用户名: 密码: 验证码:
Harpin促进植物生长和诱导抗旱的信号传导解析以及作用定位的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨火疫病菌产生的harpin_(Ea)、水稻白叶枯病菌产生的harpin_(Xoo)和水稻细条斑产生的harpin_(Xooc),作为广谱性激发子都可以诱导植物产生多种有益表型如抗病、抗虫、抗旱、促生长等。究竟harpins启动哪些信号通路来赋予植物这些表型?什么信号通路控制植物生长加快或抗旱?每个信号通路需要哪些调控因子?本研究立足于这些问题,解析harpins促进植物生长和诱导抗旱的信号传导机制。Harpin的作用位点与后续的信号传导息息相关,关于harpins在植物上的作用部位一直是研究热点,但究竟位于细胞壁、细胞膜还是细胞质中,针对不同harpin的研究有不同的结论。作者荧光蛋白标记了harpin_(Xoo)和harpin_(Xooc)试图解析它们在水稻中的作用部位。
     1.Harpins促进植物生长信号通路解析
     作者试验证明,harpin_(Ea)可以促进多种植物生长。Harpin_(Ea)处理植物拟南芥、番茄、烟草、水稻可明显促进植物根系、茎叶生长,提高叶片全氮含量、叶绿素总含量及叶绿素a/b,增强光合作用、提高光合速率。在拟南芥上,harpin_(Ea)处理可以诱导植物生长发育信号通路中关键基因PDF1.2、PR-3b、ERS1、ETR1和EIN2的表达。PDF1.2和PR-3b是乙烯信号通路的分子标志,而乙烯信号传导可以控制植物抗病、抗虫以及植物生长发育;ERS1、ETR1和EIN2是乙烯信号通路中上、下游的关键调控基因,其产物分别作为乙烯的受体和转录调控因子起作用。研究还发现,harpin_(Ea)可以促进一类伸展素基因(expansin)的表达,expansins在细胞的快速生长中起着重要的作用。根据以上结果,harpin_(Ea)启动了植物生长信号传导,促进了植物的生长。
     2.Harpins诱导抗旱与ABA信号通路的关系
     烟草用harpin_(Xoo)喷雾处理后,对人为断水干旱的抗性显著增强。人工干旱第7天时,harpin_(Xoo)处理的植株生长正常,与正常浇水和ABA处理的相似;而H_2O处理的对照植株中下部叶片已经萎蔫,继续干旱到第10天时大多数植株完全萎蔫或死亡。显微镜观察发现,harpin_(Xoo)处理的植株叶片上气孔孔径显著变小,干旱到第六天时,大约有70%的气孔已经完全关闭,而对照植株只有24%的气孔关闭或变小。Harpin_(Xoo)
    
    H呷in促进植物生长和诱导抗早的信号传导解析以及定位的初步研究
    还引起一些与杭旱有关的生理变化,在干旱胁迫下,h抑inxoo处理植株的细胞膜损伤
    程度明显低于对照植株,harpinx。。诱导植株体内脯氨酸和ABA含量急剧增加,减缓
    超氧化物歧化酶活性的降低及丙二醛积累。Rl’- PcR检验表明,h抑inxoo能诱导或增强
    ABA信号通路中关键基因osmotin、pkll一cI和phi一2的表达。据此,ABA可能参与
    harpinxoo诱导的植物过程。
    3.Harpinxo。与harpinxo。。荧光标记及作用定位的初步研究
     已有研究试图确定harpins在植物细胞中的作用部位。但对不同的harpins如来自
    五洲,sniaa柳lovora的h抑inEa、Pseudomonas撰in卯e pv.phaseolieola的haprinPsph等研
    究结果都不尽相同.因此,h抑ins的识别部位、结合受体等一直不清楚。在本研究中,
    作者利用荧光蛋白标记,试图研究h抑inxoo和h呷inxooc在植物中的作用部位。Harpinxoo
    和harpinxooc分别由hrfi基因和h价基因编码。作者把hrf!和h榨基因分别与荧光蛋白加
    (green fluoreseent protein)/咖(red fluoreseent protein)构建融合基因,转化pE下3oa
    (+)载体,获得了重组质粒pET30::hrf7::肺、pET30::hrf7::rfP、pET30::h币::加
    和pET30::h币::rfP,并分别转化丑coli BLZI(D E3),产生了表达菌株pGH盯1、
    pRH盯1、pGHRFZ和pRH盯2。在IPTG诱导条件下培养转化菌株,收集的菌体经超声
    波破碎后均能在烟草叶片上引起典型的过敏反应,在SDS一PAGE电泳上出现相应大小
    的蛋白质条带.同时,把融合基因hrf]::加和h价::咖构建到载体pURF034中,利
    用517一l菌株通过两亲交配分别转化到水稻白叶枯小种JXOm和细条斑小种RS105中,
    接种水稻品种汕优63,试图通过荧光标记进行harpinxoo和h呷访xooc在水稻中的定位。
    4.总结
     通过以上研究,我们得出三点结论.第一,harpins诱导乙烯信号通路中关键基因
    的表达,促进植物生长,增强光合作用。第二,h抑ins明显增强植物的抗旱性,促进
    气孔关闭,减少水分丧失。第三,荧光标记了harpinxoo和harpinxoo。,为后续的定位
    研究莫定了基础。但是本研究还存在一些缺点.第一,对h呷ins促进生长和抗旱信
    号通路的研究,只是作了较多的表型测定,缺乏更直接的证据来解析这些通路的重点
    环节及信号交又。第二,关于荧光定位两种h呷ins的研究,还无明确结论。因为,
    把荧光标记的菌株剪叶接种水稻品种汕优63以后,在荧光显微镜下,视野中发出明
    显的亮光,不能够进行细微观察和准确定位,用激光共聚焦显微镜观察可能会避免这
    些问题。第三,我们选用了带有荧光的质粒pUFR034标记菌株,有一定的缺陷。因
    
