用户名: 密码: 验证码:
原位一体化制备棒晶增韧陶瓷刀具及其磨损可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对传统热压烧结陶瓷刀具制备工艺的局限性,提出了原位一体化制备棒晶增韧陶瓷刀具的设计思路,研制了TiB2棒晶增韧TiB2-TiCx基复合陶瓷刀具材料和ZrB2棒晶增韧ZrB2-ZrCx基复合陶瓷刀具材料。对陶瓷刀具的力学性能、物相组成、微观组织、棒晶的生长机理、陶瓷刀具的致密化机理、增韧机理、切削性能和磨损可靠性进行了系统的研究。原位一体化制备棒晶增韧陶瓷刀具的研制成功拓展了陶瓷刀具材料制备工艺,并为高性能陶瓷刀具的开发奠定了理论与应用基础。
     提出了基于过渡塑性相方法的原位一体化制备棒晶增韧陶瓷刀具的材料组份设计方案。利用过渡塑性相方法、Ti-B-C与Zr-B-C三元相图选取Ti-B4C与Zr-B4C为反应体系,研制了TiB2棒晶增韧的TiB2-TiCx基复合陶瓷刀具材料和ZrB2棒晶增韧的ZrB2-ZrCx基复合陶瓷刀具材料。对反应体系的热力学分析表明,所选反应体系属于反应可自发进行、可自维持的放热反应体系。提出了基于热爆SHS(Self-propagating High-temperature Synthesis, SHS)-加压辅助致密化的原位一体化制备棒晶增韧陶瓷刀具的制备工艺。结合热爆炸理论、晶体学原理和烧结实验对原位一体化制备工艺中的点火方式、点火温度、延时时间、延时压力和烧结温度等工艺参数进行优化。
     研究了原位一体化制备棒晶增韧陶瓷刀具的制备工艺和力学性能。研制了TBw(TiB2棒晶/TiB2/TiCx)和ZBw(ZrB2棒晶/ZrB2/ZrCx)两种新型陶瓷刀具材料。研究表明,反应体系在Ti/B4C=4/1的摩尔配比下,当烧结温度为1750℃,保温时间为60min,延时时间为5s,延时压力为16MPa,保压压力为35MPa时TBw刀具材料的力学性能最优,即抗弯强度为890.3MPa,断裂韧度为7.5MPa·m1/2,维氏硬度为20.6GPa,相对密度为99.3%。反应体系在Zr/B4C=4/1的摩尔配比下,当烧结温度为1750℃,保温时间为60min,延时时间为5s,延时压力为16MPa,保压压力为35MPa时ZBw刀具材料的力学性能最优,即抗弯强度为898.1MPa,断裂韧度为9.1MPa·m1/2,维氏硬度为17.6GPa,相对密度为98.2%。研究了陶瓷刀具力学性能、物相组成与微观组织之间的关系。
     研究了原位一体化制备中棒晶的生长机理、陶瓷刀具材料的致密化机理和增韧机理。建立了棒晶生长的异向Ostwald Ripening生长模型和陶瓷刀具材料微观组织演变模型。研究表明,棒晶的生长机理一方面与其晶体结构的固有属性相关。另一方面,棒晶首先以非平衡熟化形核过程析出晶核并初步生长;当整个体系的过冷度逐渐降低时,棒晶以平衡熟化生长过程继续生长并在保温阶段发育完全。对TBw和ZBw刀具的致密化机理研究表明,反应体系的摩尔体积、过渡塑性相TiCx与ZrCx含量和其包含的C原子空位、过渡塑性相的高温屈服行为和金属液相的润湿性均影响反应体系的相对密度。对TBw和ZBw刀具的增韧机理研究表明,在刀具基体内均匀分布且随机取向的棒晶起到了类似晶须的增韧作用,主要包括裂纹偏转、棒晶桥联及棒晶拔出等。棒晶形成的互锁结构、板晶、晶须、晶粒表面的纳米颗粒阵列等均对陶瓷刀具材料有一定的增韧贡献。
     研究了TBw刀具连续干切削奥氏体不锈钢1Cr18Ni9Ti时的刀具切削性能和刀具磨损可靠性。结果表明,当切削速度为60m/min,进给量为0.1mm/r,切削深度为0.1mm时,TBw刀具的磨损寿命最高,刀具的抗磨损能力由强到弱的顺序为TBw>LT55>ZBw>SG4。在低速下,TBw刀具的主要磨损机理是磨粒磨损、扩散磨损和氧化磨损。在高速下,TBw刀具的主要磨损机理是磨粒磨损、粘结磨损、扩散磨损和氧化磨损。TBw刀具的磨损寿命服从伽马分布,刀具磨损寿命在该切削用量下的磨损可靠度为46.54%。当磨损可靠度为90%时,刀具磨损可靠寿命为8.71min。TBw刀具的磨损寿命变异系数为0.155,因此该刀具的磨损可靠性良好。
     研究了ZBw刀具连续干切削奥氏体不锈钢1Cr18Ni9Ti时的刀具切削性能和刀具磨损可靠性。结果表明,当切削速度为40m/min,进给量为0.1mm/r,切削深度为0.1mm时,ZBw刀具的磨损寿命最高,刀具的抗磨损能力由强到弱的顺序为ZBw>LT55>TBw>SG4。在低速下,ZBw刀具的主要磨损机理是磨粒磨损和氧化磨损。在高速下,ZBw刀具的主要磨损机理是磨粒磨损、扩散磨损和氧化磨损。ZBw刀具的磨损寿命服从对数正态分布,刀具磨损寿命在该切削用量下的磨损可靠度为36.51%。当磨损可靠度为90%时,刀具磨损可靠寿命为12.53min。ZBw刀具的磨损寿命变异系数为0.1099,因此该刀具的磨损可靠性良好。
Aimed at the limitations of fabrication process of the ceramic tools prepared by the hot-pressing sintering technology, the design scheme for the in-situ integrative fabrication of ceramic tools toughened by the elongated grains was proposed. Moreover, the TiB2-TiCx ceramic tools toughened by the elongated TiB2grains and the ZrB2-ZrCx ceramic tools toughened by the elongated ZrB2grains were fabricated successfully. The mechanical properties, phase composition, microstructure, growth mechanism of the elongated grains, densification and toughening mechanism, cutting performance and cutting reliability were studied systematically. The research results enhanced the application domain of the preparation technology of the ceramic tools and laid the theoretical and application foundation for the future development of ceramic tools with higher mechanical properties.
