用户名: 密码: 验证码:
多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对高速硬态干式切削对刀具材料的要求,从提高陶瓷刀具材料的综合
    力学性能出发,首次提出了多元多尺度纳米复合陶瓷刀具材料的设计思想。基于
    此思想,选择不同的多元多尺度陶瓷颗粒复合Al_2O_3基体,成功制备出四种具有高
    综合力学性能的新型陶瓷刀具材料。从热压烧结工艺、显微结构及其与力学性能
    的关系等方面,深入研究了多元多尺度纳米复合陶瓷刀具材料的增韧补强机理,
    发现晶内/晶间混合型微观结构和穿晶/沿晶混合断裂模式,是陶瓷刀具复合材料强
    韧性提高的主要原因。对新型陶瓷刀具切削性能的研究表明,多元多尺度纳米复
    合陶瓷刀具的研制成功为高性能陶瓷刀具的进一步开发与应用奠定了基础。
    提出了多元多尺度纳米复合陶瓷刀具材料的设计思想。添加相中有一相处于
    纳米级,通过多元多尺度复合,充分发挥微米增韧、纳米补强及多元互补的优势,
    提高复合陶瓷刀具材料的综合力学性能。本文设计了多元多尺度纳米复合材料的
    理想显微结构,即不同微米组元晶间分布、纳米颗粒晶内/晶间混合型分布。从裂
    纹扩展路径出发,论证了多元多尺度纳米复合刀具材料可形成穿晶/沿晶混合的断
    裂模式,消耗更多断裂能,从而有利于提高刀具材料的抗弯强度和断裂韧性。
    根据胶体化学中悬浮液的稳定机制,对不同的纳米陶瓷粉末进行了液相分散研
    究,通过优化分散剂种类、分散介质、悬浮液的pH值以及分散剂的加入量等参数,
    结合超声分散及机械搅拌工艺,实现了纳米粉末及混合粉末的均匀分散。
    研制成功了多元纳米复合陶瓷刀具材料AAS(Al_2O_3/Al_2O_(3n)/SiC_n),其抗弯强度
    为796MPa、断裂韧性为5.01MPa·m~(1/2)、硬度21.32GPa。纳米Al_2O_3与纳米SiC的
    共同作用,使AAS复合材料在较低的烧结温度和较短的保温时间内即可获得高的
    致密度和细化的晶粒。由沿晶断裂向穿晶断裂模式的转变是其力学性能提高的主
    要原因之一。
    研制成功了新型多尺度纳米复合陶瓷刀具材料ASs(Al_2O_3/SiC_μ/SiC_n),其力学
    性能为抗弯强度715MPa、断裂韧性8.2MPa·m~(1/2)、硬度22.57GPa,与单一添加微
    米SiC或纳米SiC的复合材料相比,其抗弯强度和断裂韧性都大幅提高。在致
    密的烧结体中,微米SiC与纳米SiC形成了典型的晶内/晶间混合型结构,裂纹从
    晶间到晶内再到晶间的路径扩展,消耗了更多的断裂能,形成了沿晶/穿晶混合的
From the requirement for ceramic tool materials applied in the high speed and dry machining, a new thought for designing the multi-phase and multi-scale nanocomposites was firstly proposed to improve the comprehensive mechanical properties. Based on this thought, four types of advanced Al_2O_3 matrix ceramic tool materials with high mechanical properties were fabricated successfully. The strengthening and toughening mechanisms of the ceramic tool materials based on multi-phase and multi-scale nanocomposites were investigated from the respects of the correlations among the hot pressing process, the microstructures and mechanical properties. It reveals that the intra/inter granular microstructures and the trans/inter granular fracture modes are the main causes for improving the flexural strength and fracture toughness. The good cutting performance of the developed ceramic cutting tools indicated that the study on the ceramic tool materials based on multi-phase and multi-scale nanocomposites has offered a new path to the further research.The new thought for designing the multi-phase and multi-scale nanocomposites was firstly proposed to improve the comprehensive mechanical properties. Multi-phase and multi-scale particles are added to the matrix, and one of the additives is nano-scale particle, thus the comprehensive mechanical properties can be improved by the synergic effects of micro-scale toughening, nano-scale strengthening and mutual benefit of multi-phases. The ideal microstructure of multi-phase and multi-scale nanocomposites was designed, which was composed of intergranular distributed different micro-scale phases and intra/inter granular nano-scale particles. With this ideal microstructure, the trans/inter granular fracture modes can be formed, which will consume more fracture energy during the crack propagation, therefore both the flexural strength and fracture toughness can be improved.Based on the stabilization mechanisms for suspensions in the colloidal chemistry, the dispersions of different nano-scale ceramic powders in liquid suspension were discussed. With the optimal parameters such as the type of dispersant, dispersing
    medium, the pH value and the content of dispersant, the nano-scale powders and mixed powders were well dispersed with the combination of ultrasonic vibration and mechanical agitation.Multi-phase nanocomposites ceramic tool material of AkCtyAhCWSiCnOnarked as AAS) was firstly fabricated successfully, its flexural strength, fracture toughness and Vickers hardness are 796MPa, 5.01MPa-m1/2 and 21.32GPa respectively. The coactions of nano-scale AI2O3 and nano-scale SiC led to the reduction of the sintering temperature and the shorter preserving time, and therefore the composite with high density and fine grains was obtained. The improvement of the mechanical properties is mainly derived from the transition from intergranular to transgranular fracture mode.Multi-scale nanocomposites ceramic tool material of Al2O3/SiCM/SiCn(marked as ASs) was successfully fabricated, its flexural strength, fracture tougliness and Vickers hardness are 715MPa, 8.2MPa-m1/2 and 22.57GPa respectively. The comprehensive mechanical properties are much higher than that of any composite added with single nano-scale SiC or with single micro-scale SiC. The micro-scale SiC particles are located between AI2O3 matrix, and the nano-scale SiC particles are located on the grain boundary or within the matrix grain. Thus the typical intra/inter granular microstructure is formed