    摘要
    为质粒上的报告基因及杭生素基因的表达是在宿主菌体的复制、转录、翻译系统作用
    下进行的,容易消耗宿主的物质能量,而且连续培养条件下,质粒也很可能丢失。
Harpins are glycine-rich, protease-sensitive, heat-stable, acidic proteins produced by Gram-negative plant pathogenic bacteria, and are required for induction of the hypersensitive response (HR) or hypersensitive cell death (HCD) in nonhost plants of bacteria. Application of harpins to many plants can enhance plant growth, induce resistance to pathogens or insects and improve tolerance to environmental adversity like drought.However,what signaling processes contribute to enhanced plant growth (EPG) or drought tolerance (DT) in plants treated with harpins have been unclear. This study was aimed to address questions on harpin signaling in EPG and DR by determining whether the phenotypes are attributable to activation of signaling pathways. By now, the target sites of harpins on plant cells are not clear.The cellular localization of harpins are closely related to the contituative signal transduction.However as which part of the plant cell is cell wall,cell membrance or cytoplasm ,there is no consistent conclusi
    on from different research. The author tried to use the fluorescent protein labelled harpinxoo and harpinxooc to analyze their cellular localization in rice plant. 1. Harpin enhance plant growth
    HarpinEa can enhance plant growth in coincidence with relevant physiological responses and expression of several genes involved in ethylene signaling pathway.In the assay on four different kinds of plants treated with harpinEa including Arabidopsis, tomato, tobacoo and rice were taller and their individual weight were higher than those treated with water. Total leaf nitrogen content (TLN),chlorophyll a/b ratio(Chl.a:b) and chlorophyll content (Chi) which were connected closely with photosynthesis of plant were measured at seven days after treatment with harpinEa and CFVP(cell-free vector preparation).These results suggested that harpinEa can improve the TLN ,Chl and Chl.a:b. Application of to Arabidopsis thliana induces expression of the EIN2, ETR1, ERS1,
    
    
    PDF1.2, andPR-3b genes.Whereas PDF1.2,and PR-3b are molecular markers of the ethylene signal transduction pathway,which regulates growth and development and many other processes in plants, ERS1,ETR1 and EIN2 function as ethylene receptors and a transcriptional regulator in the pathway. Further,application of harphiEa induces expression of genes encoding expansin that played significant role in plant growth.
