技术.北京:机械工业出版社,2003:174-186
    [144]程应科,林滨,张光秀.工程陶瓷磨削加工表面损伤图形检测.稀有金属材料与工程,2008,37(1):116-119
    [145]Deng Zhaohui, Linlin Wan, Zhang Xiaohong. Modelling the ProcessingParameters of Rotary Curved Surface Grinding Using RSM. Advanced MaterialsResearch,2011,338:130-135
    [146]邓朝晖,李约铃,万林林.基于砂轮法向跟踪的回转曲面磨削研究.制造技术与机床,2011,(2):86-89
    [147]Hecker Rogelio L, Liang Steven Y. Predictive modeling of surface roughness ingrinding. International Journal of Machine Tools&Manufacture,2003,43:755-761
    [148]warneeke G, Zitt U. Kinematic Simulation for Analyzing and PredictingHigh-Performance Grinding Processes. Annals of CIRP,1998,47(1):265-270
    [149]樊瑜瑾,余贵华,纳铿.磨削过程模拟及磨削机理研究.制造技术与机床,1999,4:33-34
    [150]蒙哥马利.实验设计与分析.中国统计出版社,2005:590-645
    [151]Sanjay Agarwal, P. Venkateswara Rao. A probabilistic approach to predictsurface roughness in ceramic grinding. International Journal of Machine Tools&Manufacture,2005,45:609–616
    [152]P.V.S. Suresh, P.Venkateswara Rao, S.G. Deshmukh. A genetic algorithmicapproach for optimization of surface roughness prediction model. InternationalJournal of Machine Tools&Manufacture,2002,42:675–680
    [153]赵健植,金保升,仲兆平等.基于响应曲面法的除雾器叶片效率模拟.中国电机工程学报,2007,27:61-65
    [154]石文天,王西彬,刘玉德等.基于响应曲面法的微细铣削表面粗糙度预报模型与试验研究.中国机械工程,2009,20(20):2399-2402
    [155]吕冰海.微型氮化硅陶瓷球研磨工艺的基础研究:[浙江工业大学硕士学位论文].杭州:浙江工业大学,2003
    [156]Parshuram B Zatttye, Kumar Ashok. Chemical mechanical planarzation formicroelectronics applications. Material Science and Engineering,2004,45:185-220
    [157]Kikuchi M, Takahashi Y, Suga T, et al. Mechanochemical Polishing of SiliconCarbide Single Crystal with Chromium(III) Oxide Abrasive Journal of theAmerican Ceramic Society,1992,75:189-194
    [158]Jiang M, Komanduri R. Chemical Mechanical Polishing (CMP) in MagneticFloat Polishing (MFP) of Advanced Ceramic (Silicon Nitride) and Glass (SiliconDioxide). Key Engineering Materials,2001,202-203:1-14
    [159]邱生祥.化学机械抛光用抛光垫修整器的研究:[大连理工大学硕士论文].大连:大连理工大学,2007
    [160]Hooper B J, Byrae G. Pad conditioning in chemical mechanical polishing.journal of materials processing technology,2002,123:107-113
    [161]Raymond R Jin. New Generation CMP, Equipment and its Impacton IC Devices.Processding of1998VMIC Conference,1998:527-529
    [162]Taguch G. Introduction to quality engineering. Tokyo: Asian ProductivityOrganisation,1986
    [163]Villeta M, Rubio E M, Pipaón J M Sáenz De. Surface Finish Optimization ofMagnesium Pieces Obtained by Dry Turning Based on Taguchi Techniques andStatistical Tests. Materials and Manufacturing Processes,2011,26(12):1503-1510
    [164]刘明周,张凤琴,吴俊峰等.基于田口质量观的机械产品选配方法.机械工程学报,2006,42(10):127-131
    [165]Kurt M, Bagci E, Kaynak Y. Application of Taguchi methods in the optimizationof cutting parameters for surface finish and hole diameter accuracy in dry drillingprogress. International Journal of Advanced Manufacturing Technology,2009,40(5-6):458–469
    [166]Lakshminarayanan AK, Balasubramanian V. Process parameters optimization forfriction stir welding of RDE-40aluminium alloy using Taguchi technique. T.Nonferr. Metal. Soc,2008,18:548-554
    [167]杨铁滨,王黎钦,古乐等.氮化硅陶瓷球加工缺陷分析与无损检测技术研究.兵工学报,2007,28(3):353-357
    [168]Lee Hyunseop, Kasuga Hiroshi, Ohmori Hitoshi, et al. Application ofelectrolytic in-process dressing (ELID) grinding and chemical mechanicalpolishing(CMP) process for emerging hard–brittlematerials used in light-emittingdiodes. Journal of Crystal Growth,2011
    [169]张春河.在线电解修整砂轮精密镜面磨削理论及应用技术的研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,1996,
    [170]Sedighi M, Afshari D. Creep feed grinding optimization by an integratedGA-NN system. Journal of Intelligent Manufacturing,2009:1-7
    [171]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社,2005:24-30
    [172]Wang S, Dong X, Sun R. Predicting saturates of sour vacuum gas oil usingartificial neural networks and genetic algorithms. Expert Systems withApplications,2010,37(7):4768-4771
    [173]Xu H H K, Jahanmir S, Ives L K. Effect of grinding on strength of tetragonalzirconia and zirconia toughened alumina. Machining Science and Technology,1997,1(1):49-66
    [174]Malkin S. Grinding Technology. Theory and Applications of Machining withAbrasives,Ellis, Horwood Limited, Chichester,1989
    [175]Agarwal Sanjay, Rao P Venkateswara. Predictive modeling of undeformed chipthickness in ceramic grinding. International Journal of Machine Tools&Manufacture,2012,56:59-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700