用户名: 密码: 验证码:
普通油茶饼粕与果壳中多糖的提取、活性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为揭示油茶饼粕与果壳中多糖(CCP&CFP)的结构和活性的关系,充分利用油茶加工剩余物资源,本文开展了油茶饼粕与果壳的化学成分研究;对其中的多糖进行了提取、分离纯化、理化性质与结构及其体外清除自由基和降血糖活性的系统研究;并以油茶饼粕多糖(CCP)为原料,制备了一种可望应用于糖尿病患者口服用的泡腾片制剂。研究结果对于揭示油茶饼粕与果壳中多糖的构效关系、拓展油茶加工副产物的利用途径、延长油茶加工产业链具有一定的理论和实际意义。主要研究内容与结论如下:
     (1)油茶饼粕与果壳的主要成分组成研究
     油茶饼粕、油茶果壳含有总糖19.65%、23.34%,表明油茶饼粕和果壳中都含有较高的总糖,可以作为活性多糖开发的来源。分离鉴定了油茶饼粕和果壳中所含的2种主要黄酮苷:分别是山奈酚-3-0-{2-O-D-木糖-6-O-L-鼠李糖}-D-葡萄糖苷(C32H38O19)和山奈酚-3-O-{2-O-半乳糖-6-L-鼠李糖}-D-葡萄糖苷(C33H40O20)。这2种黄酮苷大量存在于油茶饼粕中,油茶果壳中则含量较少。油茶饼粕与果壳中这2种黄酮苷的含量比为2.00:0.18。
     (2)油茶饼粕多糖的提取工艺研究
     分别研究了苯酚-硫酸法和DNS法测定总糖与单糖的实验条件。采用响应曲面法获得纤维素酶辅助提取油茶饼粕多糖最优条件是:提取温度为50-C,提取时间为3h,加酶量为0.35%。此条件下的多糖提取率为26.62%。
     (3)油茶饼粕与果壳多糖的纯化工艺
     通过水提取-乙醇沉淀获得油茶饼粕粗多糖收率是1.8%;油茶果壳多糖收率是1.1%。获得了聚酰胺法脱除多糖水溶液中游离蛋白的工艺。运用此方法多糖水溶液中的游离蛋白清除率可达80.13%,多糖损失率为13.10%,脱色率为94.40%,优于Sevage法、三氯乙酸法。采用DEAE-5纤维素对油茶饼粕粗多糖与油茶果壳粗多糖进行柱层析,分别获得5个纯化多糖;采用Sephadex G-100葡聚糖凝胶对油茶饼粕粗多糖与油茶果壳粗多糖柱层析,各获得1个纯化多糖。
     (4)油茶饼粕与果壳多糖的分子结构与理化性质
     根据得率大小选择4个纯化多糖(CCPA-3、CCPB、CFPA-3、CFPB)的分子结构与理化性质进行深入研究:相对分子质量(Mn)分别是10248、4736、118262和179790。单糖组成中含量较高的是氨基半乳糖、半乳糖、葡萄糖醛酸、阿拉伯糖、木糖。扫描电镜观察可发现多糖表面具有凸凹不平呈疏松的褶皱结构、糖链扭曲呈纤维状。热力学分析表明,多糖聚集性较高,在200~500℃均完全分解。
     (5)油茶饼粕及果壳多糖与茶多糖(TP)清除体外自由基活性对比研究。
     对比了油茶饼粕及果壳多糖与茶多糖(TP)清除体外自由基活性的能力,油茶饼粕多糖(CCP)与油茶果壳多糖(CFP)都具有一定的清除自由基能力,且浓度与清除力有明显的量效关系。CCP、CFP、TP清除DPPH自由基IC50分别是1017.31μg/mL,25.31μg/mL,36.74μg/mL;清除ABTS自由基的IC50分别是185.50μg/mL,11.23μg/mL,10.18μg/mL.
     (6)多糖的体外降血糖活性研究
     采用α-葡萄糖苷酶的抑制实验与HepG2摄取葡萄糖实验验证多糖样品的体外降血糖活性。α-葡萄糖苷酶的抑制实验中CCP与CFP及各分级多糖的浓度与抑制率呈现正相关。茶多糖,粗多糖与纯化后多糖的IC50分别是:4.37μg/Ml,629μg/mL,54.41μg/mL,57.10μg/mL,23.15μg/mL,10.92μg/mL and11.86μg/mL。HepG2细胞消耗葡萄糖实验结果则表明,多糖及各纯化组分浓度在0.125mg/mL时,HepG2细胞对葡萄糖消耗率相当于对照药二甲双胍效果的75.08~85.06%,与同浓度下茶多糖效果基本持平。此时细胞存活率达到或者接近95.00%。构效关系分析认为相对分子质量、糖链结合方式、糖链缀合蛋白与糖醛酸基团与其体外降血糖活性有关。
     (7)油茶饼粕多糖泡腾片的研制
     通过正交设计实验,获得了油茶饼粕多糖泡腾片配方。油茶饼粕多糖:10.0%;柠檬酸:12.5%;酒石酸:12.5%;碳酸氢钠:20.0%;PEG6000:4.0%;阿斯巴甜:0.25%;安赛蜜:0.25%;甘露醇:40.5%。
In order to reveal the relationship between structure and activity of the polysaccharides from Camellia oleifera seed cake and Camellia oleifera fruit hull (the polysaccharides from seed cake are called CCP and that from fruit hull are called CFP), and make full use of Camellia oleifera residues, then the chemical constituents of Camellia oleifera seed cake and Camellia oleifera fruit hull were studied respectively, and then the isolation and extraction process, the physicochemical properties and structure, the scavenging free radicals and hypoglycemic activity of CCP&CFP were investigated systemly,and effervescence tablets for diabetic patients were prepared with CCP as active ingredient.