in the dense compacts, which resulted in the trans/inter granular fracture modes. The zigzag crack path, which is from the grain boundary into the grain and then turning to the boundary, can result in higher consumption of fracture energy and the increase of fracture toughness.An advanced multi-phase and multi-scale nanocomposites ceramic tool material Al2O3/TiCn/TiNn(marked as LTN) was fabricated with the flexural strength, fracture toughness and Vickers hardness of 731MPa, 7.8MPam1/2 and 19.76Pa accordingly.. Because of the addition of micro-scale TiC with high elastic modulus and high harness, it is apt to form the framework structures which inlay each other with AI2O3 and improve the flexural strength of composite. Proper content of nano-scale TiN can lead to the further refinement of matrix grains, the remarkable strengthening and toughening effects are resulted from the crack pinning, deflection and branching.The strengthening and toughening mechanisms for multi-phase and multi-scale nanocomposites ceramic tool materials were thoroughly researched. The main strengthening and toughening mechanisms of the materials include the effects of grain fining and grain boundary strengthening caused by the nano-scale particles, residual
    stress toughening and the toughening effect caused by particular microstructure. The strengthening and toughening mechanisms for multi-phase and multi-scale nanocomposites ceramic tool materials were emphasized on the toughening effects caused by residual stress and the particular microstructures in the present study.A new mathematics model is firstly established to calculate the residual stress in the composites, the advantage of the new model over the existing simple model consist in considering different-sized particles and the irregular distribution of grains. Two finite element models for analyzing the residual stress were set up. The results analyzed with the ANSYS software clearly showed that the stress characters and values were significantly influenced by the particles' size, grain distribution and the content of the added particles. Combined with the residual stress and the corresponding crack propagation path, the toughening mechanisms of multi-scale nanocomposites ceramic tool materials were discussed, which were well consistent with the experimental results.AI2O3 nanobelts were firstly observed in the material ASs with HRTEM, the forming of ductile nanobelts is helpful for the improvement of fracture toughness. In addition, the special microstructure such as dislocations and compound twins were also observed in the nanocomposites AAS and ASs with TEM, the complicated dislocation configurations and the forming of twins in larger SiC particles also contributed to the fracture toughness.The investigation for the cutting performance showed that, the novel tool AAS is preferable to LT55 when cutting 40Cr materials. While for novel ceramic "tool ASs and LTN appeared preferable when cutting hardened T10A with middle or a little lower cutting speed, their cutting performances were higher than that of SG4 ceramic tool, which was related to the higher comprehensive mechanical properties.
引文
1.肖诗纲.刀具材料及其合理选择(第二版).北京:机械工业出版社,1990
    2.张彦博.陶瓷刀具的发展与使用.攀枝花大学学报.2001,(4):65-67
    3.艾兴,邓建新,赵军,黄传真,刘战强.陶瓷刀具的发展及其应用.机械工人(冷加工).2000,(9):4-6
    4.艾兴,萧虹.陶瓷刀具切削加工.北京:机械工业出版社,1988
    5.盛晓敏.先进制造技术.北京:机械工业出版社,2000
    6.解思深,邹小平.纳米材料与物理学.大学物理.2000,19(12):1-12
    7.严东生,冯端.我国纳米材料研究进展.中国科学院院刊.1997,(5):364-366
    8.张立德.纳米材料和纳米结构.北京:科学出版社,2001
    9.卢柯,周飞.纳米晶体材料的研究现状.金属学报.1997,33(1):99-106
    10.王隆保,房德安.纳米材料的发展概况.中国工程师.1997,(5):9-11
    11.李明怡.纳米材料应用现状及发展趋势.世界有色金属.2000,(7):20-24
    12.朱教群,梅炳初.纳米陶瓷材料的制备和力学性能.佛山陶瓷.2002,(1):1-4
    13.J. Karch, R. Birringer, H. Gleiter. Nature. Ceramics Ductile at Low Temperature. 1987, 330(6148): 556-558
    14.张长瑞.陶瓷基复合材料-原理工艺性能与设计.北京:国防科技大学出版社,2001
    15.郭景坤,冯楚德.纳米陶瓷的最近进展.材料研究学报.1995,(5):412-419
    16.王宏志,高濂,陈红光,归林华,郭景坤.Al_2O_3基复合材料中纳米SiC对微观结构的影响.无机材料学报.1998,13(4):603-607
    17. R. S. Mishra, A. K. Mukherjee Processing of High Hardness-High Toughness Alumina Matrix Nanocomposites. Materials Science and Engineering. 2001, (A301): 97-101
    18. T. Ohji. Creep Inhibition of Ceramic/Ceramic Nanocomposites. Scripta mater. 2001, (44): 2083-2086
    19. D. Vollath, D. Vinga Szabo and J. Haubelt. Synthesis and Properties of Ceramic Nanoparticles and Nanocomposites. Journal of the European Ceramic Society. 1997, (17): 1317-1324
    20. I. E Reimanis. A Review of Issues in the Fracture of Interfacial Ceramic and Ceramic Composites. Materials Science and Engineering A. 1997, 237(2): 159-167
    21.韩亚苓,线全刚,李家麟,梁勇.无压烧结Al_2O_3/SiC纳米复相陶瓷的研究.硅酸盐学报,2001,(1):76-79