    2. Harpin -induced DT is mediated by ABA in tobacoo
    Harpinxoo conspicuously increased drought tolerance (DT) of plants which water had been withheld for seven days before treatment with the protein and subsequently grown under water stress conditions for another 10 days. Up to 7 days of water stress (WS),Harpinxoo-treated plants grew well as those regularly watered. In contrast, control plants sprayed with water became wilt and faded away soon.Moreover, microscopic observation showed evident differences in stomatal status between plants treated water and Harpinxoo-By 6 days after the protein application and 7 days after WS, approximately 70% stomata closed. In contrast, during the same period, only 24% stomata closed on leaves of control plants.Harpinxoo effectively reduces some drought severity.Harpinxoo can also induce other physiological characteristics related to drought tolerance.These include: increasing the levels of endogenous proline, reducing cell membrane permeability . improving superoxid dismutase (SOD) activities and decreasing the content of malondialdehyde (MDA).In these responses, harpinx00 acted as similary as did ABA.However harpinx00 kept at lower levels than ABA-control,and no changes are found in the negative control in which the plants were treated regularly with water. In plant grown under water stress conditions,harpinxoo induced the accumulation of endogenous abscisic acid similarly to ABA. However the amount of increase and timing are different between two treatments. Compared to the control plants, faster and larger increase in endo-ABA concentration was found in plants treated with harpinxoo- Genes osmotin, pkll-cl andphi-2 were expre
引文
1. Alfano JR, Charkowski AO, Deng W-L, Badel JL, Petnicki T, van Dijk K, Collmer A(2000). The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type Ⅲ secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97: 4856-4861.
    2. Alfano JR and Collmer A(1996). Bacterial pathogens in plants: life up against the wall. Plant Cell 8: 1683-1698
    3. Anderson BE, Ward JM, Schroeder JI(1998). Evidence for an extracellular reception phosphatase encoded by a stress-reponsive gene in Arabidopsis. Plant Cell 10: 849-858
    4. Arnon DI(1949). Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physio124: 1-15
    5. Audran C, Borel C, Frey A(1998). Expression studies of the zeaxanthin epoxidase gene in Nicotiana plum baginifolia. Plant Physiol 118: 1021-1028
    6. Baker C J, Orlandi EW, Mock NM(1993). Harpin, an elicitor of hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspention cells. Plant Physiol 102: 1341-1344
    7. Bleecker AB, Kende H(2000). Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol 16: 1-18.
    8. Bogdanove AJ, Kim JF, Wei Z, Kolchinsky P, Charkowski AO, Conlin AK, Collmer A, Beer S. V(1998). Homology and function of an hrp-linked pathogenicity locus, dspEKof Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pv. tomato. Proc. Natl. Acad. Sci. USA 95: 1325-1330
    9. Bogdanove AJ, Wei Z. M., Zhao L, and Beer SV(1996). Erwinia amylovora secretes harpin via a type Ⅲ pathway and contains a homolog ofyopN of Yersinia spp. J. Bacteriol 178: 1720-1730
    10. Brummell DA, Harpster MH(2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Bio1 47: 311~340
    11. Burnett EC, Desikan R, Moser RC(2000). ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. JExp Bot 51(343): 197~205
    12. Catala C, Rose JKC, Bernett AB(2000). Auxin- regulated genes encoding cell wall-modefying proteins are expressed during early tomato fruit growth. Plant Physiol 122: 527~534
    13. Charkowski AQ, Alfano, JR, Preston G, Yuan J, He SY, and Collmer A(1998). The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180: 5211-5217.
    14. Chen F, Dahal P, Bradford KJ(2001). Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127: 928~936
    15. Chemys JT, Zeevaart JAD(2000). Charaterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124: 343~354
    16. Clark MS(1997). Plant Molecular Biology, A Laboratory Manual. Springer, Berlin.
    17. Cho HT, Kende H(1997a). Expansins and internodal growth of deepwater rice. Plant Physiol 113: 1145~1151.
    18. Cho HT, Kende H(1997b). Expansins in deepwater rice inernodes. Plant Physiol 13: 1137~1143
    
    
    19. Cho HT, Kende H(1997c). Expression of expansin gene is corrlated with growth in deepwater rice. The Plant Cell 9: 1661~1671
    20. Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM, and Alfano JR(2OOO). Pseudomonas syringae Hrp type Ⅲ secretion system and effector proteins. Proc. Ntal. Acad. Sci. USA 97: 8770-8777.