     The results obtained have some certain theory and practical significance on revealing the structure-activity relationship of CCP and CFP, expanding the utilization of Camellia oleifera by-products and the Camellia oleifera industry chain. The main contents and conclusions of this paper are described as follows:
     (1) The main chemical constituents of Camellia oleifera seed cake and fruit hull.
     The contents of total sugar in Camellia oleifera seed cake and fruit hull were19.65%,23.34%respectively. The results showed that he active polysaccharide owing to its feasible to extract higher contents of total sugar in Camellia oleifera seed cake and fruit hull. The two flavonoid glycosides in Camellia oleifera seed cake and fruit hull were identified to be kaempferol-3-O-[2-O-B-D-galactopyranosy-]-6-O-a-L-rhamnopyranosyl]-β-D-glucopyranoside kaempferol-3-O-[2-O-B-D-xylopyranosy-]-6-O-a-L-rhamnopyranosyl]-β-D-and glucopyranoside, respectively, and the flavonoid glycosides content in Camellia oleifera seed cake was much higher than that in fruit hull with the content ratio of2.00:0.18.
     (2) The extraction process of CCP
     The measuring conditions of total sugar and reduced sugar by PSA (phenylhydrate sulfuric acid method) and DNS (3,5-dinitrosalicylic acid method) were studied.The response surface methodology was used to optimize the extraction conditions of CCP with enzyme-assisted extraction. The results showed that the polysaccharide yield of26.62%under optimum condition extraction temperature50℃, extraction time3.0h, amount of enzyme0.35%
     (3) Purification of CCP&CFP
     The yield of crude CCP&CFP were1.8%and1.1%respectively by water extraction-alcohol precipitation.80.13%free protein was removed, loss of polysaccharide was13.10%and the decolorization rate was94.40%, when polyamide method was used to get rid of free protein in the polysaccharide liquid, which is better than sevage method and trichloroacetic acid method.
     Crude CCP&CFP were purified by DEAE-52column and sephadexG-100column chromatography respectively. Five components (CCPA-1-5&CFPA-1-5) from DEAE-52and one component (CCPB&CFPB) from sephadexG-100were obtained.
     (4) Physicochemical properties and structure of CCP&CFP
     Physicochemical properties and structure of four components with higher yield (CCPA-3,CCPB,CFPA-3,CFPB) were studied. The results showed that relative molecular weight of polysaccharide were10248,4736,118262and179790, containing aminogalactose, galactose, glucuronic acid, xylose and arabinose.
     There were backbone of (1,3)-linked glycosidic bond, protein and uronic acid in the structure of polysaccharides. Polysaccharides were observed fold and uneven structures on the surface by SEM. Thermal analysis indicated that polysaccharide had higher aggregation and would decompose range200~500℃.
     (5) Scavenging free radical activity of CCP&CFP in vitro
     Scavenging free radical activity of CCP&CFP in vitro with different doses was studied and compared with tea polysaccharide (TP). There were certain scavenging free radical activity in vitro with CCP&CFP and the activity increased with higher concentration. The IC50of CCP&CFP and TP were1017.31μg/mL,25.31μg/mL,36.74μg/mL on DPPH free radical and185.50μg/mL,11.23μg/mL,10.18μg/mL on ABTS free radical.
     (6) Hypoglycemic activity of CCP&CFP in Vitro
     To investigate the hypoglycemic activity of CCP&CFP and their purified components, liver cancer HepG2cells consumption efficiency andα-Glucosidase(AGC) inhibitory capacity were used in vitro. Results of experiment of AGC showed that the inhibitory capacity increased with higher concentration. The IC50of TP,CCP,CCPA-3,CCPB, CFP,CFPA-3,CFPB were4.37μg/Ml,629μg/mL,54.41μg/mL, 57.10μg/mL,23.15μg/mL,10.92μg/mL and11.86μg/mL respectively.
     Glucose uptake ability of HepG2cells by CCP&CFP was confirmed in different concentrations. Samples with0.125mg/mL had75.08~85.06%consumption efficiency of metformin hydrochloride, as same as that of TP. Cell survival rate was closed to95.00%on the concentration. By structure-activity analysis, relative molecular weight, glycosidic bond,protein and uronic acid on the structure of polysaccharides were probably the main reason of hypoglycemic effect.
     (7) Preparation of CCP effervescent tablet
     The prescription of CCP effervescent tablets was optimized by orthogonal experiment with the disintegration time and hardness. The optimal prescription contained10%CCP,40.5%mannitol,12.5%citric acid,12.5%tartaric acid,20.0%sodium bicarbonate,4.0%polyethyleneglycol6000,0.25%aspartame and0.25%cyclamate.
引文
[1]国家林业局.全国油茶产业发展规划(2009~2020).2009.
    [2]刘佳洁.油茶优良种质资源的收集保存与遗传关系的分子鉴别[D].福州:福建农林大学,2010.
