用户名: 密码: 验证码:
新型硼化钛基复合陶瓷刀具及切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对TiB_2陶瓷材料的缺点,根据复合陶瓷刀具材料物理、化学和烧结相容性原则,选择TiN和Al_2O_3颗粒为添加相,Ni和Mo为粘结相,采用液相热压烧结工艺,研制成功了高性能新型TiB_2基复合陶瓷刀具TiB_2-TiN(BT)、TiB_2-Al_2O_3(BA)和TiB_2-TiN-Al_2O_3(BTA),并对其液相热压烧结机理、常温力学性能及增韧机理、高温抗氧化性能及氧化机理、抗热震性能、切削性能及刀具失效机理进行了系统的研究。
     在优化的烧结工艺下,制备了TiB_2-TiN、TiB_2-Al_2O_3和TiB_2-TiN-Al_2O_3复合陶瓷刀具材料,并研究了添加相含量对TiB_2基陶瓷刀具材料致密化的影响。结果表明:添加相颗粒TiN和Al_2O_3对基体的致密化有明显促进作用。随TiN添加量的增加,TiB_2-TiN复合陶瓷刀具材料的致密度逐渐提高,且当TiN含量为30vol%时,TiB_2-TiN复合陶瓷刀具材料的相对密度达到了98.87%;少量的Al_2O_3添加相可以提高TiB_2-Al_2O_3的致密度,但当Al_2O_3添加相含量超过30vol%时,复合陶瓷刀具材料的致密度会随之下降。
     研究了TiB_2基复合陶瓷刀具材料液相热压烧结致密化过程,并建立了液相热压烧结初期和中后期致密化方程。结果表明,烧结初期的致密化机理是颗粒重排,影响复合陶瓷刀具材料致密化速度的因素有液相性质、外加压力、颗粒尺寸以及液相对添加相的润湿性;当液相对添加相的润湿角小于对基体的润湿角时,添加相会促进基体的烧结,并且添加相含量越高,复合陶瓷刀具材料的致密化速度越快;当液相对添加相的润湿角和对基体的润湿角相同时,添加相的含量对复合陶瓷刀具材料的致密化没有影响。烧结中后期的致密化机理是液相流动和晶界扩散控制的蠕变;添加相的晶界扩散系数D、晶界宽度W、扩散空位的原子体积a~3和表面能γ对复合陶瓷刀具材料的致密化有影响;随烧结时间延长,TiB_2基复合陶瓷刀具材料的致密度(ρ)逐渐增加,且-1n(1-ρ)与烧结时间呈线性关系,复合陶瓷刀具材料的-1n(1-ρ)与添加相含量呈抛物线关系,即随添加相含量的增加,TiB_2基复合陶瓷刀具材料的致密度(ρ)逐渐增加大。
     系统研究了TiB_2基复合陶瓷刀具材料的力学性能、显微结构和增韧机理。研制成功了具有优良综合力学性能的TiB_2基复合陶瓷刀具材料BT30、BA30和BT30A10,其平均抗弯强度分别为:1240MPa、915MPa和1036MPa;其平均断裂韧度分别为:7.43MPa·m~(1╱2)、7.00MPa·m~(1╱2)和7.8MPa·m~(1╱2);其平均维氏硬度分别为:20.47GPa、21.42GPa和20.33GPa。金属相和位错导致的解理及位错对裂纹的屏蔽作用是复合陶瓷刀具材料的主要增韧机理。建立了环形状金属和颗粒状金属桥联增韧力学模型,结果表明,同样体积的颗粒状金属裂纹桥联增韧值是环形状金属的5.09倍。
     研究了新型TiB_2基复合陶瓷刀具材料TiB_2-TiN、TiB_2-Al_2O_3和TiB_2-TiN-Al_2O_3在700℃、800℃和1000℃条件下的抗氧化性能及其氧化机理。结果表明,TiB_2-TiN复合陶瓷刀具材料的氧化增重随TiN含量的增加而逐渐增加,TiB_2-Al_2O_3和TiB_2-TiN-Al_2O_3复合陶瓷刀具材料的氧化增重随Al_2O_3含量的增加而逐渐减小。BT30和BT30A10在700℃开始氧化,BA30在800℃开始氧化;在800-1000℃范围内,BT30的氧化活化能最小,氧化最快,BT30A10次之,而BA30的氧化活化能最大,氧化最慢。经过800℃,50h氧化后,BT30和BT30A10的表面生成了TiO_2,TiO_2在材料表面形成了连续的覆盖层,并在TiB_2颗粒表面形成了包裹层,覆盖层和包裹层降低了材料进一步氧化的速度,并使材料表面的TiB_2颗粒很难被完全氧化;BA30表面仅有少量TiB_2被氧化,但是在TiB_2颗粒周围没有发现包裹层;氧化后BT30、BA30和BT30A10的抗弯强度均大于750MPa,能够满足连续切削的要求。经过1000℃,50h氧化后,BT30和BT30A10表面的TiN被完全氧化,TiB_2没有被完全氧化,而BA30表面的TiB2被完全氧化;氧化后BT30、BA30和BT30A10复合陶瓷刀具材料的抗弯强度都低于500MPa,不能正常切削。
     研究了BT30、BA30和BT30A10三种新型TiB_2基复合陶瓷刀具材料的抗热震性能和R-曲线行为,提出了热震裂纹扩展参数R_c,建立了考虑R-曲线特性的热震残余抗弯强度预测模型。结果表明,BT30、BA30和BT30A10复合陶瓷刀具材料的临界热震温差分别为750℃、800℃和750℃,在临界热震温差下单次热震后的抗弯强度保持率分别为26.37%、50.17%和33.78%。BT30、BA30和BT30A10复合陶瓷刀具材料的R-曲线参数(n)分别为0.038、0.139和0.087。单次热震后复合陶瓷刀具材料的残余抗弯强度与R-曲线有关,抗弯强度保持率是一个与R-曲线参数(n)有关的常数,R-曲线参数(n)越大,热震后抗弯强度保持率越高,材料的抗热震性能越好。
     研究了BT30、BA30和BT30A10三种新型TiB_2基复合陶瓷刀具连续或断续切削淬火40Cr合金钢、淬火45~#钢和奥氏体不锈钢1Cr18Ni9Ti时的切削性能及刀具失效机理,并部分与SG4刀具的切削性能进行对比。结果表明,在连续切削淬火40Cr合金钢时,BA30与SG4刀具的切削性能相当,且始终表现出比BT30更好的切削性能,BA30和BT30刀具的主要磨损形式为前后刀面磨损,磨损机理为磨粒磨损和BT30刀具前刀面粘着磨损。在连续切削淬火45~#钢时,三种新型TiB_2基复合陶瓷刀具抗磨损能力由强到弱的顺序为BA30>BT30A10>BT30,刀具的主要磨损形式是前后刀面磨损,低速下的磨损机理为磨粒磨损,高速下BA30和BT30A10刀具的磨损机理为磨粒磨损,BT30刀具后刀面磨损机理为磨粒磨损,前刀面磨损机理为氧化磨损。在连续切削奥氏体不锈钢1Cr18Ni9Ti时,BA30和BT30A10刀具切削性能很差,不能实现切削,而BT30刀具表现出良好的切削性能,采用0°前角的刀具比-5°前角的刀具表现出更好的耐磨性;刀具磨损形式为前后刀面磨损,后刀面磨损机理为磨粒磨损,前刀面磨损机理为扩散磨损。在断续切削淬火45~#钢时,BT30刀具表现出良好的抗破损性能,而BA30和SG4刀具的抗破损能力很差;在低速大切深条件下,BT30刀具的破损机理为机械破损,在高速小切深条件下,BT30刀具的破损机理为热破损,在中速中切深条件下,BT30刀具的破损机理为机械破损和热破损的综合作用。
Aiming at the disadvantages of titanium diboride matrix composite ceramic materials, a new kind of titanium diboride matrix composite ceramic tool materials with high mechanical properties has been successfully developed according to the chemical, physical and sintering compatibility. Under the liquid-phase hot-pressing technology, the titanium diboride matrix composite ceramic tool materials, TiB_2-TiN, TiB_2-Al_2O_3 and TiB_2-TiN-Al_2O_3, were fabricated by adding the particles TiN and Al_2O_3 into TiB_2 with Ni and Mo as sintering aids. The hot-pressing technology and sintering theory, the mechanical properties and toughening mechanisms, the oxdiation behavior and theory at high temperature, the thermal-shock resistance and the cutting performance of the titanium diboride matrix composite ceramic tool materials were studied.
