用户名: 密码: 验证码:
Al20Si/Gr耗散防热材料氧—乙炔和发动机燃烧室烧蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过专利技术(ZL200810064995.2)制备得Al20Si/Gr耗散防热材料,其中基体为多孔石墨,耗散剂为Al20Si。利用万能电子试验机测试了常温和高温弯曲强度、压缩强度。采用氧-乙炔烧蚀试验和超燃冲压发动机燃烧室烧蚀试验考察了Al20Si/Gr耗散防热材料在不同烧蚀时间和不同冷却条件下的烧蚀行为,通过SEM、XRD、EDS等分析测试手段对烧蚀后材料的表面形貌及微区成分,表面及内部的物相组成进行了分析,进而探讨了Al20Si/Gr耗散防热材料在烧蚀过程中陶瓷膜的形成过程、体积烧蚀效应及耐烧蚀机理。
     Al20Si/Gr耗散防热材料的常温弯曲强度较基体提高了3.5倍,常温压缩强度较基体提高了1.3倍。在20-1000℃内,随着温度的升高,Al20Si/Gr耗散防热材料的弯曲强度逐渐下降;压缩强度先下降后上升,750℃时降至最低,1000℃时又升至175MPa。
     在氧-乙炔烧蚀条件下,Al20Si/Gr耗散防热材料60s一次烧蚀时线烧蚀率为5.0×10~(-3)mm/s,60s二次烧蚀的线烧蚀率较之降低了60%,较石墨基体降低了两个数量级。烧蚀表面分为中心区、过渡区和边缘区。烧蚀时间超过30s,中心区出现烧蚀坑,改变了气流方向,使得过渡区中出现明显大颗粒金属氧化物,边缘区由网状金属氧化物构成。Al20Si/Gr耗散防热材料的体积烧蚀效应为:从材料表面至背部,物相组成呈梯度分布,依次为:C+Al_2O_3+SiO_2,C+Al_4SiC4,C+Al_4SiC4+SiC+Al_4C_3,C+SiC+Al_4C_3,C+Si+Al+Al_4C_3。
     耗散防热材料的抗烧蚀机理主要体现在以下几个方面:第一,烧蚀过程中耗散剂的熔化吸热;第二,陶瓷膜的热阻隔和氧阻隔效应;第三,陶瓷膜对气流冲刷的缓冲作用。
     发动机燃烧室烧蚀温度约为800℃,表面形成的保护膜提高了材料的耐气流冲刷性,材料内部相组成为Al、Si和C,距烧蚀面越近,Al和Si含量越低。
In this thesis, Al20Si/Gr transpiring coolant materials were prepared by a patent technology(ZL200810064995.2). Porous graphite was used as matrix and Al20Si was used as refrigerant. The composite was denoted by Al20Si/Gr. The flexural strength and compression strength under room temperature and high temperature were tested by multi-purpose electronic testing machines. The behavior of Al20Si/Gr transpiring coolant materials under different ablation time and cooling condition was studied by oxygen-ethane torch heating test and ramjet combustor heating test. The surface morphology and microzone component after ablation were researched by scanning electron microscope(SEM) and energy spectrometer. The surface and inner phase composition were studied by X-ray diffraction(XRD). After that, the forming process of metal oxides film, the effect of volume ablation and the ablation mechanism were disscussed.
     The experiment results showed that the flexural strength and compression strength of Al20Si/Gr transpiring coolant materials under room temterature were 3.5 times and 1.3 times more than that of graphite matrix respectively. With the temperature increasing, the flexural strength of Al20Si/Gr transpiring coolant materials decreased gradually. The compression strength got its minimum value at 750℃, and rebounded to 175MPa at 1000℃.