    [3]王亚萍,聂小安,姚小华,等.油茶籽残饼油制备生物柴油研究及工艺优化[J].林业科学研究,2009,22(3):325~329.
    [4]李敏,王承明.油茶籽粕中茶皂素的提取工艺研究[J].中国粮油学报;2011,26(5):38-41.
    [5]胡龙,吴雪辉,李叶青.响应面法优化油茶饼粕发酵生产单细胞蛋白的工艺研究[J].食品工业科技,2012,33(13):249-252.
    [6]龚吉军.油茶粕多肽的制备及其生物活性研究[D].长沙:中南林业科技大学,2011.
    [7]赵世光,张焱,薛正莲,等.酶法水解油茶籽粕制备油茶籽多肽的研究[J].中国油脂,2011,36(4):60-63.
    [8]谢阳姣,谢冬养,何志鹏.油茶籽饼多酚丙酮提取工艺研究[J].南方农业学报,2012,43(3):376-379.
    [9]李婷婷,张晖,吴彩娥,等.油茶籽糖蛋白提取工艺优化及抗氧化性[J].农业机械学报;2012,43(4):148-155.
    [10]任仙娥,杨锋,李荣仟.油茶籽粕中糖萜素的提取和制备工艺研究[J].粮食与饲料工业;粮食与饲料工艺,2012,2:45-50.
    [11]陈海燕,陈雪香,徐鸿,等.油茶籽粕中抑菌活性物质提取工艺的研究[J].农业机械,2012,18:022.
    [12]陈虹霞,王成章,叶建中,等.油茶饼粕中黄酮苷类化合物的分离与结构鉴定[J].林产化学与工业,2011,31(1):13-16.
    [13]叶显峰,郑世雄,祖国掌,等.油茶饼粕浸出液对淡水鱼·虾·螺的毒性研究[J].安徽:安徽农业科学;2011,39(24):14904-14906.
    [14]袁红江,全学军,冉秀芝,等.油茶饼粕生物吸附剂对Ni2+的吸附性能[J].化工学报;2011,62(4):986-993.
    [15]杨彤晖,于修烛,蔡学标,等.超声波辅助提取油茶籽壳总黄酮及对猪油抗氧化能力研究[J].粮油食品科技,2012;20(1):26-29.
    [16]李晓娜.油茶籽壳抗氧化组分的提取与分离研究[D].长沙:中南林业科技大学,2011.
    [17]彭应兵.茶籽壳制备茶皂素与活性炭技术研究[D].长沙:湖南农业大学,2010.
    [18]罗佳.红花油茶果主要成分与茶籽壳的利用研究[D].长沙:湖南农业大学,2010.
    [19]徐曼,陈笳鸿,汪咏梅,等.油茶果壳单宁成分的提取及其分析试验初报[J].林产化学与工 业,2009,10(增刊):187-189.
    [20]朱琴.利用酸水解和微生物发酵获取油茶籽壳中木糖的研究[D].长沙:湖南农业大学,2008.
    [21]肖和艾,谭云峰.棉子壳加油茶果壳栽黑木耳试验[J].食用菌,1994,4:24.
    [22]孙冀平.茶叶籽中皂素及多糖的研究[D].无锡:江南大学,2003.
    [23]王元凤,俞兰,魏新林.从油茶饼粕中提取油茶籽多糖和茶皂素的工艺研究[J].食品工业,2008(6):29-32.
    [24]吴雪辉,黄永芳,向汝莎,等.微波提取油茶饼粕中多糖的工艺研究[J].食品工业科技,2008,29(9):197-199.
    [25]黄宝生.从油茶粕中提取茶多糖的专利[P].200710191396.2.
    [26]陶俊.油茶籽多糖分离纯化及降脂机理的研究[D].合肥:安徽农业大学,2010.
    [27]王谨.水溶性油茶籽多糖的提取、分离纯化及功能性研究[D].长沙:湖南农业大学,2009.
    [28]郭艳红.从茶籽中提取茶籽油、茶皂素和茶籽多糖研究[D].上海:上海师范大学,2009.
    [29]Jin X C, Ning Y. Antioxidant and antitumor activities of the polysaccharide from seed cake of Camellia oleifera Abel[J]. International Journal of Biological Macromolecules,2012.51(4):364-368.
    [30]胡平平.油茶饼粕多糖提取纯化及抗氧化研究[D].长沙:中南林业科技大学,2012.
    [31]王海林,王春艳,谢长林,等.亲和层析法分离纯化油茶籽多糖Ⅰ的研究[J]中国粮油学报,2012,27(11):34-38.
    [32]黄威.油茶籽脱先冷榨浸出粕提取茶籽多糖的研究[D].武汉工业学院,2011.
    [33]余红军,李立祥,倪媛,等.油茶籽壳中多糖年原花青素的超声波提取工艺[J].食品与发酵工业,2010(8):194-197.
    [34]Jin X. Bioactivities of water-soluble polysaccharides from fruit shell of Camellia oleifera Abel: Antitumor and antioxidant activities[J]. Carbohydrate Polymers,2012,87(3):2198-2201.
    [35]Kang H Q, Chen Y Q,Chen Q P, et al. Study on AntioxidantActivity and Polysaccharides from the Fruit Sell of Camellia oleiferaAbel[J]. Food and Fermentation Industry,2010,36(4):36-38.