     The material components and the reaction system were designed based on the transient plastic phase process and the Ti-B-C/Zr-B-C ternary phase diagram. The Ti-B4C was chosen as the reaction system to synthesis TiB2-TiCx ceramic tools toughened by the elongated TiB2grains and the Zr-B4C was chosen as the reaction system to synthesis ZrB2-ZrCx ceramic tools toughened by the elongated ZrB2grains. The thermodynamic calculations on Ti-B4C and Zr-B4C systems indicated that the reactions were spontaneous, self-propagating and exothermic. The fabrication process was proposed based on the SHS(Self-propagating High-temperature Synthesis, SHS) method, which was ignited by the thermal explosion method. According to the theory of thermal explosion and crystallography, the experiment optimization focused on the ignition method, ignition temperature, delay time for the pressure, the pressure after the delay time and the sintering temperature, etc.
     The fabrication process and the mechanical properties of the ceramic tools toughened by the elongated grains were studied. The TBw(the elongated TiB2grains/TiB2/TiCx) and ZBw(the elongated ZrB2grains/ZrB2/ZrCx) ceramic tools were developed successfully. When the molar ratio of Ti/B4C is4/1, the sintering temperature is1750℃, the duration time is60min, the delay time is5s, the pressure after delay time is16MPa and the final pressure is35MPa, TBw had the highest comprehensive mechanical properties. The flexural strength, fracture toughness, Vickers hardness and relative density are890.3MPa,7.5MPa·m1/2,20.6GPa and99.3%, respectively. When the molar ratio of Zr/B4C is4/1, the sintering temperature is1750℃, the duration time is60min, the delay time is5s, the pressure after delay time is16MPa and the final pressure is35MPa, ZBw had the highest comprehensive mechanical properties. The flexural strength, fracture toughness, Vickers hardness and relative density are898.1MPa,9.1MPa·m1/2,17.6GPa and98.2%, respectively. The relationship among the microstructure, phase composition and mechanical properties was investigated.
     The anisotropic grain growth mechanisms during the in-situ fabrication process, densification and toughening mechanism of ceramic tools were studied. There were two aspects for the growth mechanism of the elongated grains. The first one is involved in the inherent crystallographic orientation of TiB2and ZrB2.The other one is that the nonequilibrium ripening nucleation process controlled the nucleation and initial growth of the elongated grains. With the decrease in the degree of supercooling, the growth of elongated grains was dominated by the equilibrium ripening growth process and developed completely during the duration time. The densification was attributed to the volume changes during the reaction, the content of carbon vacancies in the non-stoichiometric phases (TiCx and ZrCx), the wetting of the liquid to the matrix and the high temperature yield behavior of TiCx and ZrCx. The toughening mechanisms with the discontinuous elongated grains were crack deflection, bridging and grain pullout. The interlocking structures, platelets, whiskers and the nanoparticles array on the surface of the grains improved the toughness accordingly.
     The cutting performance and tool wear reliability of TBw ceramic tools in dry machining stainless steel1Cr18Ni9Ti was studied. The highest tool wear life of TBw was obtained when the cutting speed is60m/min, the feed rate is O.lmm/r and the depth of cut is0.1mm. The main tool wear mechanisms of TBw were abrasive wear, diffusion wear and oxidation wear at a low cutting speed. The main tool wear mechanisms of TBw were abrasive wear, diffusion wear, oxidation wear and adhesion wear at a high cutting speed. The Gamma distribution was appropriate for modeling the tool wear life of TBw. The reliability of the tool wear life (11min) is46.54%. The reliable tool wear life of TBw is8.71min when the wear reliability was90%. The variation coefficient of wear life is0.155, thus the tool wear reliability of TBw is good.
     The cutting performance and tool wear reliability of ZBw ceramic tools in dry machining stainless steel1Cr18Ni9Ti was studied. The highest tool wear life of ZBw was obtained when the cutting speed is40m/min, the feed rate is0.1mm/r and the depth of cut is0.1mm. The main tool wear mechanisms of ZBw were abrasive wear and oxidation wear at a low cutting speed. The main tool wear mechanisms of ZBw were abrasive wear, diffusion wear and oxidation wear at a high cutting speed. The Lognormal distribution was appropriate for modeling the tool wear life of ZBw. The reliability of the tool wear life (15min) is36.51%. The tool reliable wear life of ZBw is12.53min when the wear reliability was90%. The variation coefficient of wear life is0.1099, thus the tool wear reliability of ZBw is good.
引文
[1]肖诗纲.刀具材料及其合理选择[M].第二版.北京:机械工业出版社,1990:13-14.
    [2]苗赫濯.新型陶瓷刀具的发展与应用[J].中国有色金属学报.2004,14(1):237-242.
    [3]Li X S, Low I M. Ceramic Cutting Tools-An Introduction[J]. Key Engineering Materials.1994,96(1):1-18.
    [4]Dawihl W, Dorre E, Dworak U. Application of Ceramic Tools in Machining Steel and Cast Iron[J]. Powder Metallurgy International.1971,3(4):189-192.
    [5]Whitney E D. Modern Ceramic Cutting Tool Materials[J]. Powder Metallurgy International.1983,15(4):201-205.