    21. Cosgrove DJ, Bedinger P, Durachko DM(1997). Group-Ⅰ allergens of grass pollen as cell wall-loosening agents, Proc. Natl. Acod. Sci. USA 94: 6559~6564.
    22. Dangl JL, Jones DG(2001). Plant pathogens and integrated defense responses to infection. Nature 411: 826-833.
    23. Daniel J, Cosgrove(1999). Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. Plant Mol. Bio150: 391~417.
    24. Darta S, Muthukrishnan S(1999). Pathogenesis-related proteins in plants, CRC Press, Boca Raton
    25. Danie J, Cosgrove(2000). New genes and new biological roles for expansin. Current Opinion in Plant Biology 3: 73~78.
    26. Davies W J, Zhang J(1991). Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol 42: 55-76.
    27. Desikan R, Clarke A, Atherfold P, Hancock JT, Neill SJ(1999). Harpin induces mitogen-activated protein kinase activity during defence responses in Arabidopsis thaliana suspension cultures. Planta 210: 97-103.
    28. Desikan R, Reynolds A, HancockJT, Neill SJ(1998). Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression In Arabidopsis suspension cultures. JBiochem 330 (Pt1); 115-120
    29. Din N, Forsythe IJ, Burtnick LD, Gilkes NR, Miller RC(1994). The cellulose-binding domain of edoglucanase A(CenA) from fimi: evidence for the involvement of tryptophan residues in binding Mol. Microbiol 11: 747~755.
    30. Dong H, Delaney TP, Bauer DW, Beer SV(1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20: 207-215.
    31. Dong X(1998). SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol 1: 316-323.
    32. Downes BP, Crowell DN(1998). Cytokinin regulates the expression of a soybean beta-expansin gene by a post-transcriptional mechanism. Plant Mol Biol 37: 437~444
    33. Downes BP, Steinbaker CR, Crowell DN(2001). Expression and processing of a hormonally regulated beta-expansin from soybean. Plant Physiol 126: 244~252
    34. Fleming AT, McQueen-Mason S, Kuhlemeier(1996). Induction of leaf primordia by the cell wall protein expansin. Science 276: 1415~1417.
    35. Galan JE and Collmer A(1999). Type Ⅲ secretion machines: bacterial device for protein delivery into host cells. Science 284: 1322-1328
    36. Gaudriaut S, Malandrin L, Paulin JP, Barny MA(1997). DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via Hrp secretion pathway in a Dsp-depend way. Mol. Microbiol 26: 1075-1069
    37. Gilroy S, Trewavas TA(1994). Decade of plant signals.Bio Essays 16: 677-681
    38. Gopalan S, DW Bauer, JR Alfano, AO Loniello, SY lie, and A Collmer(1996). Expression of the
    
    Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity(Hrp) secretion system in eliciting genotype-specific hy-persensitive cell death. Plant Cell 8: 1095-1105.
    39. Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H(1997). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol 23: 1089-1097.
    40. Hagenbeek D, Quatrano RS, Rock CD(2000). Trivalent ions activate abscisic acid-inducible promoters through an ABI 1-dependent pathwayin rice protoplasts. Plant Physiol 123: 1553~1560
    41. Hanson AD, Nelsen CE, Everson EH(1997). Evalution of free proline accumulation as an index of drought resistance using two constrasting barley cultivars. Crop Sci 17: 720
    42. Hartumg W, Santer A, Hose E(2002). Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53(366): 27~32
    43. He SY(1998). Type Ⅲ protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol 36: 363-392
    44. He SY, Huang HC, Collmer A(1993). Pseudomonas syringae pv. syringae harpin_(Pss): A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266.