    [36]Shen J F, Kang H Q, Chen Y Q, et al. Polysaccharides from Fruit Shell of Camellia oleifera Abel: Extraction and Antioxidation Activity [J]. Journal of the Chinese Cereals and Oils Association, 2010,8:51-54.
    [37]戴甜甜,沈建福.油茶果壳提取物及分级相对α-葡萄糖苷酶的抑制作用[J].食晶科学,2011,32(9):107-109
    [38]陈秋平,姜天甲,马晓丰,等.油茶蒲水提物的减肥作用[J].中国粮油学报,2011,26(9):66-69.
    [39]韦美芬.茶叶籽和油茶籽的辨认[J].西南园艺,2002,30(3):42-42.
    [40]曹国锋,邬冰,钟守贤.茶叶籽油,油茶籽汕与茶树油的区别[J].中国油脂,2008,33(8):17-20.
    [41]王镜岩,朱圣庚,徐长法.生物化学(上册)[M].3版.高等教育出版社,2002.
    [42]王克夷.糖类研究的进展和前沿[J].生命的化学,1994,14(5):4-8.
    [43]Masuda Y, Matsumoto A, Toida T, et al. Characterization and antitumor effect of a novel polysaccharide from Grifola frondosa[J]. Journal of agricultural and food chemistry,2009,57(21): 10143-10149.
    [44]Yoshikawa R, Yanagi H, Hashimoto-Tamaoki T, et al. Gene expression in response to anti-tumour intervention by polysaccharide-K (PSK) in colorectal carcinoma cells[J]. Oncology reports,2004, 12(6):1287-1294.
    [45]赵智慧.枣水溶性多糖的研究[D].保定:河北农业大学,2006.
    [46]Bot A, Smorenburg H E, Vreeker R, et al. Melting behaviour of schizophyllan extracellular polysaccharide gels in the temperature range between 5 and 20℃[J]. Carbohydrate polymers, 2001,45(4):363-372.
    [47]Okamura K, Suzuki M, Chihara T, et al. Clinical evaluation of sizofiran combined with irradiation in patients with cervical cancer[J]. Biotherapy,1989,1(2):103-107.
    [48]徐国华,韩志红,吴永方,等.南瓜多糖的抑瘤作用及对红细胞免疫功能的影响[J].武汉市职工医学院学报,2000,28(4):1-4.
    [49]陈红,刘友平.川牛膝多糖抗肿瘤作用初探[J].成都中医药大学学报,2001,24(1):49-50.
    [50]方建国,丁水平,田庚元.枸杞多糖药理作用与临床应用[J].医药导报,2004,23(7):484-485
    [51]Koyanagi S, Tanigawa N, Nakagawa H, et al. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities[J]. Biochemical pharmacology,2003,65(2):173-179.
    [52]Kim K H, Lee Y S, Jung I S, et al. Acidic polysaccharide from Panax ginseng, ginsan, induces Thl cell and macrophage cytokines and generates LAK cells in synergy with rIL-2[J]. Planta Medica-Natural Products and Medicinal Plant Research,1998,64(2):110-115.
    [53]Chen X, Nie W, Yu G, et al. Antitumor and immunomodulatory activity of polysaccharides from Sargassum fusiforme.[J]. Food and Chemical Toxicology,2012,50(3):695-700.
    [54]Kim J K, Cho M L, Karnjanapratum S, et al. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera.[J]. International journal of biological macromolecules,2011,49(5):1051-1058.
    [55]Capek P, Hribalova V, Svandova E, et al. Characterization of immunomodulatory polysaccharides from Salvia officinalis. L[J]. International journal of biological macromolecules,2003,33(1): 113-119.
    [56]Lai C Y, Hung J T, Lin H H, et al. Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo and in vitro[J]. Vaccine,2010,28(31):4945-4954.
    [57]王翔岩,齐云,蔡润兰,等.肉从蓉多糖的巨噬细胞活化作用[J].中国药理学通报,2009,25(6):787-90.
    [58]倪维华,周义发.人参多糖免疫活性及抗肿瘤作用[J].长春:东北师范大学博士学位论文,2010.
    [59]毛小娟,王军志,王凤连.红芪多糖和黄芪多糖的免疫调节作用[J].中国药理学通报,19895(6):367-370
    [60]曾广仙,刘俊英,熊金蓉,等.黄芪多糖调节创伤应激小鼠免疫功能的研究[J].中华微生物学和免疫学杂志,2004,24(12):942-945.
    [61]张庆,林勤保.大枣多糖体外抗补体活性及促进小鼠脾细胞的增殖作用[J].中药药理与临床,1998,14(5):19-21.
    [62]孔祥荣.芦荟多糖化学结构与生物活性[J].国外医药植物学分册2003,18,(1):9-10.
    [63]陈伟,林新华,陈俊等.库拉索芦荟多糖对小鼠腹腔巨噬细胞的体外激活作用[J].中国药学杂志,2005,40(1):34-37.
    [64]田庚元,冯宇澄,林颖.植物多糖的研究进展[J].中国中药杂志,1995,20(7):441.
    [65]刘彦平,李积东.枸杞多糖对小鼠NK细胞和白细胞活性的免疫调节作用[J].青海医学院学报,2001,22(1):1-2.
    [66]刘彦平,张玉叶.枸杞多糖对小鼠T淋巴细胞亚群和淋巴细胞转化作用的研究[J].青海医学院学报,2000,21(4):4-5.