    [6]Claussen N. Fracture Toughness of Al2O3 with an Unstabilized ZrO2 Dispersed Phase[J]. Journal of the American Ceramic Society.1976,59(1-2):49-51.
    [7]Katz R N. An Assessment of the Present Status and Future Prospects of Advanced Ceramics in High Temperature Structural Applications[C]. Proceedings of the World Congress on High Tech Ceramics-the 6th International Meeting on Modern Ceramics Technologies. Milan, Italy,1987:145-161.
    [8]Miao H Z, Luo Z B, Jiang Z Z. A New Type of Ceramic Cutting Tool[C]. Proceeding of Second International Metal Cutting Conference. Wuhan, China, 1985:583-595.
    [9]Chen I W. Silicon Nitride Ceramics:Scientific and Technological Advances[J]. Materials Research Society.1993, (287):507-511.
    [10]Miao H Z, Qi L H, Cui G. Silicon Nitride Ceramic Cutting-Tools and Their Applications[J]. Key Engineering Materials.1995, (114):135-172.
    [11]Ekstrom T, Nygren M. Sialon Ceramics[J]. Journal of the American Ceramic Society.1992,75(2):259-276.
    [12]Ekstrom T. Effect of Composition, Phase Content and Microstructure on the Performance of Yttrium Si-Al-O-N Ceramics[J]. Materials Science and Engineering:A.1989, (109):341-349
    [13]Wei G C, Becher P F. Development of SiC-Whisker-Reinforced Ceramics[J]. American Ceramic Society Bulletin.1985,64(2):296-304.
    [14]Billman E R, Mehrotra P K, Shuster A F, et al. Machining with Al2O3-SiC Whisker Cutting Tools[J]. American Ceramic Society Bulletin.1988,67(6): 1016-1019.
    [15]Liu H L, Huang C Z, Teng X Y, Wang H. Effect of Special Microstructure on the Mechanical Properties of Nanocomposite[J]. Materials Science and Engineering:A.2008, (487):258-263.
    [16]Liu H L, Huang C Z, Wang J, et al. Microstructure and Mechanical Properties of Two Kinds of Al2O3/SiC Nanocomposites[J]. Materials Science Forum. 2004, (471):243-247.
    [17]Zheng G M, Zhao J, Zhou Y H, et al. Fabrication and Characterization of Sialon-Si3N4 Graded Nano-Composite Ceramic Tool Materials[J]. Composites Part B:Engineering.2011,42(7):1813-1820.
    [18]Zheng G M, Zhao J, Jia C, et al. Thermal Shock and Thermal Fatigue Resistance of Sialon-Si3N4 Graded Composite Ceramic Materials[J]. International Journal of Refractory Metals and Hard Materials.2012, (35): 55-61.
    [19]Yan P, Deng J X, Wu Z, et al. Friction and Wear Behavior of the PVD (Zr,Ti) N Coated Cemented Carbide Against 40Cr Hardened Steel [J]. International Journal of Refractory Metals and Hard Materials.2012, (35):213-220.
    [20]Deng J X, Liu J H, Zhao J L, et al. Friction and Wear Behaviors of the PVD ZrN Coated Carbide in Sliding Wear Tests and in Machining Processes[J]. Wear.2008,264(3):298-307.
    [21]Huang C Z, Ai X. Development of Advanced Composite Ceramic Tool Material[J]. Materials Research Bulletin.1996,31(8):951-956.
    [22]Zhao G L, Huang C Z, Liu H L, et al. A Study on In Situ Growth of TaC Whiskers in Al2O3 Matrix Powder for Ceramic Cutting Tools[J]. Materials Research Bulletin.2012,47(8):2027-2031.
    [23]Lin J, Zhang X, Han W, et al. The Hybrid Effect of SiC Whisker Coupled with ZrO2 Fiber on Microstructure and Mechanical Properties of ZrB2-Based Ceramics[J]. Materials Science and Engineering:A.2012, (551):187-191.
    [24]Zou B, Huang C Z, Song J P, et al. Effects of Sintering Processes on Mechanical Properties and Microstructure of TiB2-TiC+8wt% Nano-Ni Composite Ceramic Cutting Tool Material[J]. Materials Science and Engineering:A.2012, (540):235-244.
    [25]Song J P, Huang C Z, Zou B, et al. Microstructure and Mechanical Properties of TiB2-TiC-WC Composite Ceramic Tool materials[J]. Materials & Design. 2012, (36):69-74.
    [26]艾兴,萧红.陶瓷刀具切削加工[M].北京:机械工业出版社,1988:3-4.
    [27]张彦博.陶瓷刀具的发展与使用[J].攀枝花大学学报.2001,(4):65-67.
    [28]王听,谭训彦,尹衍升,等.纳米复合陶瓷增韧机理分析[J].陶瓷学报.2000,21(2):107-111.
    [29]Becher P F. Microstructure Design of Toughened Ceramics[J]. Journal of the American Ceramic Society.1991,74(2):255-269.
    [30]Silvestroni L, Sciti D, Melandri C, et al. Toughened ZrB2-Based Ceramics through SiC Whisker or SiC Chopped Fiber Additions[J]. Journal of the European Ceramic Society.2010,30(11):2155-2164.
    [31]牟军,郦剑,郭绍义,等.氧化锆增韧陶瓷的相变及相变增韧[J].材料科学与工程.1994,12(3):6-11.
    [32]新原皓一.Nanostructure Design and Mechanical Properties of Ceramic Composites[J].粉体および粉末冶金.1990,37(2):348-351.
    [33]刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究[D].济南:山东大学博士学位论文,2005:13-14.
    [34]林广涌,吴柏源.Zr02增韧Al2O3/SiCw陶瓷[J].复合材料研究.1996,24(7): 83-87.