    45. Himmelbach A, Hoffmann T, Leube M(2002). Homeodomain protein ATHB6 is a target of the protein phosphatase ABI, and regulates hormone responses in Arabidopsis. EMBO J 21: 3029~3038
    46. Hoyos AE, tanley CM, He SY, Pike S, Pu XA, Novacky A(1996). The interaction of harpinpss with plant cell walls. Mol Plant Microbe lnteract 9: 608-616
    47. Hutchison KW, Singer PB, Mchnis S, Dlazsala C, Greenwood MS(1999). Expansins are conserved in conifers and expression in hypocityls in response to exogenous auxin. Plant Physiol 120: 827~831
    48. Hu W, Yuan J, Jin QL, Hart P, He SY(2001). Immunogold labeling of Hrp pili of Pseudomonas syringae pv. tomato assembled in minimal medium and in planta. Mol. Plant-Microbe lnteract 14: 234-241
    49. Ingram J, Bartels D(1996). The molecular basis of dehydration tolerance in plant. Annu. Rev. Plant Physiol. Plant Mol. Bio147: 377-403.
    50. Jackson RW, Athanassopoulos E, Triamis G(1999). Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the been pathogen Pseudomonas syringae pv. phaseolicola. Proc. Natl. Acad. USA 96: 10875-10880
    51. Jin, QL, Liu, NZ, Qiu, JL, Li, DB, Wang, J(1997). A truncated fragment of Harpin_(Pss) induces systemic resistance to Xanthomonas campestris pv. oryzae in rice. Physiol Mol Plant Pathol 51, 243-57
    52. Jin Q, Hu W, Brown I, McGhee G, Hart P, Jones AL, He SY(2001). Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type Ⅲ secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol 40: 1129-1139
    53. Kim JF, Beer SV(2000). Hrp genes and harpins of Erwinia amylovora: A decade of discovery, pp. 141-162 in: JL Vanneste(ed), Fire Blight and Its Causative Agent, Erwinia amylovora, CAB International, Wallingford, UK.
    54. Kim JH, Cho HT, Kende H(2000). α-expansins in the semiaquatic ferns Marsilea quadritolia and Regnellidium diphyllum: evolutionary aspects and physiological role in rachis elongation. Planta 212: 85~92
    
    
    55. Kim JF, Charkowski AO, Alfano JR, Collmer A, Beer SV(1998). Transposable elements and bacteriophage sequence flanking Pseudomonas syringae avirulence genes. Mol. Plant-Microbe Interact 11: 1247-1252.
    56. Kourill R, Ilikl P, Nausl J, Schoefs, B(1999). On the limits of applicability of spectrophotometric and spectrofluorimetric methods for the determination of chlorophyll a/b ratio. Photosynth Res 62: 107-116
    57. Lang CA(1958). Simple micro-determination of Kjeldahl nitrogen in biological materials. Analytical Chemistry 30: 1692-1694
    58. Levitt(1980). Response of Plants to Environmental Stress Vol I.(2nd edition) London: Academic Press, 533.
    59. Leckie CP, Mcainsh MR, Allen GJ(1998). Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc NatlAcad Sci USA 95: 15837~15842
    60. Lee J, Klüsener B, Tsiamis G, Stevens C, Neyt C, Tampakaki AP, Panopoulos N J, N11er J, Weiler EW, Cornelis GR, Mansfield JW, and Ntlrnberger T(2001a). HrpZ_(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc. Natl. Acad. Sci. USA 98: 289-294
    61. Lee J, Klessig DF, Nrnberger T(2001b). A harpin biding site in tobacco plasma membranes mediates activation of the extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13: 1079-1093
    62. Lee Y, Kende H(2001c). Expressing of β-expansins is correlated with internodal elongation in deepwater Rice. Plant Physiology 2001, 127: 645~654.