     The composite ceramic tool materials, TiB_2-TiN, TiB_2-Al_2O_3 and TiB_2-TiN-Al_2O_3, were fabricated by the optimized hot-pressing technology, and effect of additives on the density was studied. It is shown that the TiN and Al_2O_3 particles can promote the sintering process of the TiB_2 ceramic tool materials. The relative density of TiB_2-TiN increases consistently with an increase in the content of TiN and gets up to 98.87% when the addition content of TiN is 30vol%. A small amount of Al_2O_3 can distinctly improve the density of the TiB_2 ceramic tool materials, but more content of Al_2O_3, exceeding 30vol%, is not beneficial to improving the density of the TiB_2 ceramic tool materials.
     The densification process was studied, and the densification equations of the initial and final sintering stages were established. It is shown that the densification during the initial stage of sintering is determined by the grain accommodation, and the densification rate has been affected by the physical properties of liquid-phase, external compressive pressure, particle size and the wetting angle between liquid-phase and particle. When the wetting angle between liquid-phase and particle is smaller than that between liquid-phase and matrix, particle can promote the sintering process of the TiB_2 ceramic tool materials, and the more amounts and the faster of the densification rate. Whereas, particle is not beneficial to the sintering of the TiB_2 ceramic tool materials when the wetting angle between liquid-phase and particle is equal to that between liquid-phase and matrix. The process of densification during the final sintering stage is determined by liquid flow and solid diffusion, and the densification rate has been affected by grain-boundary diffusion coefficient (D), grain-boundary width (W), atom volume (α~3) and surface tension of the particle. The density increases consistently with the increase in sintering time, and the -ln(1-ρ) is linear with the sintering time. The relationship between the -ln(1-ρ) and the particle amounts is a parabola, that is to say, the densification of TiB_2 matrix composite ceramic tool materials first slightly and then sharply increases with an increase in the content of the additives.
     The mechanical properties, microstructure and toughening mechanisms of the TiB_2 matrix composite ceramic tool materials were studied. The TiB_2 matrix composite ceramic tool materials, BT30, BA30 and BT30A10, were fabricated successfully. Their average flexural strength are 1240MPa, 915MPa and 1036MPa, the average fracture toughness are 7.43MPa·m~(1/2), 7.00MPa·m~(1/2) and 7.8MPa·m~(1/2), the average Vickers hardness are 20.47GPa, 21.42GPa and20.33GPa, respectively. The main toughening mechanisms are metal bridging, cleavage vein in the fracture surface and crack shielding caused by dislocations. The mechanics model of bridging by metal particle and metal ring was established. The model indicates that the toughening value by metal particle is 5.09 times higher than that by metal ring at the same amount of metal.
     The oxidation behavior of the TiB_2 matrix composite ceramic tool materials, TiB_2-TiN, TiB_2-Al_2O_3 and TiB_2-TiN-Al_2O_3, at the temperature of 700℃, 800℃and 1000℃was investigated systematically. It is shown that the oxidation gain of TiB_2-TiN increases with an increases in the content of TiN, and that of TiB_2-Al_2O_3 and TiB_2-TiN-Al_2O_3 decreases with an increase in the content of Al_2O_3. The oxidation of TiB_2-TiN and TiB_2-TiN-Al_2O_3 occurs at 700℃, and that of TiB_2-Al_2O_3 begins at 800℃. The oxidation energy of the BT30 is the least one among the BT30, BA30 and BT30A10, and that of BA30 is the highest one at the temperature range from 800℃to 1000℃. After an oxidation time of 50h at the temperature of 800℃, TiO_2 appears at the surface of the BT30 and BT30A10, it covers the materials surface and surrounds the TiB_2 particles, which prevents the oxidation from occurring still. Light oxidation of the BA30 occurs and the TiO_2 does not surround the TiB_2. The flexural strength of the BT30, BA30 and BT30A10 is more than 750MPa after the oxidation and can act as tool still. After an oxidation time of 50h at the temperature of 1000℃, the TiN of the BT30 and BT30A10 and the TiB_2 of BA30 have been reacted completely. The flexural strength of the BT30, BA30 and BT30A10 is too low to act as tool.