    [35]兰俊思,丁培道,黄楠.SiC晶须和Ti(C,N)颗粒协同增韧A1203陶瓷刀具的研究[J].材料科学与工程学报.2004,22(1):59-64.
    [36]Evans C C. Whiskers[M]. London:Mills Boon Limited,1972:1-3.
    [37]黄传真,刘含莲,刘大志,等.基于切削可靠性的新型陶瓷刀具材料的研制[J].材料导报.2004,18(3):88-90.
    [38]黄传真.新型复相陶瓷刀具材料的研制和切削可靠性研究[D].济南:山东工业大学博士学位论文,1994:65-70.
    [39]Lin G Y, Lei T C, Zhou Y, et al. Mechanical Properties of Al2O3 and Al2O3+ ZrO2 Ceramics Reinforced by SiC Whiskers[J]. Journal of Materials Science. 1993,28(10):2745-2749.
    [40]Sneary P R, Yeh Z, Crimp M J. Effect of Whisker Aspect Ratio on the Density and Fracture Toughness of SiC Whisker-Reinforced Si3N4[J]. Journal of Materials Science.2001,36(10):2529-2534.
    [41]刘炳强.原位生长晶须增韧氧化铝陶瓷刀具及切削性能研究[D].济南:山东大学博士学位论文,2007:71-72.
    [42]崇学文.碳热还原合成晶须增韧陶瓷刀具研究[D].济南:山东大学博士学位论文,2011:69-79.
    [43]You X Q, Si T Z. Effect of Grain Size on the Thermal Shock Resistance of Al2O3+TiC Ceramics[J]. Ceramics International.2005, (31):33-38.
    [44]Rak Z S, Czechowski J. Manufacture and Properties of Al2O3-TiN Particulate Composites[J]. Journal of the European Ceramic Society.1998,18(4): 373-380.
    [45]Ezugwu E O, Wang Z M, Machado A R. The Machinability of Nickel-Based Alloys:A Review[J]. Journal of Materials Processing Technology.1998,86(1): 1-16.
    [46]邓建新,李兆前,艾兴.晶须增韧陶瓷基复合材料的进展[J].材料导报.1994,(5):72-75.
    [47]Mitomo M. Advanced ceramics 2[M]. Oxford:Elsevier,1988:147-161.
    [48]Belmonte M, Moya J S, Miranzo P. Bimodal Sintering of Al2O3/Al2O3 Platelet Ceramic Composites[J]. Journal of the American Ceramic Society.1995, 78(6):1661-1667.
    [49]Huang X N, Nicholson P S. Mechanical Properties and Fracture Toughness of α-Al2O3-Platelet-Reinforced Y-PSZ Composites at Room and High Temperatures [J]. Journal of the American Ceramic Society.1993,76(5): 1294-1301.
    [50]Fredel M C, Boccaccini A R. Processing and Mechanical Properties of Biocompatible Al2O3 Platelet-Reinforced TiO2[J]. Journal of Materials Science.1996,31(16):4375-4380.
    [51]Yasuoka M, Hirao K, Brito M E, et al. Microstructure and Mechanical Properties of Alumina Based Ceramics with Changed Amounts of Beta-Lanthanaluminate[J]. Journal of the Ceramic Society of Japan.1997, 105(1224):641-644.
    [52]Chen X M, Yang B. A New Approach for Toughening of Ceramics[J]. Materials Letters.1997,33(3):237-240.
    [53]Zou B, Huang C Z, Chen M, et al. Study of the Mechanical Properties, Toughening and Strengthening Mechanisms of Si3N4/Si3N4w/TiN Nanocomposite Ceramic Tool Materials[J]. Acta Materialia.2007,55(12): 4193-4202.
    [54]Tao X, Dong L, Wang X, et al. B4C-Nanowires/Carbon-Microfiber Hybrid Structures and Composites from Cotton T-Shirts[J]. Advanced Materials.2010, 22(18):2055-2059.
    [55]Wu W W, Zhang G J, Kan Y M, et al. Reactive Hot Pressing of ZrB2-SiC-ZrC Ultra High-Temperature Ceramics at 1800℃[J]. Journal of the American Ceramic Society.2006,89(9):2967-2969.
    [56]张国军,邹冀,倪德伟,等.硼化物陶瓷:烧结致密化,微结构调控与性能 提升[J].无机材料学报.2012,27(3):225-233.
    [57]Clarke D R. Interpenetrating Phase Composites[J]. Journal of the American Ceramic Society.1992,75(4):739-758.
    [58]Otani S, Korsukova M M, Mitsuhashi T. Preparation of HfB2 and ZrB2 Single Crystals by the Floating-Zone Method[J]. Journal of crystal growth.1998, 186(4):582-586.
    [59]Liu H T, Wu W W, Zou J, et al. In Situ Synthesis of ZrB2-MoSi2 Platelet Composites:Reactive Hot Pressing Process, Microstructure and Mechanical Properties[J]. Ceramics International.2012,38(6):4751-4760.
    [60]Hu C, Zou J, Huang Q, et al. Synthesis of Plate-Like ZrB2 Grains[J]. Journal of the American Ceramic Society.2012,95(1):85-88.
    [61]Wong E W, Sheehan P E, Lieber C M. Nanobeam Mechanics:. Elasticity, Strength, and Toughness of Nanorods and Nanotubes[J]. Science.1997, 277(5334):1971-1975.
    [62]Wang J. Carbon-Nanotube Based Electrochemical Biosensors:A Review[J]. Electroanalysis.2005,17(1):7-14.
    [63]Mor G K, Varghese O K, Paulose M, et al. A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays:Fabrication, Material Properties, and Solar Energy Applications[J]. Solar Energy Materials and Solar Cells. 2006,90(14):2011-2075.
    [64]Lahiri D, Singh V, Benaduce A P, et al. Boron Nitride Nanotube Reinforced Hydroxyapatite Composite:Mechanical and Tribological Performance and In-Vitro Biocompatibility to Osteoblasts[J]. Journal of the Mechanical Behavior of Biomedical Materials.2011,4(1):44-56.