    [67]周勇,张丽.仙茅多糖对小鼠免疫功能调节作用实验研究[J].上海免疫学杂志,1996,16(6):336-338.
    [68]Liu F, Fung M C, Ooi V E C, et al. Induction in the mouse of gene expression of immunomodulating cytokines by mushroom polysaccharide-protein complexes[J]. Life sciences, 1996,58(21):1795-1803.
    [69]Zhu Y, Pettolino F, Mau S, et al. Immunoactive polysaccharide-rich fractions from Panax notoginseng[J]. Planta Medica-Natural Products and Medicinal Plant Research,2006,72(13): 1193-1199.
    [70]Yamada H, Hirano M, Kiyohara H. Partial structure of an anti-ulcer pectic polysaccharide from the roots of Bupleurum falcatum L.[J]. Carbohydrate research,1991, (219):173-192.
    [71]Xu H, Zhang Y, Zhang J, et al. Isolation and characterization of an anti-complementary polysaccharide D3-S1 from the roots of Bupleurum smithii [J]. International immunopharmacology,2007,7(2):175-182.
    [72]Wang J, Zhang Q, Zhang Z, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica [J]. International Journal of Biological Macromolecules,2008, 42(2):127-132.
    [73]Zhang Q, Li N, Zhou G, et al. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice[J]. Pharmacological research:the official journal of the Italian Pharmacological Society,2003,48(2):151.
    [74]Dong C X, Hayashi K, Lee J B, et al. Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L[J]. Chemical and Pharmaceutical Bulletin,2010,58(4): 507-510.
    [75]于红,张文卿,赵磊,等.钝顶螺旋藻多糖抗病毒作用的实验研究[J].中国海洋药物杂志,2006,25(5):19-24.
    [76]Pereda-Miranda R, Kaatz G W, Gibbons S. Polyacylated Oligosaccharides from Medicinal Mexican Morning Glory Species as Antibacterials and Inhibitors of Multidrug Resistance in Staphylococcus aureus [J]. Journal of natural products,2006,69(3):406-409.
    [77]叶绍明,岑颖洲,张美英,等.麒麟菜硫酸酯多糖体外抗病毒作用的研究[J].中国海洋药物,2007,26(3).14-19
    [78]Irinoda K, Masihi K N, Chihara G, et al. Stimulation of microbicidal host defence mechanisms against aerosol influenza virus infection by lentinan[J]. International journal of immunopharmacology,1992,14(6):971-977.
    [79]Kaji T, Fujiwara Y, Inomata Y, et al. Repair of wounded monolayers of cultured bovine aortic endothelial cells is inhibited by calcium spirulan, a novel sulfated polysaccharide isolated from Spirulina platensis [J]. Life sciences,2002,70(16):1841-1848.
    [80]Shekharam K M, Venkataraman L V, Salimath P V. Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis [J]. Phytochemistry,1987, 26(8):2267-2269.
    [81]Wang J, Zhang J, Zhao B, et al. Structural features and hypoglycaemic effects of Cynomorium songaricum polysaccharides on STZ-induced rats[J]. Food Chemistry,2010,120(2):443-451.
    [82]上官新晨,陈木森,蒋艳,等.青钱柳多糖降血糖活性的研究[J].食品科技,2010,35(3):82-84.
    [83]Hu F H F, Li X L X, Zhao L Z L, et al. Antidiabetic properties of purified polysaccharide from Hedysarum polybotrys[J]. Canadian journal of physiology and pharmacology,2010,88(1):64-72.
    [84]Chen X, Jin J, Tang J, et al. Extraction, purification, characterization and hypoglycemic activity of a polysaccharide isolated from the root of Ophiopogon japonicus[J]. Carbohydrate Polymers, 2011,83(2):749-754.
    [85]Chen X, Liu Y, Bai X, et al. Hypoglycemic polysaccharides from the tuberous root of Liriope spicata[J]. Journal of natural products,2009,72(11):1988-1992.
    [86]Tong H, Liang Z, Wang G. Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L.[J]. Carbohydrate polymers,2008, 71(2):316-323.
    [87]Chen X, Lin Z, Ye Y, et al. Suppression of diabetes in non-obese diabetic (NOD) mice by oral administration of water-soluble and alkali-soluble polysaccharide conjugates prepared from green tea[J]. Carbohydrate Polymers,2010,82(1):28-33.
    [88]Hu S H, Wang J C, Lien J L, et al. Antihyperglycemic effect of polysaccharide from fermented broth of Pleurotus citrinopileatus[J]. Applied microbiology and biotechnology,2006,70(1): 107-113.
    [89]Kim H M, Kang J S, Kim J Y, et al. Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in non-obese diabetic mouse[J]. International immunopharmacology,2010, 10(1):72-78.
    [90]Itoh T, Kita N, Kurokawa Y, et al. Suppressive effect of a hot water extract of adzuki beans (Vigna angularis) on hyperglycemia after sucrose loading in mice and diabetic rats[J]. Bioscience, biotechnology, and biochemistry,2004,68(12):2421-2426.
    [91]Zhang J, Huang Y, Hou T, et al. Hypoglycaemic effect of Artemisia sphaerocephala Krasch seed polysaccharide in alloxan-induced diabetic rats[J]. Swiss Medical Weekly,2006,136(33-34): 529-532.