     The thermal-shock resistance and R-curve behavior of the BT30, BA30 and BT30A10 were investigated, and the prediction model of flexural strength was established. The parameter of crack propagation after thermal-shock was proposed. It is shown that the critical difference in temperature of the BT30, BA30 and BT30A10 is 750℃, 800℃and 750℃, the holding rate of flexural strength is 26.37%, 50.17% and 33.78%, the parameter of the R-curve is 0.038, 0.139 and 0.087, respectively. The holding rate of flexural strength after a single thermal-shock is a constant relating to the parameter of the R-curve, and the bigger of the parameter the bigger of flexural strength.
     Compared to the commercial SG4 ceramic tool partly, the cutting performance of the BT30, BA30 and BT30A10 in continuous machining hardened 40Cr alloy steel, hardened 45~# steel, stainless steel lCrl8Ni9Ti, and in intermittent machining hardened 45~# steel was studied. The wear mechanisms of the TiB_2 composite ceramic tool materials were analyzed. It is shown that the wear resistance ability is BA30>BT30 when continuous machining hardened 40Cr alloy steel, and the difference between BA30 and SG4 is not significant. The main wear patterns are tool flank and rake wear as well as the main wear mechanism is abrasive wear. The wear resistance ability is BA30>BT30A10>BT30 when continuous machining hardened 45~# steel. The main wear patterns are tool flank and rake wear as well as the main wear mechanism is abrasive wear in low speed, the main wear mechanism of the BA30 and BT30A10 is abrasive wear in high speed, the main wear mechanism of the BT30 is oxidation wear on rake face and abrasive wear on flank face in high speed. The BA30 and BT30A10 are not suitable to machining stainless steel lCrl8Ni9Ti, however the wear resistance of the BT30 is strong. The wear resistance of the tool with a rake angle of 0°is superior to that with a rake angle of -5°. The wear patters are tool flank and rake wear as well as the wear mechanism of tool flank is abrasive wear, and that of the tool rake is diffusing wear. The fracture resistance of the BT30 is superior to that of the BA30 and BT30A10 when intermittent machining hardened 45~# steel, and the fracture mechanism is mechanical fracture in low speed and high depth, thermal fracture in high speed and low depth, mechanical and thermal fracture in medial speed and depth.
引文
1 艾兴,箫虹.陶瓷刀具切削加工.北京:机械工业出版社,1988
    2 肖诗纲.刀具材料及其合理选择(第二版).北京:机械工业出版社,1990
    3 艾兴,邓建新,黄传真。陶瓷刀具研究走上国际先进行列.国家自然科学基金研究项目成果交流研讨会论文集,1995
    4 仇启源.新型陶瓷刀具.北京:国防工业出版社,1987
    5 贾成厂,李文霞,郭志猛.陶瓷基复合材料导论.北京:冶金工业出版社, 1998
    6 叶毅,叶伟昌.陶瓷刀具材料的种类与应用.硬质合金.2003,20(3):182-186
    7 蔡克峰,南策文,袁润章.Al_2O_3/TiC复合陶瓷的制备、性能及微观结构.现代陶瓷技术.1996,(2):3-5
    8 李凤照,敖青,刘援朝,刘玉先,田学洁.Al_2O_3-TiC系陶瓷的组织结构和性能.机械工程材料.1996,20(1):27-29
    9 D.S. Mao, X.H. Liu, J. Li, S.Y. Guo, X.B. Zhang, Z.Y. Mao. A Fine Cobalt-toughened Al_2O_3-TiC Ceramic and Its Wear Resistance.J. Mater. Sci. 1998, (33): 5677-5682
    10 尹龙卫,冯维明,李凤照,陈芝.Al_2O_3/TiC陶瓷复合材料补强增韧机理研究.山东冶金.1997,19(1):34-36
    11 H.K. Schmid, M. Aslan, S. Assmann, R. Naβ, H. Schmidt. Microstructural Characterization of Al_2O_3-SiC Nanocoposites. J. Eur. Ceram. Soc. 1998, (18): 39-49
    12 张存满,徐政,许业文.弥散SiC颗粒增韧Al_2O_3基陶瓷的增韧机制分析.硅酸盐通报.2001,5:47-50
    13 王宏志,高廉,陈红光,归林华,郭景坤.Al_2O_3基复合材料中纳米SiC对微观结构的影响.1998,13(4):603-607
    14 王宏志,高濂,郭景坤.SiC颗粒尺寸对Al_2O_3/SiC纳米复合陶瓷的影响.1999,14(4):679-683
    15 许崇海,艾兴,黄传真,邓建新,孙京田.稀土添加剂陶瓷刀具增韧机制的微观结构观察.电子显微学报.1999,18(4):443-449
    16 宋世学.高性能Al_2O_3系陶瓷刀具材料的研制及其性能的研究.山东大学博士学位论文.2000
    17 宋世学,艾兴,赵军.Al_2O_3-TiCN陶瓷刀具材料的抗热震性能及断裂机理研究.济南大学学报(自然科学版).2003,17(2):110-113
    18 许崇海,李兆前,黄传真,邓建新,艾兴.稀土增韧补强Al_2O_3-(W,Ti)C复相陶瓷刀具材料的研究.机械工程学报.2000,36(11):53-58
    19 李国军,陈大明,黄校先,郭景坤.残余应力对Al_2O_3-Ni金属陶瓷断裂行为和力学性能的影响.材料工程.2002,12:36-43
    20 M. Hamid. Liquid Phases Sintering of Alumina (Ni+TiC) Ceramics. Advanced Structure Materials. 1988, 8:28-31
    21 沃银花,朱流,郦剑,凌国平.金属陶瓷材料干滑动磨损机理.国外金属热处理.2005,26(1):8-11