    22. L. Gao, H. Wang, H. Kawaoka, T. Sekino, K. Niihara. Fabrication of YAG-SiC Nanocomposites by Spark Plasma Sintering. Journal of the European Ceramic Society, 22(5): 785-789
    23. C. Kim, Y. Oh, W. Cho, D. Lim, D. Chang. In Situ Fabrication of Si_3N_4SiC Nanocomposite Using a Commercial Polymer. Journal of Alloys and Compounds. 1998, (274): 229-233
    24. C. E. Borsa, H. S. Ferreira, R. H. G. A. Kiminami. Liquid Phase Sintering of Al_2O_3/SiC Nanocomposites. Journal of the European Ceramic Society. 1999, (19): 615-621
    25. Y. Sakka, T. S. Suzuki, K. Morita, K. Nakano, K. Hiraga. Colloidal Processing and Superplastic Properties of ZrO2- based Nanocomposites. Scripta mater. 2001, 44: 2075-2078
    26. S. Oh, T. Sekino, K. Niihara. Fabrication and Mechanical Properties of 5Vol% Copper Dispersed Alumina Nanocomposite. Journal of the European Ceramic Society. 1998, (18): 31-37
    27. Y. Ji, J. A. Yeomans. Processing and Mechanical Properties of Al_2O_3-5vol.%Cr Nanocomposites. Journal of the European Ceramic Society. 2002, (22): 1927-1936
    28. M Sternitzke, E Dupas, P Twigg and B Derby. Surface Mechanical Properties of Alumina Matrix Nanocomposites. Acta Mater. 1997, 45(10): 3963-3973
    29. A. W. Weimer, R. K. Bordia. Processing and Properties of Nanophase SiC/Si_3N_4 Composites. Composites: Part B. 1999, (30): 647-655
    30. H. Z. Wang, L. Gao, J. K. Guo. The Effect of Nanoscale SiC Panicles on the Microstructure of Al_2O_3 Ceramics. Ceramics International. 2000, (26): 391-396
    31. G. Pezzotti, W. H. Muller. Strengthening Mechanisms in Al_2O_3/SiC Nanocomposites. Computational Materials Science. 2001, (22): 155-168
    32. S. Jiao, M. L. Jenkins and R. W. Davidge. Interfacial Fracture Energy-mechanical Behavior Relationship in Al_2O_3/SiC and Al_2O_3/TiN. Acta Mater. 1997, 45(1): 149-156
    33. H. Z. Wang, L. Gao, L. H. Gui, and J. K. Guo. Preparation and Properties of Intragranular Al_2O_3/SiC Nanocomposites. Nanostructured Materials. 1998, 10(6): 947-953.
    34. 高家化,沈志坚,丁子上.陶瓷基纳米复合材料.复合材料学报.1994,(1):1-7
    35. R. Roy. Purposive Design of Nanocomposites: Entire Class of New Materials in Ceramic Microstructures 86. Role of Interface. 1987, 21: 25-32
    36. K. Niihara. New Design Concept of Structural Ceramics-Ceramic Nanocomposites. J. Ceram. Soc. Jpn.. 1991, 99: 974-982.
    37. K. Niihara, A. Nakahira. Structural Ceramic Nanocomposites by Sintering Method: Roles of Nano-size Particles. In Ceramics: Towards the 21st Century. The Ceram. Soc. of Japan. 1991: 404-417.
    38. K. Izaki, K. Hahhei, K. Ando, T. Kawakami and K. Niihara. Fabrication and Mechanical Properties of Si_3N_4/SiC Composites from Fine. Amorphous Si-C-N Powder Precursors. In Ultrastructure Processing of Advanced Ceramics ed. J. M. Mackenzie et al. New York. 1988: 891-900.
    39. K. Niihara and A. Nakahira. Strengthening of Oxide Ceramics by SiC and Si_3N_4 dispersions. In Proceedings of the Third International Symposium on Ceramic Materials and Components for Engines. ed. V. J. Tennery. Westerville Ohio. 1988: 919-926.
    40.杨辉,张大海,葛曼珍.纳米复合陶瓷研究进展.陶瓷学报.1998,(1):48-51
    41.李勇.纳米复相陶瓷.现代技术陶瓷.1995,(3):28-31
    42. 新原皓一. Nanostructure Design and Mechanical Properties of Ceramic Composites. 粉体粉末冶金. 1990, 37(2): 348-350
    43. K. Niihara. The correlation between interface structure and mechanical properties for silicon nitride based nanocomposites. Elsevier Applied Science. London: 1992: 103-111
    44.周新贵,张长瑞,陈大明,彭应国.纳米Si-C-N粒子增强Si_3N_4复合材料的结构和性能.国防科技大学学报.1999,(3):38-40
    45. D. S. Cheong, K. T. Hwang, C. S. Kim. Fabrication, Mechanical Properties and Microstructure Analysis of Si_3N_4/SiC Nanocomposite. Composites: Part A. 1999, (30): 425-427
    46. B. Baron, C. S. Kumar, G. L. Gonidec, S. Hampshire. Comparison of Different Alumina Powders for the Aqueous Processing and Pressureless Sintering of Al_2O_3-SiC Nanocomposites. Journal of the European Ceramic Society. 2002, (22): 1543-1552
    47. K. T. Hwang, K. H. Auh, C. S. Kim, D. S. Cheong and K. Niihara. Influence of SiC Particle Size and Drying Method on Mechanical Properties and Microstructure of Si_3N_4/SiC Nanocomposite. Materials Letters. 1997, 32(4): 251-257
    48. T. Hirano and K. Niihara. Microstructure and Mechanical Properties of Si_3N_4/SiC Composites. Materials Letters. 1995, 22(5): 249-254
    49. Jian Feng Yang, Tohro Sekino, Yong-Ho Choa, Koichi Niihara, Tatsuki Ohji. Microstructure and Mechanical Properties of Sinter-Post-HIPed Si_3N_4-SiC Composites. J. Am. Ceram. Soc., 2001, 84(2): 406-412
    50. I. Levin, W. D. Kaplan, D. G. Brandon, A. A. Layyous. Effect of SiC Submicrometer Particle Size and Content on Fracture Toughness of Al_2O_3-SiC "Nanocomposites". J. Am. Ceram. Soc. 1995, 78(1): 254-256.