    [65]Ma R Z, Wu J, Wei B Q, et al. Processing and Properties of Carbon Nanotubes-Nano-SiC Ceramic[J]. Journal of Materials Science.1998,33(21): 5243-5246.
    [66]Kothari A K, Hu S, Xia Z, et al. Enhanced Fracture Toughness in Carbon-Nanotube-Reinforced Amorphous Silicon Nitride Nanocomposite Coatings[J]. Acta Materialia.2012,60(8):3333-3339.
    [67]赵世坤.碳纳米管增韧氮化硅陶瓷的研究[D].武汉:武汉理工大学硕士学位论文,2004:19-23.
    [68]Banasl N P, Hurst J B, Choi S R. Boron Nitride Nanotubes-Reinforced Glass Composites[J]. Journal of the American Ceramic Society.2006,89(1): 388-390.
    [69]Huang Q, Bando Y, Xu X, et al. Enhancing Superplasticity of Engineering Ceramics by Introducing BN Nanotubes[J]. Nanotechnology.2007,18(48): 485706.
    [70]Wang W L, Bi J Q, Sun K N, et al. Fabrication of Alumina Ceramic Reinforced with Boron Nitride Nanotubes with Improved Mechanical Properties [J]. Journal of the American Ceramic Society.2011,94(11):3636-3640.
    [71]张国军,金宗哲.原位合成复相陶瓷概述[J].材料导报.1996,10(2):62-65.
    [72]Munir Z A, Holt J B. Combustion and Plasma Synthesis of High-Temperature Materials[M]. New York:VCH,1990:25-28.
    [73]Subrahmanyam J, Vijayakumar M. Self-Propagating High-Temperature Synthesis[J]. Journal of materials science.1992,27(23):6249-6273.
    [74]Munir Z A. Synthesis of High Temperature Materials by Self-Propagating Combustion Methods[J]. American Ceramic Society Bulletin.1988,67(2): 342-349.
    [75]Breval E, Johnson W B. Microstructure of Platelet-Reinforced Ceramics Prepared by the Directed Reaction of Zirconium with Boron Carbide[J]. Journal of the American Ceramic Society.1992,75(8):2139-2145.
    [76]Boch P, Giry J P. Preparation and Properties of Reaction-Sintered Mullite-ZrO2 Ceramics[J]. Materials Science and Engineering:A.1985, (71):39-48.
    [77]Hong F, Lewis M. Ceramic-Matrix Composites via In-Situ Reaction Sintering[J]. Ceramic Engineering and Science Proceeding.1993,14(9): 699-706.
    [78]Coblenz W, Lewis D. In Situ Reaction of B2O3 with AlN and/or Si3N4 to BN-Toughened Composites[J]. Journal of the American Ceramic Society. 1988,71(12):1080-1085.
    [79]Cutler R, Virkar A, Holt J. Synthesis and Densification of Oxide-Carbide Composites [J]. Ceramic Engineering and Science Proceeding.1985,6(7): 715-728.
    [80]Zhang G J, Jin Z Z. Reactive Synthesis of AIN/TiB2 Composite[J]. Ceramics International.1996,22(2):143-147.
    [81]Tuan W H, Brook R J. Processing of Alumina/Nickel Composites[J]. Journal of the European Society.1992,10(2):95-100.
    [82]张国军,金宗哲.反应合成TiN/TiB2复相陶瓷及残余应力分析[J].硅酸盐学报.1996,24(2):152-159.
    [83]张国军.反应热压法制备BN-AlN-TiB2导电复相陶瓷[J].中国陶瓷.1994,136(3):8-12.
    [84]张国军.Al203基体中原位生成TiB2和Ti(C,N)研究[J].硅酸盐学报.1994,22(5):484-487.
    [85]Zhang G J, Jin Z Z, Yue X M. TiN-TiB2 Composites Prepared by Reactive Hot Pressing and Effects of Ni Addition[J]. Journal of the American Ceramic Society.1995,78(10):2831-2837.
    [86]张国军.反应热压法制备TiB2-Ti(C,N)复相陶瓷研究[J].硅酸盐学报.1993,17(7):62-65.
    [87]Zhang G J, Jin Z Z, Yue X M. Reaction Synthesis TiB2-SiC Composites from TiH2-Si-B4C[J]. Materials Letters.1995,25(3):97-101.
    [88]Zhang G J, Yue X M, Jin Z Z. In-Situ Synthesized TiB2 Toughened SiC[J]. Journal of the European Ceramics Society.1996,16(4):409-412.
    [89]Zhang G J, Jin Z Z, Yue X M. TiB2-Ti(C,N)-SiC Composites Prepared by Reactive Hot Pressing[J]. Journal of the Materials Science Letters.1996,15(1): 26-28.
    [90]Zhang G J, Jin Z Z, Yue X M. Effects of Ni Addition on Mechanical Properties of TiB2/SiC Composites Prepared by Reactive Hot Pressing(RHP)[J]. Journal of the Materials Science Letters.1997, (23):2093-2097.
    [91]Kennedy A R, Weston D P, Jones M I, et al. Reaction in Al-Ti-C Powders and its Relation to the Formation and Stability of TiC in Al at High Temperatures[J]. Scripta materialia.2000,42(12):1187-1192.
    [92]Jiang D T, Lin D L, Guo J T, et al. Reaction Synthesis, Microstructure, and Mechanical Properties of In Situ Composite NiAl-Al2O3-TiC[J]. Metallurgical and Materials Transactions A.2000,31(6):1692-1695.
    [93]曾松岩,张二林.一种新型的制备金属基复合材料的方法一接触反应法[J].宇航材料工艺.1995,25(5):27-30.