    22 黄传真.新型复相陶瓷刀具材料的研制及切削可靠性研究.山东工业大学博士学位论文.1994
    23 赵军,王德亮,王志孟.Al_2O_3-TiC梯度功能陶瓷刀具的切削性能及其损坏机理.工具技术.2000,34(6):11-13
    24 赵军.新型梯度功能陶瓷刀具材料的设计与切削性能研究.山东工业大学博士学位论文.1998
    25 刘含莲.多元多尺度纳米复相陶瓷刀具及其切削性能研究.山东大学博士学位论文.2005
    26 邓建新.添加TiB_2的新型陶瓷刀具材料的开发及其摩擦磨损行为和应用研究.山东工业大学博士学位论文.1995
    27 仝建峰,陈大明,陈宇航,雷廷权.热压工艺参数对纳米SiC-Al_2O_3/TiC新型刀具材料力学性能的影响.粉末冶金技术.2000,18(2):33-56
    28 邓建新,艾兴.热胀失配Al_2O_3/TiB_2陶瓷材料高温断裂韧性的影响.硬质合金.1995,12(4):207-210
    29 刘含莲,黄传真,王随莲,孙静,何林,艾兴.纳米复相陶瓷力学性能的研究进展.机械工程材料.2004,28(2):47-50
    30 S.R. Zbigniew, J. Czechowski. Manufacture and Properties of Al_2O_3-TiN Particulate Composites. Journal of the European ceramic society. 1998, (18): 373-380
    31 陈源,黄莉萍.气压烧结Si_3N_4复合材料的研究.硅酸盐学报.1993,21(1):10-15
    32 张伟儒,顾培芷,王长文.Si_3N_4/纳米SiC复相陶瓷的研究.硅酸盐通报.1998,1:4-9
    33 何京彦,夏志华,贾虹,贺从训,王虹,于启勋.Si_3N_4/SiC_p复相陶瓷材料及其刀具切削性能的研究.稀有金属.1997,21(5):321-325
    34 F.F. Lange. Effect of Microstructure on Strength of Si_3N_4/SiC Composite System. J. Am. Ceram. Soc. 1973, 56(9): 445-451
    35 M. Szafran, E. Bobryk, D. Kukla. Si_3N_4-Al_2O_3-TiC-Y_2O_3 Composites Intended for the Edges of Cutting Tools. Ceramics Internantional. 2000, 26:579-582
    36 邹红,邹从沛,易勇,沈保罗.TiN颗粒增韧复合材料磨损行为研究.核动力工程.2003,24(1):42-46
    37 邹红,邹从沛.反应堆控制棒驱动机构Si_3N_4滚轮材料的研究.97年中国材料研讨会.上海,1997
    38 邹红,邹从沛.TiN颗粒增韧Si_3N_4复合材料氧化行为的研究.核动力工程.2002,23(4):1-4
    39 邹红,邹从沛.TiN颗粒增韧Si_3N_4复合材料增韧机制研究.中国核科技报告.2003,1:238-248
    40 L. Wai, J.M. Yang, J.T. Su. Processing and Microstructural Development of in Situ TiN-reinforced Silicon Nitride /Silicon Oxynitride Composites. J. Am. Ceram. Soc. 1992, 75(11): 2945-2952
    41 A. Bellosi, S. Guicciardi, A. Tampieri. Development and Characterization of Electroconductive Si3N4-TiN Composites. J. Eur. Ceram. Soc. 1992, 9:83-93
    42 T. Nagaoka, M. Yasuoka, K. Hirao. Effect of TiN Particle Size on Mechanical Properties of Si_3N_4/TiN Particulate Composites. J. Ceram. Soc. Jpn. 1992, 100(4): 617-624
    43 蒋国新,王声宏.ZrO_2增韧Si3N_4陶瓷材料的力学性能与耐磨性的研究.硅酸盐学报.1993,21(3):215
    44 M. Lerch. Nitridation of Zirconia. J. Am. Ceram. Soc. 1996, 9(10): 2641-2644
    45 C.J. Howard. Crystal Structures of Two Orthorhombic Zirconia. J. Am. Ceram. Soc. 1991, 74(9): 2321-2323
    46 臧建兵,王明智.Al对ZrO_2增韧Si_3N_4烧结体的相变及性能的影响.中国有色金属学报.2000,10(3):340-343
    47 C.A. Wang. Improved Sinterability of SiC_((w))/Si_3N_4 Composite by Whisker-Oriented Alignment. Materials Science and Engineering A. 2005, 390: 319-325
    48 P. Sajgalik, J. Dusza, M.J. Hoffmann. Relationship between Microsturcture, Toughening Mechanism, and Fracture Toughness of Reinforced Silicon Nitride Ceramics. J. Am. Ceram. Soc. 1995, 78(10): 2619-2624
    49 A.J. Pyzik, D.R. Beaman. Microstucture and Properities of Self-reinforced Silicon Nitride. J. Am. Ceram. Soc. 1993, 76(11): 2737-2744
    50 C.W. Li, J. Yamanis. Supertough Silicon Nitride with R-curve Behavior. Ceram. Eng. Sci. Proc. 1989, 10 (7-8): 632-645
    51 罗学涛.自韧的Si_3N_4复合材料显微结构控制和性能研究.西北工业大学博士论文.1996
    52 罗学涛,袁润章.β晶种增韧Si_3N_4复合材料的制备和力学性能。硅酸盐学报.1999,27(4):461-465
    53 M. Szafran, E. Bobryk, D. Kukla. Si_3N_4-Al_2O_3-TiC-Y_2O_3 Composites Intended for the Edges of Cutting Tools. Ceramics International. 2000, 26:579-582
    54 J. Aucoue. Performance of Sialon Tools when Machining Nickel-Based Aerospace Alloys. Materials Science and Technology. 1986, 2:700-708
    55 吕志杰.高性能Si_3N_4-TiC纳米复合陶瓷刀具材料的研制与性能研究.山东大学博士学位论文.2005
    56 邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及其性能研究.山东大学博士论文.2006
    57 H. Pastor, Titanium-carbonitride-based Hard Alloy for Cutting Tools. Materials Science and Engineering A. 1988, 105-106:401-409
    58 徐立强.新型Ti(C,N)基金属陶瓷刀具材料的研制及其切削性能研究.山东大学硕士论文.2004
    59 王随莲.高性能金属陶瓷刀具材料的研制及其切削性能研究.山东大学博士论文.2005
    60 李振红,许育东,赵岳,刘宁,杨海东.Ti(C,N)基金属陶瓷刀具切削性能及磨损机理.2001,24(6):1041-1045
    61 Suzuki, H. Matsubara. Some Properties of Ti(CN)-Mo_2C Sintered Compacts. Jpn. soc. Power. Metall. 1983, 30(7): 257-62