     Under the oxygen-ethane torch heating condition, the linear ablation rate of Al20Si/Gr transpiring coolant materials was 5.0×10~(-3)mm/s, the linear ablation rate of twice~(-3)0s-ablation was 60% than that of once-60s-ablation, which was two orders of magnitude lower than that of the graphite matrix. The ablation surface morphology could be divided into three parts: central ablation area, transition region and marginal zone. As the ablation time increased to 30s, pits emerged in the central ablation area, which played an important part on the forming process of metal oxides film. Large particle metal oxides appeared in transition region. The marginal zone was made up of reticular metal oxides. During the forming process of the metal oxides film, the metal melted and absorb the heat. The metal oxides film firstly could prevent the heat transfer and oxygen transfer and then decrease the scouring effect of airflow. These three effects together increased the ablation properties of Al20Si/Gr transpiring coolant materials. During typical ablation process, the phase composition was C+Al_2O_3+SiO_2 , C+Al4SiC_4 ,C+Al4SiC_4+SiC+Al4C_3,C+SiC+Al4C_3,C+Si +Al4C_3 in sequence from surface to tail. The linear ablation rate of twice-30s-ablation was much lower than that of once-60s-ablation. The surface phase composition under twice-30s-ablation was C+Al_2O_3+ Al4SiC_4.
     With low-temperature, the ramjet combustor heating condition was quite different from the oxygen-ethane torch heating condition. The protective film increased the air flow scouring resistence of Al20Si/Gr transpiring coolant materials. The inner phase composition was Al、Si and C. The content of Al and Si decreased as the decreasing of the distance from ablation surface.
引文
[1] Chen Z F. Comparison of Morphology and Microstructure of Ablation Centre of C/SiC Composites by Oxy-acetylene Torch at 2900 and 3550°C. Corrosion Science[J]. 2008, 50(12):3378-3381.
    [2]宋桂明,孟庆昌. TiC和ZrC颗粒增强钨基复合材料.固体火箭技术[J]. 2001,24(2):48-52.
    [3]张勇,何新波.超高温材料的研究进展及应用.材料导报[N]. 2007,21(12):60-64.
    [4]姜贵庆,刘连元.高速气流传热与烧蚀热防护.国防工业出版社[M]. 2003:4-7.
    [5]易法军.碳基复合材料超高温性能与烧蚀行为.哈尔滨工业大学[J]. 2001: 61~68.
    [6] Chen Z K, X Xiong. Ablation Behaviors of Carbon/carbon Composites with C-SiC-TaC Multi-interlayers. Applied Surface Science[J]. 2009, 255(22):9217-9223.
    [7] Bruneton E, Narcy B, Oberlin A. Carbon-Carbon Composite Prepared by a Rapid Densification Process I: Synthesis and Physico-Chemical Data. Carbon[J]. 1997, 35(10~11):1593~1598.
    [8] Lachaud J, Aspa Y. Transfer Analytical Modeling of the Steady State Ablation of a 3D C/C Composite. International Journal of Heat and Mass[J]. 2008, 51(10):2614-2627.
    [9]李荣强,黄晓霞,唐平.隔热抗烧蚀材料及制备设备的研究进展.综述[J]. 2006,(6):12-15.
    [10] Zhang G B, Guo Q G. Finite Element Design of SiC/C Functionally Graded Materials for Ablation Resistance Application. Materials Science and Engineering[J]. 2008, 488(2):45-49.
    [11]陈伟,周武平,邝用庚.钨渗铜材料室温力学性能与组织研究.中国钨业[J]. 2005,20(1):36-38.
    [12] Vignoles G L, Aspa Y. Modelling of Carbon–carbon Composite Ablation in Rocket Nozzles. Composites Science and Technology[J]. 2010, 70(9):1303-1311.
    [13]牟科强.氧化物共还原制取W-Cu和Mo-Cu复合材料的研究.粉末冶金工业[J]. 2004,14(5):13-16.
    [14]邝用庚,牟科强,徐桂兰.改善钨渗铜喉衬的高温尺寸稳定性研究.稀有金属材料与工程[J]. 1997,26(5):30-34.
    [15]王超,梁军,栾旭.高温防热陶瓷的研究进展.材料工程[J]. 2008,(1):243-247.
    [16] Wang C R, Yang J M, Hoffmann W. Thermal Stability of Refractory Carbide /boride Composites. Materials Chemistry and Physics[J]. 2002, 74 (3):272-274.
    [17] Opeka M M, Talmy I G, Zaykoski J A. Oxidation-based Materials Selection for 2000℃+ Hypersonic Aerosurfaces: Theoretical Considerations and Historical Experience. Journal of Materials Science[J]. 2004, 39 (19):5887-5904.