    [94]Chawla K K. Ceramic Matrix Composites[M]. New York:Springer,2012: 249-292.
    [95]Mortensen A, Llorca J. Metal Matrix Composites[J]. Annual Review of Materials Research.2010, (40):243-270.
    [96]Mukhopadhyay A, Venkateswaran T, Basu B. Spark Plasma Sintering May Lead to Phase Instability and Inferior Mechanical Properties:A Case Study with TiB2[J]. Scripta Materialia.2013,69(2):159-164.
    [97]Gotman I, Travitzky N A, Gutmanas E Y. Dense In Situ TiB2/TiN and TiB2/TiC Ceramic Matrix Composites:Reactive Synthesis and Properties [J]. Materials Science and Engineering:A.1998,244(1):127-137.
    [98]Yang J, Pan L, Gu W, et al. Microstructure and Mechanical Properties of In Situ Synthesized (TiB2+TiC)/Ti3SiC2 Composites[J]. Ceramics International. 2012,38(1):649-655.
    [99]Wen G, Li S B, Zhang B S, et al. Reaction Synthesis of TiB2-TiC Composites with Enhanced Toughness[J]. Acta Materialia.2001,49(8):1463-1470.
    [100]宋杰光,罗红梅,杜大明,等.二硼化锆陶瓷材料的研究及展望[J].材料 导报.2009,23(2):43-46.
    [101]Claar T D, Johnson W B, Andersson C A, et al. Microstructure and Properties of Platelet-Reinforced Ceramics Formed by the Directed Reaction of Zirconium with Boron Carbide[C]. A Collection of Papers Presented at the 13th Annual Conference on Composites and Advanced Ceramic Materials, Part 1 of 2:Ceramic Engineering and Science Proceedings. USA, John Wiley & Sons, Inc.,1989:599-609.
    [102]Woo S K, Kim C H, Kang E S. Fabrication and Microstructural Evaluation of ZrB2/ZrC/Zr Composites by Liquid Infiltration[J]. Journal of Materials Science.1994,29(20):5309-5315.
    [103]Rangaraj L, Suresha S J, Divakar C, et al. Low-Temperature Processing of ZrB2-ZrC Composites by Reactive Hot Pressing[J]. Metallurgical and Materials Transactions A.2008,39(7):1496-1505.
    [104]Guo S, Kagawa Y, Nishimura T. Tough Hybrid Ceramic-Based Material with High Strength[J]. Scripta Materialia.2012, (67):74-77.
    [105]Hu H, Wang Q, Chen Z, et al. Preparation and Characterization of C/SiC/ZrB2 Composites by Precursor Infiltration and Pyrolysis Process[J]. Ceramics International.2010,36(3):1011-1016.
    [106]Zhang G J, Deng Z Y, Kondo N, et al. Reactive Hot Pressing of ZrB2-SiC Composites[J]. Journal of the American Ceramic Society.2000,83(9): 2330-2332.
    [107]Wu W W, Zhang G J, Kan Y M, et al. Reactive Hot Pressing of ZrB2-SiC-ZrC Ultra High-Temperature Ceramics at 1800℃[J]. Journal of the American Ceramic Society.2006,89(9):2967-2969.
    [108]Wu W W, Wang Z, Zhang G J, et al. ZrB2-MoSi2 Composites Toughened by Elongated ZrB2 Grains via Reactive Hot Pressing[J]. Scripta Materialia.2009, 61(3):316-319.
    [109]Liu H T, Zou J, Ni D W, et al. Textured and Platelet-Reinforced ZrB2-Based Ultra-High-Temperature ceramics[J]. Scripta Materialia.2011,65(1):37-40.
    [110]Wu W W, Sakka Y, Suzuki T S, et al. Microstructure and Anisotropic Properties of Textured ZrB2 and ZrB2-MoSi2 Ceramics Prepared by Strong Magnetic Field Alignment[J]. International Journal of Applied Ceramic Technology.2013,(1):1-10.
    [111]Zhang G J, Jin Z Z, Yue X M. A Multilevel Ceramic Composite of TiB2-Ti0.9W0.1C-SiC Prepared by In Situ Reactive Hot Pressing[J]. Materials Letters.1996,(28):1-5.
    [112]Wendler F, Mennerich C, Nestler B. A Phase-Field Model for Polycrystalline Thin Film Growth[J]. Journal of Crystal Growth.2011,327(1):189-201.
    [113]Huang L J, Wang S, Dong Y S, Zhang Y Z, Pan F, Geng L, et al. Tailoring a Novel Network Reinforcement Architecture Exploiting Superior Tensile Properties of In Situ TiBw/Ti Composites[J]. Materials Science and Engineering:A.2012, (545):187-93.
    [114]Mitomo M, Uenosono S. Microstructural Development during Gas-Pressure Sintering of a-Silicon Nitride[J]. Journal of the American Ceramic Society. 1992,75(1):103-107.
    [115]Yasuoka M, Hirao K, Brito M E, et al. High-Strength and High-Fracture-Toughness Ceramics in the Al2O3/LaAl11O18 Systems [J]. Journal of the American Ceramic Society.1995,78(7):1853-1856.
    [116]林广涌,吴柏源,雷廷权,等.晶须增韧陶瓷基复合材料的设计与制备[J].机械工程材料.1996,20(1):43-47.
    [117]吴建銧,李建保,黄勇.晶须增韧陶瓷基复合材料的设计要点与复合技术[J].硅酸盐学报.1990,18(1):72-82.
    [118]陈希来.熔盐介质中制备Ti(C,N)及不同添加剂对炭砖性能的影响[D].武汉:武汉科技大学硕士学位论文,2007:2-4.