    62 何林,黄传真,孙静,刘含莲,王随莲,艾兴.Cr_2C_3含量对TiCN基金属陶瓷力学性能的影响.材料工程.2003,7:7-9
    63 何林,黄传真,黄勤,宋世学,王随莲,艾兴.Mo_2C含量对TiCN基陶瓷力学性能和显微结构的影响.材料科学与工程学报.2003,21(2):238-241
    64 何林,黄传真,刘玉宪,孙静,刘含莲.TiCN基金属陶瓷力学性能与显微结构的研究.硅酸盐学报.2003,31(3):324-328
    65 D.S. Park. Effect of Carbides on the Microstucture and Properties of TiCN-Based Ceramics. J. Am. Ceram. Soc. 1999, 82(11): 3150-3154
    66 K. Shobu, T. Watanabe. Frictional Properties of Sintered TiN-TiB_2 andTi(C, N)-TiB_2 Ceramics at High Temperature. J. Am. Ceram. Soc. 1987, 70(5): 103-104
    67 V.J. Tennery, C.S. Yust, G.W. Clark. Structure-Property Correlations for TiB_2-based Ceramics Densified Using Active Liquid Metals. Ed. by R.K. Viswanadham, D.J. Rowcliffe, J. Gurland. In Science of Hard Materials. New York: Plenum, 1983:891-909
    68 C. Martin, B. Cales, P. Viver, P. Mathieu. Electrical Discharge Machineable Ceramic Composites. Mater. Sci. Eng. A. 1989,109:351-356
    69 M.A. Einarsrund, E. Hagene, G. Petterseng. Effect of Iron and Boron Carbide on the Densification and Mechanical Properties of Titanium Diboride Ceramics. J. Am. Ceram. Soc. 1989, 72(10): 1868-1874
    70 Z.T. Zakhariev, M.S. Ivanova, T.I. Serebriakova. Hard Materials Based on Cemented TiB_2-WC-Co Alloys. Metall. 1994, 85:801-803
    71 A. Bellosi, F. Monteverde. Microstructure and Properties of Tiianium Nitride and Titanium Diboride-Based Composites. Key Engineering Materials. 2000, 175-176:139-148
    72 M.A. Einarsrud, E. Hagen, G. Pettersen, T. Grande. Pressureless Sintering of Titanium Diboride with Nickel, Nickel Boride and Iron Additives. J. Am. Ceram. Soc. 1997, 80(12): 3013-3020
    73 M.W. Barsoum, B. Houng. Transient Plastic Phase Processing of Titanium-Boron-Carbon Composite. J. Am. Ceram. Soc. 1993, 76(6): 1445-1451
    74 Z.A. Munir. Synthesis of High Temperature Materials for Self-Propagating Combustion Methods. Am. Ceram. Soc. Bull. 1988, 67(2): 342-349
    75 J.F. Crider. Self-Propagating High Temperature Synthesis-A Soviet Method for Producing Ceramic Materials. Ceram. Eng. Sci. Proc. 1982, 3:519-528
    76 C.B. Finch, P.F. Becher, M.K. Ferber. Effect of Impurities on the Densification of Submicrometer TiB_2 Powders. Adv. Ceram. Mater. 1986, 1:50-55
    77 S. Baik, P.F. Becher. Effect of Oxygen Contamination on Densification of TiB_2. J. Am. Ceram. Soc. 1987, 78(8): 527-530
    78 沈明,李群华,王零森,高荣根.Ti3Al和Ti+Al在TiB_2-Fe系陶瓷中的反应机理研究和比较.硬质合金.2002,19(1):5-9
    79 W.M. Wang, Z.Y. Fu, H. Wang, R.Z. Yuan. Influence of Hot Pressing Sintering Temperature and Time on Microstructure and Mechanical Properties of TiB_2 Ceramics. J. Eur. Ceram. Soc. 2002, 22:1045-1049
    80 S.K. Bhaumik, C. Divakar, A.K. Singh, G.S. Upadhyaya. Synthesis and Sintering of TiB_2 and TiB_2-TiC Composite under High Pressure. Mater. Sci. Eng. A. 2000, 279:275-281
    81 王业亮,傅正义,王皓,张金咏.TiB_2-TiC复相陶瓷的结构与性能研究.复合材料学报.2003,20(1):21-26
    82 T. Shiro, S. Kaoru, N. Hiroaki, K. Teruo. Effect of SiC on Interfacial Reaction and Sintering Mechanism of TiB_2. J. Am. Ceram. Soc. 1995, 78(6): 1606-1610
    83 E.S. Kang, C.H. Kim. Improvements in Mechanical Properties of TiB_2 by the Dispersion of B_4C Particles. Journal of Materials Science. 1990, 25:580-584
    84 D.D. Radev, M. Marinov. Properties of Titanium and Ziconium Diborides Obtained by Self-Propagated High-temperature Synthesis. Journal of Alloys and Compounds. 1996, 244:48-51
    85 王皓,王为民,辜萍,傅正义,袁润章.热压烧结固溶复合TiB_2-NbB_2陶瓷材料的结构与性能.无机材料学报.2002,17(4):703-707
    86 M.G. Barandika, J.M. Sanchez, T. Rojo, R. Corters, F. Castro. Fe-Ni-Ti Binder Phases for TiB_2-Based Cermets: A Thermodynamic Approach. Scripta Materialia. 1998, 39(10): 1395-1400
    87 傅正义,王为民.TiB_2系金属陶瓷的SHSQP制备.硅酸盐学报.1996,24(6):654-659
    88 E.S. Kang, C.W. Jang, C.H. Lee, C.H. Kim. Effect of Iron and Boron Carbide on the Densification and Mechanical Properties of Titanium Diboride Ceramics. J. Am. Ceram. Soc. 1989, 72(10): 1868-1872