    [18]李金平,韩杰才,李庆芬. ZrB2-SiCw超高温陶瓷材料的研究.兵器材料科学与工程[J]. 2006,29(1):53-56.
    [19] William G F, Hilmas G E. Joint Workshop on Future Ultra-High Temperature Materials. Refractories Applications & News[N]. 2005, 10(1):24-26.
    [20]韩文波,孟松鹤,韩杰才. ZrB2-SiC-AlN陶瓷基复合材料的组织及性能.稀有金属材料与工程[J]. 2007, (36):1-4.
    [21] Llorca J, Elices M, Celemin A. Toughness and Microstructural Degradation at High Temperature in SiC Fiber-reinforced Ceramics. Acta Materialia[J]. 1998, 46(7):2441-2453.
    [22]韩杰才,赫晓东,杜善义.多向编织碳/碳复合材料的强度与断裂.宇航学报[N]. 1995,16(1):69-74.
    [23]韩立军,李铁虎.碳/碳复合材料抗氧化方法及发展趋势.航空制造技术[J]. 2003,(9):26~30.
    [24]王海军,王齐华,顾秀娟.碳/碳复合材料抗氧化行为的研究进展.材料科学与工程学报[N]. 2004,21(1):118~121.
    [25] Yin J, Zhang H B. Ablation Properties of Carbon/carbon Composites with Tungsten Carbide. Applied Surface Science[J]. 2009, 255(9):5036-5040.
    [26]尹健,熊翔,张红波. 3DC/C复合材料的电弧驻点烧蚀及机理分析.中南大学学报[N]. 2007,28(1):14-18.
    [27] Han J C, He X D. Oxidation and Ablation of 3D Carbon-Carbon Composite at up to 3000°C. Carbon[J]. 1995, 33(4):473-478.
    [28]俞继军,马志强,姜贵庆. C/C复合材料烧蚀形貌测量及烧蚀机理分析.宇航材料工艺[J]. 2003,(1):36-39.
    [29]易法军,张巍,孟松鹤. C/C复合材料高温热物理性能实验研究.宇航学报[N]. 2002,23(5):85-88.
    [30]田玲,范雪骐,陈来. C/C-B-SiC复合材料的烧蚀性能研究.固体火箭技术[J]. 2007,30(3):256-259.
    [31]冉丽萍,李文军,杨琳. C/C-Cu复合材料的烧蚀性能及烧蚀机理.中国有色金属学报[N]. 2010,20(3):510-515.
    [32]崔红,苏君明,李瑞珍.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究.西北工业大学学报[N]. 2000,18(4):669-673.
    [33]王俊山,李仲平,敖明.掺杂难熔金属碳化物对炭/炭复合材料烧蚀机理的影响.新型炭材料[J]. 2006,21(1):9-13.
    [34]刘锦,刘秀军.碳/碳复合材料致密化影响因素的研究进展.天津工业大学学报[N]. 2010,29(1):31-35.
    [35] Donnet J B, Qin R Y. Study of Carbon Ciber Surface by Scanning Tunnelling Microscopy, Part I Carbon Fiber From Different Precursors and After Various Heat Treatment Temperatures. Carbon[J]. 1992, 30(5):787-796.
    [36]刘炳强,李忠强.活性剂对浸渍效果的影响.炭素技术[J]. 2002,(1):25-27.
    [37]张冬梅,韩杰才.碳基复合材料烧蚀性能研究.材料工程[J]. 2006,(11):49-52.
    [38]韩杰才,徐强.混杂C/C复合材料的烧蚀性能.稀有金属材料与工程[J]. 2007,36(1):805-807.
    [39]王书贤,陈林泉.石墨渗铜喉衬材料的抗热震性能与烧蚀微观结构研究.科学技术与工程[J]. 2004,4(3):206-210.
    [40]张名大.碳化工学基础.碳素[J]. 1983,(2):38.
    [41] Su J M, Li G L. The Research and Application of Copper Inpregnated Coarse Grain Graphite Throat. 23rd Biennial Conference on Carbon[C]. 1997:256-257.
    [42]苏君明,陈林泉,王书贤.石墨渗铜候衬的烧蚀特性[J].固体火箭技术. 2004,27(1):69-72.