    51. J. P. Rigueiro, J. Y. Pastorl, J. Lorca, M. Elicesp and J. S. Moya. Revisiting the Mechanical Behavior of Alumina/silicon Carbide Nanocomposites. Acta mater. 1998, 46(15): 5399—5411
    52. M. J. Gasch, J. Wan, A. K. Mukherjee. Preparation of a Si_3N_4/SiC Nanocomposite by High-pressure Sintering of Polymer Precursor Derived Powders. Scripta Mater. 2001, (45): 1063-1068
    53. L. Gao, H. Z. Wang, J. S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, S. D. D. L. Torre. Mechanical Properties and Microstructure of Nano-SiC-Al_2O_3 Composites Densified by Spark Plasma Sintering. Journal of the European Ceramic Society. 1999, (19): 609-613
    54. M. Sternitzke. Review: Structural Ceramic Nanocomposites. Journal of the European Ceramic Society. 1997, (17): 1061-1082
    55. J. Zhao, C. Laura, M. P. Harmer, H. M. Chan, G. A. Miller. Mechanical Behavior of Alumina-Silicon Carbide" Nanocomposites". J. Am. Ceram. Soc. 1993, 76(2): 503-510.
    56.仝建峰,陈大明,蔡万华.退火处理对Nano SiC-Al_2O_3/TiC纳米陶瓷复合材料性能的影响.金属热处理.1999,(11):26-27
    57. S. Maensiri, S. G. Roberts. Thermal Shock of Ground and Polished Alumina and Al_2O_3/SiC Nanocomposites. Journal of the European Ceramic Society. 2002, 22 (16): 2945-2956
    58. C. C. Anya. A More Consistent Explanation of the Strength of Al_2O_3/SiC Nanocomposite after Grinding and Annealing. Ceramics International. 2000, (26): 427-434.
    59. H. Z. Wu, C. W. Lawrence, S. G. Roberts and B. Derby. The Strengthening of Al_2O_3/SiC Nanocomposites after Grinding and Annealing. Acta mater. 1998, 46(11): 3839-3848
    60. A. Rendtel, H. Hubner. Effect of Heat Treatments on Microstructure and Creep Behaviour of Silicon Nitride Based Ceramics. Journal of the European Ceramic Society. 2002, 22 (14-15): 2517-2525
    61. Y-S Oh, C-S Kim, D-S Lim and D-S Cheong. Fracture Strengths and Microstructure of Si_3N_4/SiC Nanocomposites Fabricated by In-situ Process. Scripta mater. 2001, 44: 2079-2081
    62. H. Park, H. Kim and K. Niihara. Microstructure and High-temperature Strength of Si_3N_4-SiC Nanocomposite. Journal of the European Ceramic Society. 1998, (18): 907-914
    63. K. Niihara and A. Nakahira. Particulate Strengthened Oxide Ceramic Nanocomposites. In Advanced Structural Inorganic Composites. ed. P. Vincenzini. Elsevier Applied Science. 1991: 637-644
    64. H. K. Schmid, M. Aslan, S. Assmann, and H Schmidt. Microstructural Characterization of Al_2O_3-SiC Nanocomposites. Journal of the European Ceramic Society. 1998, (18): 39-49
    65. B. Derby. Ceramic Nanocomposites: Mechanical Properties. Current Opinion in Solid State & Materials Science. 1998, (3): 490-495
    66.李理,杨丰科,侯耀永.纳米颗粒复合陶瓷材料.材料导报.1996,(4):67-73
    67.新原皓一,伊崎宽正,中平敦.The Si_3N_4-SiC Nanocomposites with High Strength at Elevated Temperatures.粉体粉末冶金.1990,37(2):352-356
    68.候耀永,李理,张巨先.Al_2O_3/SiC_(nano)纳米复合材料显微结构及强韧化机理研究.电子显微学报.1998,17(2):156-161
    69.郭小龙,陈沙鸥,戚凭,潘秀红.纳米颗粒对陶瓷材料力学性能的影响.青岛大学学报.2000,2:60-64
    70.张巨先,高陇桥.晶内型结构的Al_2O_3-SiCp纳米复相陶瓷.硅酸盐学报.2001,5:471-474
    71. T. Ohji, Y-K Jeong, Y-H Choa, K. Niihara. Strengthening and Toughening Mechanism of Ceramic Nanocomposites. J. Am. Ceram. Soc. 1998, 81(6): 1453-60.
    72.仝建峰,陈大明,陈宇航.纳米SiC-Al_2O_s/TiC多相陶瓷复合材料显微结构的研究.硅酸盐学报.2001,(5):427-430
    73. H. Tan, W. Yang. Toughening Mechanisms of Nano-composite Ceramics. Mechanics of Materials. 1998, 30: 111-123.
    74.王宏志,高濂,归林华,郭景坤.晶内型Al_2O_3-SiC纳米复合陶瓷的制备.无机材料学报.1997,(5):671-674
    75.王宏志,高濂,郭景坤.Al_2O_3-SiC纳米复合陶瓷中的残余应力分析.中国科学(E).1999,(3):200-205
    76.焦绥隆,C E Borsa.氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理.材料导报.1996,10(增):89-93
    77.王昕,谭训彦,尹衍升,周玉,候耀永.纳米复合陶瓷增韧机理分析.陶瓷学报.2000,(2):107-111
    78.张国军.颗粒增韧陶瓷的增韧机理.硅酸盐学报.1994,(3):259-270
    79. A. M. Thompson, H. M. Chan and M. P. Harmer. Crack Healing and Stress Relaxation in Al_2O_3/SiC Nanocomposites. J. Am. Ceram. Soc. 1995, 78(3): 567-571
    80.罗学涛.Si_3N_4/SiC纳米复合材料的制备力学性能及强韧化机理.南昌航空工业学院学报.2000,(3):1-5
    81. J. Fang. H. M. Chan. Residual Stress Relaxation in Al_2O_3/SiC Nanocomposite. Materials Science and Eng. 1995, A195: 163
    82.靳喜海,高濂.纳米复相陶瓷的制备显微结构和性能.无机材料学报.2001,16(2):200-206
    83. I-W Chen, L. A. Xue. Development of Superplastic Structural Ceramics. J. Am. Ceram. Soc. 73, (9): 2585-2609
    84.陈大明.纳米陶瓷复合材料的制备与性能.材料导报.1997,11(5):67-71.