    89 D.A. Hoke, M.A. Meyers. Consolidation of Combustion Synthesized Titanium Diboride-Based Materials. J. Am. Ceram. Soc. 1995, 78(2): 375-381
    90 王皓,傅正义,王为民,袁润章.TiB_2-Ni金属陶瓷的热压烧结与性能.中国有色金属学报.1998,8(2):313-315
    91 蒋军,朱德贵,王良辉,张波.添加剂镍对原位合成TiB_2-TiC复相陶瓷材料性能的影响.稀有金属.2003,27(4):421-425
    92 W.J.Kim,D.H. Kim, Eulsonkang. Two-step Sintering of TiB_2-Ni Cermet. J. Mater. Sci. 1996. 31: 5805-5809
    93 孙景,魏庆丰,李群英.添加VC的TiB_2基硬质材料研究.粉末冶金技术.2003,21(6):323-325
    94 李荣久.陶瓷-金属复合材料.北京:冶金工业出版社,2002
    95 高荣根.二硼化钛及金属陶瓷的开发与应用.硬质合金.1998,15(4):235-240
    96 辜萍,王皓,王为民,傅正义.硼化物助烧剂对TiB_2陶瓷烧结及力学性能的影响.硅酸盐学报.2000,28(3):275-278
    97 王皓,王为民.热压烧结TiB_2-ZrB_2固溶复合陶瓷的结构研究.硅酸盐学报.2002,30(4):486-490
    98 J.H. Park, Y.H. Koh, H.E. Kim, C.S. Hwang. Densification and Mechanical Properties of Titanium Diboride with Silicon Nitride as a Sintering Aid. J. Am. Ceram. Soc. 1999, 82(11): 3037-3042
    99 L.H. Li, H.E. Kim, E.S. Kang. Sintering and Mechanical Properties of Titanium Diboride with Aluminum Nitride as a Sintering Aid. Journal of the European Ceramic Society. 2002, 22:973-977
    100 K.S. Cho, Y.W. Kim, H.J. Choi, J. Gunnlee. SiC-TiC and SiC-TiB_2 Composites Densified by Liquid-phase Sintering. Journal of Materials Science. 1996, 31: 6223-6228
    101 谷美林,黄传真,刘炳强,邹斌,刘增文.TiB_2-TiN复合陶瓷刀具材料的显微结构和力学性能研究.材料工程.2006,11:18-22
    102 S.H. Kang, D.J. Kim. Pressureless Sintering and Properties of Titanium Diboride Ceramics Containing Chromium and Iron. J. Am. Ceram. Soc. 2001, 84(4): 1893-1895
    103 苗明清,付正义,张金咏,龚伦军.TiB_2基金属陶瓷的显微结构与力学性能.复合材料学报.2005,22(2):64-67
    104 徐强,张幸红,韩杰才,赫晓东.TiB_2-Cu基复合材料SHS工艺的正交优化.粉末冶金技术.2004,22(1):45-48
    105 徐强,张幸红,曲伟,韩杰才.TiB_2-Cu基复合材料的燃烧合成研究.材料工程.2002,9:14-17
    106 R. Gonzalez, M.G. Barandika, D. Ona, J.M. Sanchez, A. Villellas, A. Valea, F. Castr. New Binder Phases for the Consolidation of TiB_2 Hardmetals. Mater. Sci. Eng. A. 1996, 216:185-192
    107 邓建新,艾兴.TiB_2/SiC_w陶瓷复合材料的研究.硬质合金.1996,13(2):91-94
    108 邓建新,艾兴.TiB_2/SiC_w增韧机理的微观分析.陶瓷学报.1996,17(3):3-7
    109 G.J. Zhang, Z.Z. Jin, X.M. Yue. Reaction Synthesis of TiB_2-SiC Composites from TiH_2-Si-B_4C. Materials Letters. 1995, 25:97-100
    110 张国军,金宗哲.反应烧结TiB_2-SiC复相陶瓷的物相反应、力学性能及残余应力.材料研究学报.1996,10(1):45-50
    111 X.M. Yue, G.J. Zhang, Y.M. Wang. Reaction Synthesis and Mechanical Properties of TiB-A1N-SiC Composites. Journal of the European Ceramic Society. 1999, 19:293-298
    112 G. J. Zhang, Z. Z. Jin, X. M. Yue. Effects of Ni Addition on Mechanical Properities of TiB_2-SiC Composites Prepared by Reactive Hot-pressing (RHP). Journal of Materials Science. 1997, (32): 2093-2097
    113 I. Gotman, N.A. Travitzky, E.Y. Gutmanas. Dense in Situ TiB_2-TiN and TiB_2-TiC Ceramic Matrix Composites: Reactive Synthesis and Properities. Mater. Sci. Eng. A. 1998, 224:127-137
    114 D.H. Kuo, M.K. Waltraud. Mechanical Behavior and Microstructure of SiC and SiC/TiB_2 Ceramics. J. Eur. Ceram. Soc. 1998, (18): 1851-57
    115 S.K.Bhaumik. TiC-TiB_2 Composite Shows Wear Promise. Elsevier Science Ltd. 1997, 31-34
    116 朱春城,张幸红,郝晓东.自蔓延高温合成法制备无钨便质合金.粉末冶金技术.2002,16(4):56-59
    117 唐建新.过渡塑性相工艺制备Ti-B-C陶瓷基复合材料的机理研究.清华大学博士学位论文.1999
    118 刘含莲,黄传真,王随莲,孙静,何林,艾兴.纳米复相陶瓷力学性能的研究进展.机械工程材料.2004,28(2):47-50
    119 邓建新,艾兴.Al2O3-TiB2陶瓷刀具材料的高温氧化及其对刀具耐磨性能的影响.硅酸盐通报.1995,5:37-40
    120 王宝龙,赵俊国,王文武.TiB_2材料的特性及其在铝工业中的应用.轻金属.2004,5:23-26
    121 郭景坤,诸培南.复相陶瓷材料的设计原则.硅酸盐学报.1996,24(1):7-17
    122 许崇海,黄传真,艾兴,赵忠元.复相陶瓷刀具材料设计的理论框架.中国机械工程.2001,12(10):1198-1203
    123 高瑞平,李晓光.先进陶瓷物理化学原理与技术.北京:科学出版社,2001
    124 张长瑞,郝元恺.陶瓷基复合材料-原理、工艺、性能与设计.长沙:国防科技大学出版社,2001
    125 金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2000
    126 张国军,金宗哲.颗粒增韧陶瓷的增韧机理,硅酸盐学报.1994,22(3):259-269
    127 金宗哲,张国军,包亦望.复相陶瓷增强颗粒尺寸效应.硅酸盐学报.1995,23(6):610-617
    128 J. Selsing. Internal stress in ceramics. J. Am. Ceram. Soc. 1961, 44(8): 419
    129 林立,薛群基,赵家政.氮化钛微粉增强镍磷化学复合镀层的组纵及其摩擦磨损性能的研究.摩擦学学报.1995,15(2):104-109
    130 梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1993