    [92]Shirwaikar A, Rajendran K, Barik R. Effect of aqueous bark extract of Garuga pinnata Roxb. In streptozotocin-nicotinamide induced type-Ⅱ diabetes mellitus[J]. Journal of ethnopharmacology, 2006,107(2):285-290.
    [93]张胜,李湘洲,吴志平,等.植物多糖分离纯化与含量测定方法研究进展[J].林产化学与工业,2009,29(B10):238-242.
    [94]候轩,周家容,田允波.复合酶法提取白术多糖的工艺研究[J].广东化工,2008,35(12):91-94.
    [95]王凤杰.中华芦荟多糖提取方法的研究[J].白求恩军医学院学报,2007,10(5):303-304.
    [96]赖红芳,吴志鸿.微波提取扶芳藤多糖的工艺研究[J].中药材,2009,32(2):287-290.
    [97]向鸣,王晓君,王维香.超声波提取川芎多糖的工艺优选[J].中成药,2008,30(11):1621-1623.
    [98]蒋秋燕,乔旭光,张振华.影响大蒜多糖提取的因素及其条件优化[J].中国食品学报,2005, 5(4):101-105.
    [99]陈小强,周瑛,叶阳,等.碱溶性茶多糖的提取及其分析[J].应用化学,2008,25(12):1496-1498.
    [100]孟宪元,邢连宗.茜草多糖的提取与分析[J].北京中医,2005,24(1):35-36.
    [101]王应平,杨艳,王文正.膜技术在多糖分离,浓缩中的应用研究进展[J].甘肃科技,2009,25(4):63-66.
    [102]叶勇.植物多糖的分离纯化与制备[J].中国食品添加剂,2001,(5):29-31.
    [103]念保义,陈铭,王铮敏.超滤膜分离香菇多糖的研究[J].化学工业与工程技术,2003,24(4):27-28.
    [104]方积年,丁侃.多糖的研究开发中值得注意的一些问题[J].食品与药品,2007,9(12):1-4.
    [105]王在贵,刘朝良,杨世高,等.茶多糖的提取与初步纯化[J].中国饲料,2008,(10):38-40.
    [106]方积年,丁侃.天然药物-多糖的主要生物活性及分离纯化[J].中国天然药物,2007,5(5):339-347.
    [107]闫巧娟,韩鲁佳,江正强,等.黄芪多糖的分子量分布[J].食品科学,2004,25(8):27-30.
    [108]王元凤,金征宇.D315树脂分离茶多糖工艺的研究[J].农业工程学报,2005,21(10):147-150.
    [109]王元凤,金征宇.茶多糖脱色的研究[J].食品与发酵工业,2004,30(12):60-65.
    [110]罗娅君,肖新峰,王照丽.大叶金花草多糖的提取,分离纯化及结构分析[J].林产化学与工业,2009,29(1):68-72.
    [111]刘柳,郑芸,董群,等.黄精中的多糖组分及其免疫活性[J].中草药,2006,37(8):1132-1134.
    [112]聂凌鸿,宁正祥.活性多糖的构效关系[J].林产化学与工业,2003,23(4):89-94.
    [113]方积年.多糖的分离纯化及其纯度鉴别与分子量测定[J].药学通报,1984,19(10):46-49.
    [114]周裔彬,汪东凤,宛晓春,等.茶多糖的纯化及结构分析[J].化学通报,2008,9:691-695.
    [115]周鹏,谢明勇,王远兴.高效液相色谱-电喷雾质谱法用于茶多糖蛋白的纯度与相对分子量的测定[J].色谱,2004,22(1),27-29.
    [116]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用[J].生命的化学,2002,22(2):194-196.
    [117]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999.
    [118]Stroop C J M, Xu Q, Retzlaff M, et al. Structural analysis and chemical depolymerization of the capsular polysaccharide of Streptococcus pneumonia type 1[J]. Carbohydrate research,2002, 337(4):335-344.
    [119]Sheng S, Cherniak R. Structure of the capsular polysaccharide of Clostridium perfringens Hobbs 10 determined by NMR spectroscopy[J]. Carbohydrate research,1997,305(1):65-72.
    [120]Dell A. Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides[J]. Methods in enzymology,1990,193:647-660.
    [121]刘翠平,方积年.质谱技术在糖类结构分析中的应用[J].分析化学,2001,29(6):716-720.
    [122]王顺春,方积年.X-射线纤维衍射在多糖构型分析中应用的研究进展[J].天然产物研究与开发,2000,12(2):75-80.
    [123]李国有.基于原子力显微术的多糖分子聚集行为,单分子形貌的可视化和多糖/量子点多层膜的制备[D].广州:暨南大学,2006.
    [124]鲍幸峰,方积年.原子力显微镜在生物大分子结构研究中的应用进展[J].分析化学,2000,28(10):1300-1307.
    [125]Blaschek W, Kasbauer J, Kraus J, et al. Pythium aphanidermatum:culture, cell-wall composition, and isolation and structure of antitumour storage and solubilised cell-wall (1→3),(1→ 6)-(3-d-glucans[J]. Carbohydrate research,1992,231:293-307.
    [126]Sandula J, Kogan G, Kacurakova M, et al. Microbial (1→3)-β-d-glucans, their preparation, physico-chemical characterization and immunomodulatory activity[J]. Carbohydrate Polymers, 1999,38(3):247-253.
    [127]郑建仙.功能性食品(第二卷)[M].北京:中国轻工业出版社,1999.