    [43] Etter T, Papakyriacou M. Physical Properties of Graphite/aluminum Composites Produced by Gas Pressure Infiltration Method. Carbon[J]. 2003, 41(1017):258-264.
    [44] Etter T, Schulz P. Aluminium Carbide Formation in Interpenetrating Graphite/aluminium Composites. Materials Science and Engineering[J]. 2007, 448(1):1-6.
    [45]姜鹤. Gr/Al-Mg复合材料的制备、组织结构与抗热震性能研究.哈尔滨工业大学硕士学位论文. 2007.
    [46]刘祥.石墨渗金属材料相变过程中的传热特性研究.哈尔滨工业大学硕士学位论文. 2009.
    [47] Shameel F, K Z Li. Effect of Density and Fibre Orientation on the Ablation Behaviour of Carbon-carbon Composites. New Carbon Materials[J]. 2010, 25(3):161-167.
    [48] Erica L, Corral L, Walker S. Improved Ablation Resistance of C–C Composites Using Zirconium Diboride and Boron Carbide. Journal of the European Ceramic Society[J]. 2010, 30(11):2357-2364.
    [49] Li X T, Shi J L. Effect of ZrB2 on the Ablation Properties of Carbon Composites. Materials Letters[J]. 2006, 60(7):892-896.
    [50]李泽田,李长虹.单相自适应发汗冷却气动防热效果初探.宇航材料工艺[J]. 1989,2:28-35.
    [51] Liu Q M, Zhang L T. Laser Ablation Behaviors of SiC–ZrC Coated Carbon/carbon Composites. Surface and Coatings Technology[J]. 2011, 205(17):4299-4303.
    [52] Li G, Han W B. Ablation Resistance of ZrB2–SiC–AlN Ceramic Composites. Journal of Alloys and Compounds[J]. 2009, 479(2): 299-302.
    [53]易法军,梁军,孟松鹤.防热复合材料的烧蚀机理与模型研究.固体火箭技术[J]. 2000,23(3):48-56.
    [54] Donghwan C, Byung Y. Microstructural Interpretation of the Effect of Various Matrix on the Ablation Properties of Carbon Fiber Reinforced Composites. Composites Science and Technology[J]. 2001, 61:271-280.
    [55] Huang H M, Wang J X. An Investigation of the Ablation Problem of Carbon-carbon Composite in Re-entry Condition. Journal of Harbin Institute of Technology[J]. 2000, 7(4):16-20.
    [56]白光辉,孟松鹤,张博明.碳/碳材料体积烧蚀实验研究.宇航学报[N]. 2007,28(4):812-815.
    [57]钱崇梁,周桂芝,黄启忠. XRD测定炭素材料的石墨化度.中南工业大学学报[N]. 2001,32(3):285-288.
    [58]汤中华,周桂芝,熊杰.炭/炭复合材料石墨化度的XRD均峰位法测定.中国有色金属学报[N]. 2003,13(6):1435-1439.
    [59]何洪庆.固体火箭喷管烧蚀和传热的基本问题.推进技术[J]. 1993,(3):22-28.
    [60] Zhang X H, Hu P. Ablation Behavior of ZrB2–SiC Ultra High Temperature Ceramics Under Simulated Atmospheric Re-entry Conditions. Composites Science and Technology[J]. 2008, 68(7):1718-1726.
    [61]尹健,张红波,熊翔. C/C复合材料烧蚀性能的研究进展.粉末冶金材料科学与工程[J]. 2004,9(1):54-59.
    [62]何洪庆,周旭.石墨渗铜材料的烧蚀模型探索.固体火箭技术[J]. 1991,(4): 102-107.
    [63]黄海明,杜善义,吴林志. C/C复合材料烧蚀性能分析.复合材料学报[N]. 2001,18(3):76-80.
    [64] Lachaud J, Vignoles G L. A Brownian Motion Technique to Simulate Gasification and Its Application to C/C Composite Ablation. Computational Materials Science[J]. 2009, 44(4):1034-1041.
    [65]韩欢庆,雷廷权.熔石英基复合材料性能的研究.粉末冶金技术[J]. 1999,17(3):201-204.
    [66]邓承继,李涛.固相反应合成Al4SiC4材料.耐火材料[J]. 2005,39(4):246-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700