    131 叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002
    132 孙静.氧化镐基复合陶瓷纺织剪刀材料的研制及其应用基础研究.山东大学博士论文.2005
    133 许崇海.复相陶瓷刀具材料设计、仿真及其应用研究.山东工业大学博士论文.1998
    134 果世驹.粉末烧结理论.北京:冶金工业出版社,2002
    135 V.V. Skorohod. VI World Round Table Conference on Sintering. New York: Plenum, 1987:81
    136 S.R. Choi, J.A. Salem, W.A. Sanders. Estimation of Crack Closure Stresses for In Situ Toughened Silicon Nitride with 8wt% Scandia. J. Am. Ceram.Soc. 1992, 75:1508-1511
    137 D.J. Kim, H.J. Hung, D.H. Cho. Phase Transformations of Y_2O_3 and Nb_2O_5 Doped Tetragonal Zirconia During Low Temperature Aging in Air. Solid State Ionics. 1995, 80:67-73
    138 王为民.二硼化钛陶瓷的自蔓延高温合成与加工.武汉工业大学博士论文.1999
    139 刘业翔,邹忠.导电陶瓷TiB_2开发与应用的最新进展.稀有金属.1996, 20(6):438-443
    140 R.A. Wolfe. Am. Ceram. Soc. Bull. 1967, 40:469
    141 R.L. Coble. Diffusion Models for Hot Pressing with Surface Energy and Pressure Effects as Driving Forces. J. Appl. Phys. 1970, 41(12): 4789-4807
    142 黄培云.粉末冶金原理(第二版).北京:冶金工业出版社,1997
    143 M.A. Frotes. Powder Metall. Inter. 1982, 14(2): 96
    144 W.D. Kingery. Densification During Sintering in the Presence of a Liquid Phase.I. Theory. Journal of Applide Physics. 1959, 30:301-306
    145 M.F. Ashby. Boundary Defects, and Atomistic Aspects of Boundary Sliding and Diffusional Creep. Surface Sci. 1972, 31:498-542
    146 崔国文.缺陷扩散与烧结.北京:清华大学出版社,1990
    147 J.K.Mackenzie.Proc.Phys.Soc.1949,B62:833
    148 中华人民共和国国家技术监督局.GB6596-1996.中华人民共和国国家标准-工程陶瓷弯曲强度测试方法.北京:中国标准出版,1986
    149 H.R. Baumgartner, R.A. Steiger. Sintering and Properties of Titanium Diboride made from Powder Synthesized in a Plasma-arc Heater. J. Am. Ceram. Sco. 1984, 67(3): 207-212
    150 H. Awaji, S.M. Choi, E. Yagi. Mechanisms of Toughening and Strengthening in Ceramic-based Nanocomposites. Mechanics of Materials. 2002, 34: 411-422
    151 H. Tan, W. Yang. Toughening Mechanisms of Nono-composites Ceramics. Mechanics of Materials. 1998, 30:111-123
    152 何林.新型陶瓷轴承套圈的研制及其应用基础.山东大学博士论文.2003
    153 王国栋.硬质合金生产原理.北京:冶金工业出版社,1988
    154 E. H. Kermer. The Elastic and Thermal-Elastic Properties of Composite Media. Proc. Phys. Soc. 1956, 69B: 808-813
    155 V.V. Krstic, P.S. Nicholson, R.G. Hoagland. Toughening of Glasses by Metallic Particles. J. Am. Ceram. Soc. 1981, 64(9): 499-507
    156 D.B. Marshall, W.L. Morris. Toughening Mechanisms in Cemented Carbides. J. Am. Ceram. Soc. 1990, 73(10): 2938-2948
    157 R.P. Wahi, B. Ilschner. Fracture Behaviour of Composites Based on Al_2O_3-TiC. J. Mater. Sci. 1980, 15:875-885
    158 J. Sun, C.Z. Huang, J. Wang. Effect of TiN Addition on the Low Temperature Degradation of Ceramic Tool Materials 3Y-TZP. Key Engineering Materials. 2006, 315-316:40-44
    159 钱志屏.材料的变形与断裂.上海:同济大学出版社,1989
    160 邓增杰.工程材料的断裂与疲劳.北京:机械工业出版社,1995
    161 J. R. Rice, R. Thomson. Phil. Mag. 1974, 29:73
    162 A. Kulpa, T. Troczynski. Oxidation of TiB_2 Powders Below 900℃. J. Am. Ceram. Soc. 1996, 79(2): 518-520
    163 朱春城,赫晓东,张幸红,曲伟.TiC-TiB_2复相陶瓷材料的氧化行为研究.材料科学与工艺.2004,12(1):57-60
    164 C.C. Chiu, E.D. Case. Surface Oxidation and its Effect on the Observed Elastic Modulus of SiC Wisker/Al_2O_3 Composites. Journal of Composite Materials. 1994, 28(1): 18-24
    165 T.S.R.C. Murthy, R. Balasubramaniam, B. Basu, A. K. Suri, M. N. Mungole. Oxidation of Monolithic TiB_2 and TiB_2 -20wt.% MoSi_2 Composite at 850℃. Journal of the European Ceramic Society. 2006, 26:187-192
    166 A. Tampieri, A. Bellosi. Oxidation of Monolithic TiB_2 and of Al_2O_3-TiB_2 Composite. Journal of Materials Science. 1993, 28:649-653
    167 许越.化学反应动力学.北京:化学工业出版社,2004
    168 M. Bracisiewicz, V. Medri, A. Bellosi. Factors Inducing Degradation of Properties after Long Term Oxidation of Si_3N_4-TiN Electroconductive Composites. Applied Surface Science. 2002, 202:139-149
    169 周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1995
    170 H. Chandrasekaran. Thermal Fatigue Studies on Tool Carbides and Relevance to Milling Cutters. Ann. Chir. Plast. Esth. 1985, 34(1): 125-128