    [119]Lawson J W, Bauschlicher C W, Daw M S. Ab Initio Computations of Electronic, Mechanical, and Thermal Properties of ZrB2 and HfB2[J]. Journal of the American Ceramic Society.2011,94(10):3494-3499:
    [120]Duddukuri R, Koc R, Mawdsley J, et al. Synthesis of Nano-Size TiB2 Powders Using Carbon Coated Precursors [J]. Nanostructured Materials and Nanotechnology V:Ceramic Engineering and Science Proceedings.2011, (32):165-175.
    [121]吴义权,张玉峰,郭景坤.原位生长晶须增强陶瓷基复合材料研究进展[J].材料导报.2000,14(12):20-22.
    [122]Barsoum M W, Houng B. Transient Plastic Phase Processing of Titanium-Boron-Carbon Composites [J]. Journal of the American Ceramic Society.1993,76(6):1445-1451.
    [123]Barsoum M, Zavaliangos A, Kalidindi S R, et al. The Transient Plastic Phase Processing of Ceramic-Ceramic Composites[J]. JOM.1995,47(11):52-55.
    [124]Barsoum M. Methods for Densifying and Strengthening Ceramic-Ceramic Composites by Transient Plastic Phase Processing. US Patent.5,451,365. Sep. 19,1995.
    [125]Rogl P. Boron-Carbon-Zirconium[M]. Berlin:Springer,2009:609-647.
    [126]叶大伦,胡建华.实用无机物热力学数据手册[M].第二版.北京:冶金工业出版社,2002:2-9.
    [127]Vahdati K J, Babakhani A. An Assessment of the Process of Self-Propagating High-Temperature Synthesis for the Fabrication of Porous Copper Composite[J]. Journal of Alloys and Compounds.2009, (487):413-419.
    [128]殷声.燃烧合成[M].北京:冶金工业出版社,1999:40-48.
    [129]Merzhanov A G, Munir Z A. Combustion and Plasma Synthesis of High-Temperature Materials[M]. New York:VCH,1990:32-53.
    [130]汪建利,张幸红,韩杰才,等.TiC-Ni-Mo复合材料的燃烧合成研究[J].无机材料学报.1999,14(3):443-448.
    [131]Murray P. Ceramic Fabrication Processes[M]. Cambridge:MIT Press,1958: 76-78.
    [132]石强.原位一体化制备陶瓷刀具及其切削性能研究[D].济南:山东大学硕士学位论文,2012:22-24.
    [133]介万奇.晶体生长原理与技术[M].北京:科学出版社,2010:271-273.
    [134]郑燕青,施尔畏,李汶军,等.晶体生长理论研究现状与发展[J].无机材料学报.1999,14(3):321-332.
    [135]杨为佑,谢志鹏,苗赫濯.异向生长晶粒增韧氧化铝陶瓷的研究进展[J].无机材料学报.2003,18(5):961-972.
    [136]Fukuhara M, Fukazawa K, Fukawa A. Physical Properties and Cutting Performance of Silicon Nitride Ceramic[J]. Wear.1985,102(3):195-210.
    [137]荣守范.原位生长柱状晶复合增韧氧化铝陶瓷制备方法及机理研究[D].哈尔滨:哈尔滨理工大学博士学位论文,2008:4-15.
    [138]Li Q, Dong S, Wang Z, et al. Fabrication and Properties of 3-D Cf/ZrC-SiC Composites by Vapor Silicon Infiltration Process[J]. Ceramics International. 2012,39(4):4723-4727.
    [139]Munir Z A, Anselmi-Tamburini U. Self-Propagating Exothermic Reactions: The Synthesis of High-Temperature Materials by Combustion[J]. Materials Science Reports.1989, (3):277-365.
    [140]唐建新,曾照强,胡晓清,等.原位合成TiB2-TiC陶瓷基复合材料[J].材料工程.2001,(2):19-21.
    [141]Brodkin D, Kalidindi S R, Barsoum M W, et al. Microstructural Evolution during Transient Plastic Phase Processing of Titanium Carbide-Titanium Boride Composites[J]. Journal of the American Ceramic Society.1996,79(7): 1945-1952.
    [142]Ordan'yan S S, Unrod V I, Avgustinik A I. Reactions in the System TiCx-TiB2[J]. Soviet Powder Metallurgy and Metal Ceramics.1975,14(9): 729-731.
    [143]纪嘉明,李志章.TiB2和ZrB2晶体结构与性能的电子理论研究[J].中国有色金属学报.2000,10(3):358-360.
    [144]Chamberlain A L, Fahrenholtz W G, Hilmas G E. Pressureless Sintering of Zirconium Diboride[J]. Journal of the American Ceramic Society.2006, 89(2):450-456.
    [145]Denovion C H, Landesman J P. Order and Disorder in Transition Metal Carbides and Nitrides:Experimental and Theoretical Aspects [J]. Pure and Applied Chemistry.1985,57(10):1391-1402.
    [146]Samsonov G V. Imperfection of Carbon Sub lattice:Effect on the Properties of Refractory Carbides of Transition Metals[J]. Powder Metallurgy and Metal Ceramics.2008,47(1-2):13-20.
    [147]Zhao J, Ai X, Lu Z. Preparation and Characterization of Si3N4/TiC Nanocomposite Ceramics[J]. Materials Letters.2006,60(23):2810-2813.
    [148]李臻熙,曹春晓.Ti-48A1+B合金中硼化物的生长机理[J].稀有金属材料与工程.2001,30(1):19-23.
    [149]Wong J, Larson E M, Waide P A, et al. Combustion Front Dynamics in the Combustion Synthesis of Refractory Metal Carbides and Di-Borides Using Time-Resolved X-Ray Diffraction[J]. Journal of Synchrotron Radiation.2006, 13(4):326-335.
    [150]Inam F, Yan H, Peijs T, et al. The Sintering and Grain Growth Behavior of Ceramic-Carbon Nanotube Nanocomposites[J]. Composites Science and Technology.2010,70(6):947-952.