    85. K. Niihara, A. Nikahira, K. Izaki. Interfaces in Si_3N_4-SiC Nano-composite. J. of Materials Science Letters. 1990, 9(5): 598-599
    86. T. Ohji, A. Nikahira, T. Hirano and K. Niihara. Tensile Creep Behavior of Alumina/silicon Carbide Nanocomposites. J. Am. Ceram. Soc. 1994, 77(12): 3259-3262
    87.徐利华,丁子上,黄勇.先进复相陶瓷的研究现状与展望(Ⅱ)-高组元复合陶瓷材料的研究发展.硅酸盐通报.1996,6:42-46
    88.郭景坤.从复合材料到多相材料.材料研究学报.2000,14(2):124-126
    89. C. Xu. Preparation and Performance of an Advanced Multiphase Composite Ceramic Material. Journal of the European Ceramic Society. 2005, 25(5): 605-611
    90.许崇海,黄传真,艾兴.复相陶瓷刀具材料设计的理论框架.中国机械工程.2001,12(10):1198-1203
    91.司文捷.相变增韧与颗粒弥散协同增韧复相陶瓷的研究.博士学位论文.清华大学,1992
    92.陈志刚,刘苏,刘军,陈雪梅.Al_2O_3-TiB_2-ZrO_2复相陶瓷刀具应用研究.江苏陶瓷.2001,34(2):7-8
    93. C. Z. Huang, X. Ai. Development of Advanced Composite Ceramic Tool Material. Materials Research Bulletin. 1996, 31(8): 951-956
    94. J. X. Deng, L. L. Liu, J. H. Liu, J. L. Zhao, X. F. Yang. Failure Mechanisms of TiB_2 Particle and SiC Whisker Reinforced Al_2O_3 Ceramic Cutting Tools When Machining Nickel-Based Alloys. International Journal of Machine Tools and Manufacture. 2005, 45(12-13): 1393-1401
    95.兰俊思,丁培道,黄楠.SiC晶须和Ti(C,N)颗粒协同增韧Al_2O_3陶瓷刀具的研究.材料科学与工程学报.2004,22(1):59-64
    96.顾延慰,潘敏元,赵高扬.SiC晶须增韧Al_2O_3-(Ti,W)C陶瓷材料增韧机理的研究.机械工程材料.1996,(5):31-32
    97. C. H. Xu, X. Ai. Computer Simulation of the Temperature Field in the Hot Pressing Process of Multi-Phase Composite Ceramic Material. Journal of Materials Processing Technology. 2002, 122(1): 27-32
    98.许崇海,黄传真,丁文亮.SiC和Ti(C,N)颗粒弥散陶瓷材料的力学性能与微观结构.粉末冶金技术.2001,19(3):153-157
    99.孙德明,刘立红,鹿晓阳,许崇海,张勤河,艾兴.Al_2O_3/Cr_3C_2/(W,Ti)C陶瓷材料的力学性能及微观结构 硅酸盐学报.2005,33(4):411-415
    100.宋桂明,周玉,雷廷权.晶须和相变复合增韧陶瓷的复合增韧模型.无机材料学报.1998,(2):195-200
    101.仝建峰,陈大明,陈宇航,雷景轩.热压工艺参数对纳米SiC-Al_2O_3/TiC新型陶瓷刀具材料力学性能的影响.粉末冶金技术.2002,18(2):102-105
    102. H. Z. Wang, L. Gao and J. K. Guo. Fabrication and Microstructure of Al_2O_3-ZrO_2(3Y)-SiC Nanocomposites. Journal of the European Ceramic Society. 1999, (19): 2125-2131
    103. L. Gao, H. Z. Wang, J. S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, S. Torre. SiC-ZrO_2(3Y)-Al_2O_3 Nanocomposites Superfast Densified by Spark Plasma Sintering. Nanostructured Material. 1999, 11(1): 43-49
    104.晏建武,鲁世强,周继承,张志华,李卫超.纳米SiC和添加剂ZrO_2对Al_2O_3基纳米复合陶瓷显微组织和性能的影响.中国有色金属学报.2004,(6):1007-1012
    105.松木龟一,竹之内武羲,中平敦,新原皓一.Microstructure and Mechanical Properties of Al_2O_3/TiC/ZrO_2 Composites.粉体粉末冶金.1994,41(10):1232-1237
    106.董倩,唐清,李文超.燃烧合成-热压制备Al_2O_3-TiC-ZrO_2纳米复合陶瓷的力学性能与显微结构.金属学报.2001,37(12):1285-1288
    107. Y. H. Koh, H. W. Kim and H. E. Kim. Mechanical Properties and Oxidation Resistance of Si_3N_4-SiC Nanocomposites. Scripta Mater. 2001, (44): 2069-2073
    108.董利民,田杰谟,张宝清.Si_3N_4/SiCn/SiCw纳米复合材料力学性能研究.材料导报.2000(专辑),14(10):343-345
    109.王瑞坤,孙丽虹,马通达,朱其芳,吴波,于荣,董利民.Si_3N_4复合陶瓷材料的微观组织和断裂机制.中国有色金属学报.2000(6):823-826
    110.曾照强,胡晓清,林旭平.添加Cr_2O_3对Al_2O_3-TiC烧结及纳米结构形成的影响.硅酸盐 学报.1998,26(2):178-181
    111.许崇海,黄传真,艾兴,赵忠元,孙德明.复相陶瓷刀具材料的物化相容性分析.机械科学与技术.2001,20(2):260-261
    112.许崇海,孙德明,冯衍霞,黄传真,艾兴.多相复合陶瓷刀具材料残余热应力的有限元模拟.复合材料学报.2001,18(3):91-96
    113.樊宁,高子辉,艾兴,邓建新.人工神经网络在Al_2O_3-TiC/SiC多相陶瓷刀具材料开发中的应用.陶瓷学报.2004,25(3):193-196
    114. N. Liu, Y. D. Xu, Z. H. Li, M. H. Chen, F. Xie. Cutting and Wear Behaviors of TiC Based Cermets Cutter with Nano-TiN Modification. Transactions of Nonferrous Metals Society of China (English Edition). 2003, 13(4): 869-875
    115. N. Liu, C. L. Han, H. D. Yang, Y. D. Xu, M. Shi, S. Chao, F. Xie. The Milling Performances of TiC-based Cermet Tools with TiN Nanopowders Addition Against Normalized Medium Carbon Steel AISI1045. Wear. 2005, 258(11-12): 1688-1695
    116.宋世学,艾兴,赵军.A1_2O_3/TiC纳米复合刀具材料的制备及切削性能研究.中国机械工程.2003,14(17):1523-1525
    117.吕志杰.高性能Si_3N_4/TiC纳米复合陶瓷刀具材料的研制与性能研究 山东大学博士学位论文.2005
    118. X. Ai, Z. Q. Li, J. X. Deng. Development and Perspective of Advanced Ceramic Cutting Tool Material. Key Engineering Materials. 1995, 108-110: 53-66
    119. James Dlinmm, David H. Sharp. Multiscale Science: A Challenge for the Twenty-First Century. SIAM News, 1997, 30(8): 1-7
    120.曹礼群.材料物性的多尺度关联与数值模拟.世界科技研究与发展,2002,24(6):23-30
    121. J. Z. Cui, Y. Y. Li. The Multi-Scale Computational Method for Mechanics Parameters of Composite Materials with Random Grain Distribution. In: Invited Presentation on International Symposium on Macro-Meso-Micro-, and Nano-Mechanics of Materials (MM2003), Hong Kong, 8-10 December;2003.