    171 Y.W. Mai, A.G. Atkins. Fracture Strength Behavior of Tool Carbide Subjected to Thermal Shock. Am. Ceram. Soc. Bull. 1975, 54(6): 593-599
    172 H.S. Joachim, M.S. Sabol. Cyclic Thermal Shock Resistance of Several Advance Ceramics and Ceramic Composites. J. Am. Ceram. Soc. 1998, 81(7): 1888-1897
    173 李冬云,乔冠军,金志浩.SiC/BN层状陶瓷的阻力曲线行为.中国有色金属学报.2003,13(4):944-948
    174 E.H. Lutz, M.V. Swain. Stress-strain Behavior of Alumina, Magnesia-Partially-Stabilized Zirconia, and Duplex Ceramics and Its Relevance for Flaw Resistance, K~R- Curve Behavior, and Thermal Shock Behavior. J. Am. Ceram. Soc. 1992, 75(11): 3058-3064
    175 E.H. Lutz, M.V. Swain. Interrelation between Resistance, R-Curve, and Thermal Shock Strength Degradation in Ceramics. J. Am. Ceram. Soc. 1991, 74(11): 2859-2868
    176 W.D. Kingery. Fractors Affecting Thermal Shock Resistance of Ceramic Materials. J. Am. Ceram. Soc. 1955, 38(1): 3-15
    177 D.P.H. Hassetman. Elastic Energy at Fracture and Surface Energy as Design Criteria for Thermal Shock. J. Am. Ceram. Soc. 1963, 46(11): 535-541
    178 D.P.H. Hasselman. Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics. J. Am. Ceram. Soc. 1969, 52(11): 600-604
    179 曾汉民.高技术新材料要览.北京:中国科学技术出版社,1993
    180 R.F. Cook, D.R. Clarke. Fracture Stability, R-Curve and Strength Variability, Acta. Metall. 1988, 36(3): 555-562
    181 R.F. Krause. Rising Fracture Toughness from the Bending Strength of Indented Alumina Beams. J. Am. Ceram. Soc. 1988, 71(5): 338-343
    182 N. Ramachandran, D.K. Shetty. Rising Crack-Growth-Resistance Behavior of Toughened Alumina and Nitride. J. Am. Ceram. Soc. 1991, 74(10): 2634-2641
    183 G.T. Antis, P. Chantickul, B.R. Lawn. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness Direct Crack Measurements. J. Am. Ceram. Soc. 1981, 64(9): 533-538
    184 P. Chantikul, G.R. Anstis, B.R. Lawn, D.B. Marshall. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: Ⅱ, Strength Method. J. Am. Ceram. Soc. 1981, 64(9): 539-543
    185 A.G. Evans. Thermal Fracture in Ceramic Materials. Proc. Bril. Ceram. Soc. 1975, 25:217-235
    186 A.G. Evans, E.A. Charles. Structural Integrith in Severe Thermal Environments. J. Am. Ceram. Soc. 1977, 60(1): 22-28
    187 M.V. Swain. R-Curve Behavior of Magnesia-Partially-Stabilized Zirconia and Its Significance to Thermal Shock. Fracture Mechanics of Ceramics. 1983, 6: 345-359
    188 赵喆,龚江宏,苗赫濯,关振铎.TiC颗粒弥散Al_2O_3复合材料的阻力曲线行为.硅酸盐学报.2000,28(4):371-375
    189 G.R. Anstis, P. Chantikul, B.R. Lawn. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: Ⅰ, direct crack measurements. J. Am. Ceram. Soc. 1980, 64:574-581
    190 M. Collin, D. Rowcliffe. The Morphology of Thermal Cracks in Brittle Materials. Journal of the European Ceramic Society. 2002, 122:435-445
    191 M. Collin, D. Rowcliffe. Analysis and Prediction of Thermal Shock in Brittle Materials. Acat. Mater. 2000, 48:1655-1665
    192 T. Fett, D. Munz, J. Neumann. Local Stress Intensity Factors for Surface Cracks in Plates under Power-shaped Stress Distributions. Eng. Frac. Mech. 1990, 36(4): 647-658
    193 李灏.断裂力学.济南:山东科学技术出版社,1980
    194 J.C. Newman, J.l.S. Raju. An Empirical Stress-intensity Factor Equation for the Surface Crack. Engineer Fracture Mechanics. 1981, 15(1-2): 185-192
    195 A.G. Evans, B.P. Marshall. Wear Mechanism in Ceramics. Proc, of int,conf, on Fundamentals of Friction and Wear of Materials, Pittsburgh: ASME. 1980,439-452
    196 A.G. Evans, T.R. Wilshaw. Quasi-static Solid Particle Damage in Brittle Solid I. Observations, Anslysis and Implications. Acta. Metal. 1976, 24:939-956
    197 R.C.D. Richarden. The Wear of Metals by Hard Abrasives. Wear. 1967, (10):291-304
    198 艾兴,邓建新,赵军,黄传真,刘战强.陶瓷刀具的发展及其应用.机械工人冷加工.2000,(9):4-6
    199 姚水清.陶瓷刀具的磨损、破损机理和应用研究.应用技术研究.2002,1:4-6
    200 陆剑中,周志明.金属切削原理.北京:机械工业出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700