    [128]Alban S, Franz G. Characterization of the anticoagulant actions of a semisynthctic curdlan sulfate[J]. Thrombosis research,2000,99(4):377-388.
    [129]Yanaki T, Ito W, Tabata K, et al. Correlation between the antitumor activity of a polysaccharide schizophyllan and its triple-helical conformation in dilute aqueous solution[J]. Biophysical chemistry,1983,17(4):337-342.
    [130]Calazans G M T, Lima R C, de Franca F P, et al. Molecular weight and antitumour activity of Zymomonas mobilis levans[J]. International journal of biological macromolecules,2000,27(4): 245-247.
    [131]Bohn J A, BeMiller J N. (1→3)-β-D-Glucans as biological response modifiers:a review of structure-functional activity relationships[J]. Carbohydrate polymers,1995,28(1):3-14.
    [132]杜巍,李元瑞.食药用菌多糖生物活性与结构的关系[J].食用菌,2001,23(2):3-5.
    [133]野尚仁,林真美,饭野一羲,等.Effect of glucans on the antitumor activity of grifolan[J]. Chemical & pharmaceutical bulletin,1986,34(5):2149-2154.
    [134]吴波,梁谋.茯苓多糖抗肿瘤作用与机理的实验研究[J].中国药理学通报,1994,10(4):300-304.
    [135]冯慧琴,杨庆尧,杨晓彤,等.灰树花子实体多糖和菌丝体多糖的比较分析[J].华东师范大学学报(自然科学版),2001,3:014.
    [136]Pramanik M, Mondal S, Chakraborty I, et al. Structural investigation of a polysaccharide (Fr. II) isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju [J]. Carbohydrate research,2005,340(4):629-636.
    [137]Srivastava R, Kulshreshtha D K. Bioactive polysaccharides from plants[J]. Phytochemistry,1989, 28(11):2877-2883.
    [138]Rusnati M, Urbinati C, Caputo A, et al. Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat [J]. Journal of Biological Chemistry,2001,276(25):22420-22425.
    [139]Zhu W, Chiu L C M, Ooi V E C, et al. Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1 [J]. Phytomedicine,2006,13(9):695-701.
    [140]Lee I, Huang R L, Chen C T, et al. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects[J]. FEMS Microbiology Letters,2006,209(1):63-67.
    [141]Naesens L, Bonnafous P, Agut H, et al. Antiviral activity of diverse classes of broad-acting agents and natural compounds in HHV-6-infected lymphoblasts[J]. Journal of clinical virology,2006,37: S69-S75.
    [142]Ghosh P, Adhikari U, Ghosal P K, et al. In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa[J]. Phytochemistry,2004,65(23):3151-3157.
    [143]Lee J B, Hayashi K, Maeda M, et al. Antiherpetic activities of sulfated polysaccharides from green algae[J]. Planta medica,2004,70(09):813-817.
    [144]郭瑞,丁恩勇黄原胶的结构、性能与应用[J],日用化学工业,2006,31(1):42-45.
    [145]仲静洁,王东凯,张翠霞,等.海藻酸钠在药物制剂中的研究进展[J].中国新药杂志,2007,16(8):591-594.
    [146]董群,方积年.多糖在医药领域中的应用[J].中国药学杂志,2001,36(10):649-652
    [147]李英民 冯春辉 徐世新,等.几丁糖在预防腹部大中型手术后肠粘连的体会[J].中国医药指南,2009,7(23):109-110.
    [148]余丁凤,林连娣,魏晓燕.应用几丁糖预防阴式全子宫切除术后粘连的临床护理[J].当代护士,2013(3):74-76.
    [149]刘永红,赵蕾,阿艳妮.宫腔镜术后宫腔放置几丁糖治疗宫腔粘连52例疗效分析[J].中外健康文摘,2012,9(13):130-132
    [150]聂凌鸿.淮山活性多糖的分离纯化,结构与生物活性的研究[D].广州:华南理工大学,2004
    [151]赵素容,卢兖伟,吴祖泽.天然产物中降血糖活性成分研究进展[J].军事医学科学院院刊, 2005,29(3):280-280.
    [152]杨少波,张其安,王娟;降血糖天然食品资源及其降血糖机理研究进展[J].食品研究与开发,2012,33(4):211-215
    [153]陈建国,步文磊,来伟旗,等.桑叶多糖降血糖作用及其机制研究[J].中草药2011,42(3):515-519
    [154]刘颖.南瓜多糖对1型糖尿病大鼠的降糖作用及其机制探讨[D].北京:中国人民解放军军事医学科学院,2006.
    [155]吴建芬;茶多糖对糖尿病小鼠降血糖机制的研究[D].杭州:浙江大学,2003
    [156]龙少华,李晓丹,段德麟,等.海带多糖对2型糖尿病小鼠血清胰岛素和胰淀素水平的影响[C].2012全国天然药物和中药毒理、药理学交流研讨会论文集,2012,27-32
    [157]姜文,王亚男,于竹芹,等.海带多糖对在2型糖尿病小鼠血糖水平的影响[J].临床医学工程,2012,19(9):1465-1466
    [158]章瑜.膳食纤维对型糖尿病大鼠的血糖影响及机理研究[D].南昌:南昌大学,2011
    [159]屠洁,李前龙.天然产物中α-葡萄糖苷酶抑制剂的筛选研究进展[J].食品研究与开发,2010,31(9):206-210.