    122.何国威,夏蒙棼,柯孚久,白以龙.多尺度耦合现象:挑战和机遇.自然科学进展.2004,14(2):121-124
    123.王崇愚.多尺度模型及相关分析方法 复杂系统与复杂性科学.2004,1(1):9-19
    124. F. F. Abraham, J. Q. Broughton, et al. Spanning the Continuum to Quantum Length Scales in a Dynamic Simulation of Brittle Fracture. Europhys Lett., 1998, 44(6): 783-787
    125. J. Q. Broughton, F. F. Abraham, et al. Concurren Coupling of Length Scales;Methodology and Application. Phys. Rev. B., 1999, 60(4): 2391-2403
    126. E. Lidorikis, M. E. Bachlechric, R. K. Kalia, et al. Coupling Length Scales for Multiscale Atomistics-Continuum Simulations: Atomistically Induced Stress Distributions in Si/Si_3N_4 Nanopixels. Phys. Rev. Lett., 2001, 87(8): 086104-1-086104-4
    127.许崇海.复相陶瓷刀具材料设计、仿真及其应用研究.山东工业大学博士学位论文.1998
    128.金宗哲,张国军,包亦望,白辰阳岳雪梅赵宏.复相陶瓷增强颗粒尺寸效应.硅酸盐学报.1995,23(6):610-617
    129.宫波,李拴生,侯再恩.不定形耐火材料颗粒级配的优化.耐火材料.2003,37(6):326~32
    130.高瑞平,李晓光,施剑林,周玉,傅正义.先进陶瓷物理与化学原理及技术.北京:科学出版社,2001
    131. C. Herring Effect of Change of Scale on Sintering Phenomena. Journal of Applied Physics, 1950, 21(4): 301-303
    132. J. M. Zheng, W. B. Carlson, J. S. Reed. The Packing Density of Binary Powder Mixtures. Journal of the European Ceramic Society. 1995, 15(5): 479-483
    133.张金栋,施剑林.氧化铝粉料的颗粒级配对成型行为和烧结行为的影响.无机材料学报.1997,12(2):175-180
    134. J. Ma, L. C. Lim. Effect of Particle Size Distribution on Sintering of Agglomerate-Free Submicron Alumina Powder Compacts. Journal of the European Ceramic Society. 2002, 22: 2197-2208
    135.王倩,金志浩,王永兰.氧化物结合碳化硅复合材料的粒度级配对其性能的影响.硅酸盐通报.2003,(1):38-41
    136.崔忠圻.金属学与热处理.北京:机械工业出版社.1989
    137.陆厚根.粉体技术导论.第2版.上海:同济大学出版社,1998
    138. Y. Y. Li, J. Z. Cui. The Multi-Scale Computational Method for the Mechanics Parameters of the Materials with Random Distribution of Multi-Scale Grains. Composites Science and Technology. 2005, (65): 1447-1458
    139.郭景坤.关于先进结构陶瓷的研究.无机材料学报.1999,14(2):193-199
    140.郭景坤.关于多相陶瓷材料的研究.材料导报.2000,14(7):1-2
    141.郭景坤.二十一世纪材料研究的新趋向——多相材料.中国科学基金.2001,(5):289-290
    142.徐利华,丁子上,黄勇.先进复相陶瓷的研究现状与展望(Ⅲ)-纳米陶瓷复合材料的研究发展.硅酸盐通报.1997,(2):56-59
    143. K. Niihara, N. Aakahira, T. Sekino. New nanocomposite structural ceramics. Materials Research Society Symposium Proceedings. 1993, 286: 405-412
    144.施剑林,先进结构陶瓷材料的制备与设计.中国科学基金.1998,(2):83-87
    145. F. de Mestral, F. Thevenot. Optimisation of Mechanical Properties in the Ternary System TiB_2-TiC-SiC, Using Optimal Design. Proceedings of the 12th International Plansee Seminar 89. 1989, 557