    63. Lee Y, Choi DS, Kende H(2001d). Expansins: ever-expanding numbers and functions. Curt Opin Plant Biol 4: 527~532
    64. Leung J, Giraudat J(1998). Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol 49: 199-222.
    65. Li JX, Wang XQ, Watson MB(2000). Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 87: 300~303
    66. Lindgern PB, Peet RC, and Panopoulos NJ(1986). Gene cluster of Pseudomonas syringae pv. phaseolocola controls pathogenicity of bean plants and hypersentivity on non host plants. J. Bacteriol 168: 512-522
    67. Li ZC, Durachko DM, Cosgrove DJ(1993). An oat coleoptile wall protein that induces wall extension in vitro and that is anti-genically & related to a similar protein form cucunber hypocotyls. Planta 191: 349~356
    68. McQueen-Mason, SJ, Durachko, DM & Cosgrove DJ(1992). Two endogenous proteins that induce cell expansin in plant. Plant Cell 4: 1425~1433
    69. McQueen-Mason SJ, Cosgroye DJ(1994). Disruption of hydrogen bonding between wall polymers by proteins that induce plant wall extension. Proc. Natl Acad. Sci. USA 91, 6574-6578
    70. McQueen-Mason SJ, Cosgroye DJ(1995). Expansin mode of action on cell wall, Analysis of wall hydrolysis, stress relaxation and binding. Plant Physiol 107: 87~100.
    71. Milborrow BV(2001). The pathway of biosynthesis of abscisic acid in vascular plants: a review of knnowledge of ABA biosynthesis. J Exp Bot 2(359): 1145~1164
    72. Nizan R, Barash I, Valinsky L, Lichter A, Manulis S(1997). The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv.
    
    gypsophilae. Mol Plant-Microbe Interact 10: 677-682.
    73. Piao HL, Pih KT, Lim JH(1999). An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaC1 and abscisic acid. PlantPhysiol 119: 1527~1534
    74. Pickard BG(1994). Contemplating the plasmalemmal control center model. Protoplasma 182: 1-9.
    75. Qiu D, Wei ZM, Bauer DW, Beer SV.(1997). Treatment of tomato seeds with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology 87: S80
    76. Rose JKC, Lee HH, Bennett AB(1997). Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA 94: 5955~5960
    77. Rose JKC, Cosgrove DJ Albersheim P, Darvill AG, Bennett AB(2000). Detection of expansin proteins and activity during tomato ontogeny. Plant Physiology 123: 1583~1592
    78. Sanchez JP, Chua NH. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 2001, 13: 1143~1154
    79. Sano T, Nagata T(2002). The possible involvement of a phosphate-induced transcription factor encoded by phi-2 gene from tobacoo in ABA signaling pathways. Plant Cell Physiol 43(1), 12-20
    80. Sauter A, Davies WJ, Hartung W(2001). The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52(363): 1991~1997
    81. Schwartz A, Wu WH, Tucker EB(1994). Inhibition of inward K~+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc Natl Acad Sci USA 91: 4019-4023
    82. Shcherban TY, Shi J, Durachko DM(1995). Moleaular cloning and sequence analysis of expansinsa highly conserved multigene family of proteins that mediate cell wall expansion in plants. Proc Natl Sci USA 92: 9245~9249.
    83. Shen W, Gómez-Cadenas A, Routly EL(2001). Yhe salt stress-inducible protein kinase gene, Esi47, from the salt-tolerant wheat grass Lophopyrum elongatum is involved in plant hormome signaling. Plant Physiol 125: 1429~1441
    84. Shieh MW, Cosgrove DJ(1998). Expansins. Plant Res 11: 149~157
    85. Shinozaki K, Yamaguchi-Shinozaki K(2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology 3: 217-223.
    86. Song X, Bednarski D, Fan H, Wei Z(2001). HrBPI_p, a harpin_(Ea) binding protein, mediates plant defense and growth signal transduction pathways. In Program & Abstracts, the 10th Intl. Cong. Mol. Plant-Microbe Interact. July 10-July 14, 2001, University of Wisconsin, Madison, WI. # 177.
    87. Staxén I, Pical C, Montgomery LT(1999). Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Aead Sci USA 96: 1779~1784
    88. Strobel RN, Gopalan JS, Kuc JA, He SY(1996). Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZ_(Pss) protein. Plant J 9: 431-439.