    [151]Einarsrud M A, Mitomo M. Mechanism of Grain Growth of p-SiAlON[J]. Journal of the American Ceramic Society.1993,76(6):1624-1626.
    [152]Kitayama M, Hirao K, Toriyama M, et al. Modeling and Simulation of Grain Growth in Si3N4-I. Anisotropic Ostwald Ripening[J]. Acta Materialia.1998, 46(18):6541-6550.
    [153]Rice R W, Mcdonough W J. Intrinsic Volume Changes of Self-Propagating Synthesis[J]. Journal of the American Ceramic Society.1985,68(5): C122-C123.
    [154]Cottrell A, Metallurgiste G B. Chemical Bonding in Transition Metal Carbides[M]. Cambridge:Institute of Materials,1995:177-191.
    [155]Muolo M L, Ferrera E, Novakovic R, et al. Wettability of Zirconium Diboride Ceramics by Ag, Cu and Their Alloys with Zr[J]. Scripta materialia.2003, 48(2):191-196.
    [156]Williams W S. Influence of Temperature, Strain Rate, Surface Condition, and Composition on the Plasticity of Transition-Metal Carbide Crystals[J]. Journal of Applied Physics.1964,35(4):1329-1338.
    [157]Lee S G, Kim Y W, Mitomo M. Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics[J]. Journal of the American Ceramic Society.2001,84(6):1347-1353.
    [158]Goharian P, Nemati A, Shabanian M, et al. Properties, Crystallization Mechanism and Microstructure of Lithium Disilicate Glass-Ceramic[J]. Journal of Non-Crystalline Solids.2010,356(4):208-214.
    [159]Xu L, Huang C Z, Liu H L, et al. Study on In-Situ Synthesis of ZrB2 Whiskers in ZrB2-ZrC Matrix Powder for Ceramic Cutting Tools[J]. International Journal of Refractory Metals and Hard Materials.2012, (37):98-105.
    [160]潘敏元,赵高扬.高强韧性复合陶瓷刀具材料的研究[J].陕西机械学院学报.1992,8(3):161-172.
    [161]印友法.石墨材料孔隙率对力学性能的影响[J].炭素技术.1991,(2):1-5.
    [162]Virkar A V, Johnson D. Fracture Behavior of ZrO2/Zr Composites[J]. Journal of the American Ceramic Society.1977,60(11-12):514-519.
    [163]许崇海,丁文亮.基于残余应力增韧机制的陶瓷材料增强相的极限含量模型及应用[J].应用科学学报.2001,19(1):73-76.
    [164]Evans A G, Marshall P B. Wear Mechanism in Ceramics[C]. Proceeding of International Conference on Fundamentals of Friction and Wear of Materials. Pittsburgh:ASME,1980:439-452.
    [165]申荣华,黄传真,何林.Ti(C,N)基金属陶瓷的摩擦磨损性能试验研究[J].轴承.2005,(1):25-26.
    [166]黄传真,孙静,刘大志,等.陶瓷刀具材料磨损的研究现状[J].山东机械.2003,(6):20-22.
    [167]刘战强,艾兴.高速切削刀具磨损表面形态研究[J].摩擦学学报.2002,22(6):468-471.
    [168]王继梅,张莹,于军华.高速车削不锈钢1Cr18Ni9Ti表面粗糙度研究[J].安徽建筑工业学院学报.2012,20(4):44-47.
    [169]王庭俊,周建华.1Cr18Ni9Ti不锈钢的切削加工[J].工具技术.2009,43(7):63-67.
    [170]李兆前.金属切削刀具可靠性的研究[D].济南:山东工业大学博士学位论文,1992:28-37.
    [171]许崇海,艾兴.氧化铝基陶瓷刀切削可靠性研究:基于磨损的刀具可靠性[J].工具技术.1998,32(1):4-7.
    [172]刘战强,李兆前.硬质合金刀具寿命分布规律的研究[J].硬质合金.1995,12(1):7-10.
    [173]杨广勇,付小根.刀具耐用度的分布与刀具的可靠性[J].水利电力机械.1995,(2):47-49.
    [174]严琴,李开灿.含位置参数伽玛分布的特征函数和参数估计[J].长江大学学报(自然版)理工卷.2013,10(2):7-13.
    [175]Wang X Y, Huang C Z, Zou B, et al. Tool Life of Coated Tools in Face Milling of GH4169 at Various Cutting Speeds[J]. Materials Science Forum. 2014, (770):126-129.
    [176]姜同川.正交试验设计[M].济南:山东科学技术出版社,1985:110-121.
    [177]夏伯忠.正交试验法[M].吉林:吉林人民出版社,1986:251-262.
    [178]吴德林,周云飞.高速铣削刀具磨损寿命实验及建模研究[J].制造技术与机床.2008,(11):84-87.
    [179]宋学锋.超精密切削积屑瘤问题的研究[J].航空精密制造技术.2011,47(3):20-22.
    [180]邓建新,张希华,李剑峰,等.TiB2增强Al2O3陶瓷刀具高速干切削摩擦磨损性能[J].摩擦学学报.2004,24(3):197-201.
    [181]Ramalingam S. Tool-Life Distributions-Part 2:Multiple-Injury Tool-Life Model[J]. Journal of Engineering for Industry.1977, (99):523-528,
    [182]Vagnorius Z, Rausand M, S(?)rby K. Determining Optimal Replacement Time for Metal Cutting Tools[J]. European Journal of Operational Research.2010, 206(2):407-416.
    [183]黄华,宋艳萍,赵磊.伽玛分布参数的极大似然估计数值解法[J].高等函授学报:自然科学版.2011,(5):52-54.
    [184]刘战强,李兆前.刀具寿命变异系数的试验研究[J].工具技术.1995,29(5):31-34.
    [185]叶伟昌,叶毅.刀具切削性能可靠性指标的评定方法[J].组合机床与自动化加工技术.1991,(2):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700