    146.郭景坤,诸培南.复相陶瓷材料的设计原则.硅酸盐学报.1996,24(1):7-13
    147.梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社.1993
    148.邓建新.添加TiB_2的新型陶瓷刀具材料的开发及其摩擦磨损行为和应用研究.山东工业大学博士学位论文.1995
    149.卜景龙,刘继富.陶瓷基复合材料微观结构设计.河北陶瓷.1996,24(1):3-6
    150.刘继富,李建保,王厚亮,黄勇.颗粒弥散陶瓷复相材料的设计.航空材料学报.1998,18(4):9-12
    151.潘敏元,赵高扬,陈宇航,文保平,潘明.高强韧性复合陶瓷刀具材料的研究.陕西机械学院学报.1992,8(3):161-172
    152.李静,张培新,周晓明等.纳米TiO_2表面包覆改性及表征.化工新型材料.2004,32(3):5-9
    153.邓祥义,胡海平.纳米粉体材料的团聚问题及解决措施.化工进展.2002,21(10):761-762
    154.卢寿慈.粉体加工技术.北京:轻工业出版社,1999
    155.杨金龙,吴建銧,黄勇,谢志鹏.陶瓷粉末颗粒尺寸测试、表征及分散.硅酸盐通报.1995(5):67-77
    156. H. C. Hamaker. London—der Waals Attraction Between Sphericals. Physica. 1997, 12(4): 26-28.
    157.任俊,卢寿慈,沈健等.超微颗粒的静电抗团聚分散.科学通报.2000,(11):2289-2292
    158.马文有,田秋,曹茂盛等.纳米颗粒分散技术研究进展—分散方法与机理(1).中国粉体技术.2002,8(3):28-31
    159.侯万国.应用胶体化学.北京:科学出版社,1998
    160.侯耀永,李理,杨静漪,杨丰科.高分散高稳定α-Al_2O_3和纳米SiC单相及混合水悬浮液的制备.硅酸盐学报.1998,26(2):171-176
    161.张巨先,杨静漪,郁新,侯耀永,高陇桥.高分散、均混合Al_2O_3-SiC-z_rO_2(3Y)水悬浮液.无机材料学报.1999,14(1):43-48
    162.刘宣勇,苏文强,钱端芬,谢建国.陶瓷粉料在液体介质中分散的稳定机制.陶瓷工程.1999,33(1):52-56
    163. Z. Andreja, L. Romano, K. Annika. Rheological Properties of Aqueous α-Al_2O_3 Suspensions: Influence of Dispersant Concentration. Can. J. Chem. Eng. 1999, 77(4): 627-636
    164.王瑞刚,吴厚政,陈玉如等.陶瓷料浆稳定分散进展.陶瓷学报.1999,(1):35-36
    165. R. H. Ottewill. Stability and Instability in Disperse Systems. J. Colland Inter Sci. 1977, 58(2): 357-373
    166. D. H. Napper. Steric Stabilization. J. Colland Inter Sci. 1977, 58(2): 390-407
    167.郭小龙,陈沙鸥,潘秀宏等.SiC和Si_3N_4纳米颗粒分散中的介质因素.陶瓷工程.2001(2):6-9
    168.张立德.超微粉体制备与应用技术.北京:中国石化出版社,2001
    169.孙静,高濂,郭景坤等.分散剂用量对几种纳米氧化锆粉体尺寸表征的影响.无机材料学报.1999,14(3):465-469
    170.宋世学.高性能Al_2O_3系陶瓷刀具材料的研制及其性能研究.山东大学博士学位论文.2002
    171.郭小龙,陈沙鸥,戚凭.纳米SiC水悬浮液稳定性的研究.青岛大学学报,2001,14(1):29-33
    172.仝建峰,陈大明,陈宇航,雷景轩.纳米陶瓷复合材料制备工艺中nano-SiG与基体Al_2O_3粉末的均匀分散.硅酸盐通报.2000,(3):24-27
    173. Eric Laarz, Mats Carlsson, Benoit Vivien, et al. Colloidal processing of Al_2O_3-based composites reinforced with TiN and TiC particulates, whiskers and nanoparticles. Journal of the European Ceramic Society. 2001, 21(8): 1027-1035
    174.夏阳华,丰平,熊惟皓.Ti(C,N)基金属陶瓷超微粉在不同液体介质中的分散性研究.稀有金属材料与工程.2005,34(1):145-149
    175.邹斌,黄传真,刘炳强,谷美林.纳米Si_3N_4-TiC_7N_3混合悬浮液性质研究.机械工程材料.2005,29(4):14-16
    176.许育东,刘宁,李华,陈名海,石敏.纳米TiN粉分散工艺优化研究.硬质合金.2002,19(2):78-82
    177.刘茜,高濂,严东生.无团聚SiC粒子复合Sialon陶瓷.无机材料学报.1996,11(2):281-285
    178.金志浩,高积强,乔冠华.工程陶瓷材料.西安:西安交通大学出版社.2002
    179.张伟.新一代金属陶瓷的制造、性能及应用.稀有金属与硬质合金.1997,(129):55-60
    180.中国科学院上海硅酸盐研究所五室译.陶瓷的力学性质.上海:上海科学技术文献出版社.1981
    181. Fukuhara, Mikio, Fukazawa, Kenji and Fukawa, Akira. Physical Properties and Cutting Performance of Silicon Nitride Ceramic. Wear. 1985, 102(3): 195-210
    182.李广海,江安全,张立德.添加纳米Al_2O_3对Al_2O_3陶瓷增韧和增强的影响.金属学报.1996,32(12):1285-1288
    183.王宏志,高濂,陈红光,归林华,郭景坤.Al_2O_3基复合材料中纳米SiC对微观结构的影响.无机材料学报.1998,13(4):603-607
    184.黄传真.新型复相陶瓷刀具材料的研制及切削可靠性研究.山东工业大学博士学位论文,1994
    185.萧虹.晶须增韧陶瓷刀具材料的研制及其切削性能的研究.山东工业大学博士学位论文,1990
    186.董倩,唐清,李文超.Al_2O_3-TiC基复相陶瓷的制备和性能.过程工程学报.2001,1(3):331-336
    187. J. H. Gong, H. Z. Miao, Z. Zhao, et al. Effect of TiC Particle Size on the Toughness Characteristics of Al_2O_3-TiC Composites. Mater Lett. 2001, 49: 235-238
    188. Y. Goto, F. Porz. Mechanical Properties of Unidirectionally Oriented SiCw Whisker-reinforced Si_3N_4 Fabricated by Extrusion and Hot-pressing. J Am Ceram Soc. 1993, 76(6): 1420-1424