    [160]国家药典委员会.中华人民共和国药典2010版一部[M].北京:中国医药科技出版社,2010.
    [161]食品中灰分的测定[S].GB/T5009.4-2003.
    [162]食品中脂质的测定[S].GB/T5009.6-2008.
    [163]向荣,方热军.茶籽粕(饼)中茶皂素定量检测方法综述[J].湖南饲料,2011(001):43-45.
    [164]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社2003.
    [165]俞斌,颜流水,罗旭彪,等.HPLC法测定油茶枯饼中两种主要黄酮苷[J].分析试验室,2008,27(10):52-54.
    [166]Du L C, Wu B L, Chen J M. Flavonoid triglycosides from the seeds of Camellia oleifera Abel[J]. Chinese Chemical Letters,2008,19(11):1315-1318.
    [167]钟方晓,任海华,李岩.多糖含量测定方法比较[J].时珍国医国药,2007,18(8):1916-1917.
    [168]齐香君,苟金霞,韩戌珺,等.3,5-二硝基水杨酸比色法测定溶液中还原糖的研究[J].纤维素科学与技术,2004,12(3):17-19.
    [169]王黎明.具有降血糖活性的茶多糖分离纯化与体外生物活性测试[D].江苏:江南大;2006.
    [170]孟利,张兰威.聚酰胺柱层析法去除西藏灵菇胞外多糖发酵液中蛋白质的研究[C][J].食品工业科技,2006,28(10):186-189.
    [171]顾宇翔,葛宇,印杰,等.聚酰胺吸附-HPLC测定饮料和糖果中的20种水溶性色素[J].食品与发酵工业,2012,38(001):161-164.
    [172]李进伟,丁霄霖.金丝小枣多糖的提取及脱色研究[J].食品科学,2006,27(4):150-154.
    [173]陈轶兰,王友茹,马立人.用高效凝胶渗透色谱法测定多糖分子量[J].军事医学科学院院刊,1988,(12):70.
    [174]戴军,朱松,汤坚,等.PMP柱前衍生高效液相色谱法分析杜氏盐藻多糖的单糖组成[J].分析测试学报,2007,26(2):206-210.
    [175]孔凡利.荔枝果肉多糖的分离纯化与结构表征及抗氧化活性研究[D].广州:华南理工大学,2010.
    [176]聂少平,谢明勇,罗珍.用清除有机自由基DPPH法评价茶叶多糖的抗氧化活性[J].食品科学,2006,27(3):34-36.
    [177]王雪艳,陈发河,吴光斌,等.龙眼多糖清除自由基活性的研究[J].集美大学学报:自然科学版,2010,15(002):109-114.
    [178]韩林,黄玉林,张海德,等.槟榔籽中抗氧化成分的提取及活性研究[J].食品与发酵工业,2009,(9):157-159.
    [179]朱玉昌,焦必宁.ABTS法体外测定果蔬类总抗氧化能力的研究进展[J].食品与发酵工业,2005,31(8):77-80.
    [180]利 国.自由基-人类健康的真正敌人[J].养生月刊,2007,(9):857-858.
    [181]赵晶,白云.自由基相关疾病研究进展[J].生物学教学,2003,28(4):6-8.
    [182]张冉,刘泉,申竹芳,等.应用α-葡萄糖苷酶抑制剂高通量筛选模型筛选降血糖中药[J].中国药学杂志,2007,42(10):740-743.
    [183]汪宁,朱荃,周义维,等.桑寄生对培养的人HepG2细胞葡萄糖消耗作用的影响[J].中医药学刊,2006,24(3):442-443.
    [184]朱银荣.沙蒿多糖及其衍生物的体外降血糖活性研究[D].兰州:甘肃农业大学,2011.
    [185]杨兵兵.体外抗肿瘤药物筛选中CCK-8、MTT和SRB法的比较研究[D].昆明:昆明医学院,2007.
    [186]聂凌鸿,宁正祥.活性多糖的构效关系[J].林产化学与工业,2003,23(4):89-94.
    [187]王黎明.植物活性多糖构效关系研究进展[J].安徽农学通报,2008,14(23):45-49.
    [188]邱琳,辛现良,耿美玉.多糖构效关系研究进展[J].现代生物医学进展,2009.
    [189]李兰,袁强.中药多糖降血糖作用机制的研究[J].内蒙古中医药,2009,5:98-99.
    [190]王元凤.茶多糖的分离纯化,结构及构效关系研究[D].无锡:江南大学,2005.
    [191]刘主,朱必风,彭凌,等.甘薯糖蛋白降血糖与抗氧化作用研究[J].食品科学,2008,29(11):582-584..
    [192]范碧亭.中药药剂学[M].上海:上海科学技术出版社,1997.
    [193]姜叶青.中华猕猴桃多糖的提取及泡腾片的工艺研究[J].海峡药学,2008,20(7):27-29.
    [194]宋良斌,陈三宝.银黄泡腾片的制备工艺研究[J].齐鲁药事,2011,30(1):8-9.
    [195]王文忠,郑平,邢佩.平胃泡腾片处方的优化研究[J].云南中医中药杂志,2011,32(8):65-66.
    [196]李志华,龙书可,高崇仕,等.口气清新泡腾片的成型工艺的研究[J].中南药学,2010,8(004):244-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700