    189. S. Jiao. J M. L. enkins. A Quantitative Analysis of Crack-Interface Interactions in Alumina-Based Nanocomposites. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties. 1998, 78(2): 507-522
    190. J. G. Li, L. Gao, J. K. Guo. Mechanical Properties and Electrical Conductivity of TiN-Al_2O_3 Nanocomposites. Journal of the European Ceramic Society. 2003, 23(1): 69-74
    191.尹双增.断裂、损伤理论及应用.北京:清华大学出版社.1992
    192.王宏志,高濂,郭景坤.SiC颗粒尺寸对Al_2O_3-SiC纳米复合陶瓷的影响.无机材料学报.1999,4:679-683
    193.周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社.1995
    194. A. Nakahira, K. Niihara. Microstructure and Interfaces of Al_2O_3/SiC Nanocomposite. Journal of the Japan Society of Powder and Powder Metallurgy. 1991, 38(3): 361-364
    195.张存满,徐政.弥散SiC颗粒增韧氧化铝陶瓷内部残余应力分析.同济大学学报.2002,30(11):1326-1330
    196.赵宏,金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析.硅酸盐学报.1996,24(5):491-497
    197. Majumdar Saurin, Kupperman David. Effects of Temperature and Whisker Volume Fraction on Average Residual Thermal Strains in a Silicon Carbide/Alumina Composite. J. Am. Ceram. Soc. 1989, 72(2): 312-313
    198.许崇海,孙德明,冯衍霞,黄传真,艾兴.多相复合陶瓷刀具材料残余热应力的有限元模拟.复合材料学报.2001,18(3):91-96
    199.胡祥,钱苗根.金属学.上海:上海科学技术出版社.1985
    200.关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社.1992
    201.弗里埃德尔(Friedel,J.),王煜译.位错.北京:科学出版社.1980
    202.尹衍升,龚红宇,谭训彦,甄玉花,张银燕,陈云.Al_2O_3/(纳米)Fe_3Al复合材料位错形貌的TEM观测.复合材料学报.2004,21(2):153-156
    203. W. B. Chou, W. H. Tuan, S. T. Chang. Preparation of NiAl Toughened Al_2O_3 by Vacuum Hot Pressing. British Ceramic Transactions. 1996, 95(2): 71-74.
    204.候耀永.Al_2O_3/SiCnano纳米复合材料微结构及强韧化机理研究.电子显微学报.1998,17(2):156-161
    205.黄传真,艾兴.新型复相陶瓷刀具材料JX-2-Ⅰ的界面结构及其对材料性能的影响.电子显微学报.1995,14(5):365-368
    206. Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of Semiconduction Oxides. Science. 2001, 261(9): 1947-1949
    207. V. Valcarcel, A. Perez, M. Cyrklaffand F. Guitian. Novel Ribbon-Shaped α-Al_2O_3 Fibers. Adv. Mater. 1998, 10(16): 1370-1373
    208. X. S. Fang, C. H. Ye, L. D. Zhang, T. Xie. Twinning-Mediated Growth of Al_2O_3 Nanobelts and Their Enhanced Dielectric Responses. Advanced Materials. 2005, 17(13): 1661-1665
    209.张立德,牟季美.纳米材料学.沈阳:辽宁科学技术出版社.1994
    210. A. G. Evans, P. B. Marshall. Wear Mechanism in Ceramics. Proc. of Int. on Fundamentals of Friction and Wear of Matrials. Pittsburgh: ASME, 1980. 439-452
    211.薛群基,刘惠文.陶瓷摩擦学Ⅰ-陶瓷的摩擦与磨损.摩擦学学报.1995,15(4):376-384
    212.赵兴中,罗虹,刘家浚,罗振壁,齐龙浩.干摩擦条件下Ti(CN)-Al_2O_3复合陶瓷与金属摩擦副的摩擦学特性研究.硅酸盐学报.1996,24(5):578-584
    213.赵兴中,刘家浚,朱宝亮,罗振壁,苗赫濯.Ti(CN)-Al_2O_3复合陶瓷与金属摩擦副的摩擦学特性研究.无机材料学报.1996,11(4):671-678
    214.邓建新,艾兴,郑芸芳.Al_2O_3-TiB_2陶瓷刀具材料的研制及其耐磨性研究.现代技术陶瓷.1994,(2):8-13
    215. P. K. Mehrotra. Mechanisms of Wear in Ceramic Materials. Wear of Materials. ed. K. C. Ludema. 1983, 194-201
    216.刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社.1993
    217.勝村右次.Al_2O_3/SiC工具的切削性能.粉体粉末冶金.1988,35(8):87
    218.陈建,沈兴东.不锈钢的切削性能研究.机电产品开发与创新.2004,17(4):96-98
    219.刘忠伟.不锈钢的数控车削加工.组合机床与自动化加工技术.2003,(11):54-56
    220.邹玉波,周同磊.不锈钢的磨削加工.现代零部件.2005,(1):81-82
    221.黄传真,艾兴.切削奥氏体不锈钢1Cr18Ni9Ti时JX_2新型陶瓷刀具的切削性能.硬质合金.1995,12(2):111-114
    222.庄大明,刘有荣,刘家浚,朱宝亮,罗振璧,苗赫濯.陶瓷刀具切削不锈钢的切削性能及其失效机理分析.清华大学学报(自然科学版).1997,37(8):22-25
    223.宋大瑛,张永林,葛权兵.不锈钢的切削加工.科技情报开发与经济.2000,10(2):61-62
    224. W. K. Nig, Technische Hochschule, et al. Maching of Hard Materials. Annals of CIPP. 1984, 133(2): 419
    225. H. E. Sliney. Solid Lubrication Materials for High Temperature-a Review. Tribology International. 1982, 15: 303-314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700