    89. Sutton F, Paul SS, Wang XQ(2000). Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus iaevis oocytes. Plant Physiol 124: 223~230
    90. Takahashi S, Katagiri T, Hirayama T(2001). Hyperosmotic stress induces a rapid and transient increase in inositol 1, 4, 5-trisphos-phate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol 42(2): 214~222
    91. Tampakaki AP, Panopoulos NJ(2000). Elicitation of hypersensitive cell death by extracellularly
    
    targeted HrpZ_(Psph) produced in planta. Mol. Plant-Microbe Interact 13: 1366-1374.
    92. Taylor IB, Burbidge A, Thompson AJ(2000). Control of abscisic acid synthesis. J Exp Bot 51(350): 1563~1574
    93. Vriezen WH, De GB, Mariani C, Voesnek LACJ(2000). Submergence induces expansin gene expression in flooding-tolerant Rumex palustris and not in flooding-intolerant R. acetosa. Planta 210: 956~963
    94. Wang XQ, Ullah H, Jones AM(2001). G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292: 2070~2072
    95. Wei ZM, Beer SV(1993). Hrpl of Erwinia amylovora functions in secretion of harpin and is a member of a new protein family. J. Bacteriol 175: 7958-7967
    96. Wei ZM, Beer SV(1996). Harpin from Erwinia amylovora induces plant disease resistance. Acta Hort 411: 223-225.
    97. Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY(1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88.
    98. Wei ZM, Qiu D, Kropp M J, Schading RL(1998). Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. Phytopathology 88: S96
    99. Wengelnik K. and Bonas U(1996). HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria J. Bacteriol 178: 3462-3469.
    100. Wu YJ, Meeley RB, Cosgrove DJ(2001). Analysis and expression of the a-expansin and β-expansin gene families in maize. Plant Physiol 26: 222~232.
    101. Xie Z, Chen Z(2000). Harpin induced hypersensitive cell death is associated with altered mitocondrial functions in tobacco cells. Mol Plant Microbe Interact 13: 183-190
    102. Yang QH, Lu W, Hu ML, Wang CM, Zhang RX, Yano M, Wan JM(2003). QTL and epistatic interaction underlying leaf chlorophyll and H_2O_2 contents variation in rice(Oryza sativa L.). Acta Genetica Sinica 30(3): 245-250
    103. Yi Lee, Dong Su Choi and Hans Kende(2001). Expansins: ever expanding numbers and functions. Current Opinion in Plant Biology 4: 527~532.
    104. Yi Li, Catherine P, Darley V, Ongaro A, Fleming O, Schipper S L, Baldanf and SJ McQueenMason(2002). Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128(3): 854~864.
    105. Zhu JK(2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247~273
    106. Zitter TA, Beer SV (1998). Harpin for insect control. Phytopathology 88: S104-105
    107.陈辉蓉,吴振斌,贺锋(2001).植物抗逆性研究进展.环境污染治理技术与设备,2(3):7-13.
    108.贾文锁,何芳莲,张大鹏(2001).蚕豆叶片中水分胁迫诱导ABA 积累的触发机制.中国科学(C辑),31(3):213~219
    109.李合声,孙群,赵世杰,章文华(2000).植物生理生化实验原理和技术.高等教育出版社,258-260;261-263
    110.李连朝,王学臣(1996).水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系.植物生理学通讯,32:321~327
    111.李平(2002).水稻黄单胞菌无毒基因avrXa3的克隆与鉴定以及过敏反应激发子Hrf蛋白质遗传多样性和功能域的研究.博士学位论文,南京农业大学
    
    
    112.李雄彪,吴琦主编(1993).植物细胞壁.北京:北京大学出版社,47~50
    113.李云荫,尚忠林,李建华(2001).逆境激素ABA信息传导及其调控.河北师范大学学报,25:526-529.
    114.潘瑞炽.植物生理学(2001).北京:高等教育出版社,279-296.
    115.彭建令(2003).两类激发子(harpins和核黄素)启动植物抗病防卫和生长信号传导的分子遗传学解析.博士学位论文.南京农业大学.
    116.沈文飚,徐朗莱,叶茂炳.氮蓝四唑光化还原法测定超氧化物歧化酶活性的适宜条件(1996).南京农业大学学报,19(2):101-102
    117.孙大业,郭艳林,马力耕,崔素娟(2001).细胞信号转导(第三版).科学出版社,320-331.
    118.闻伟刚(2001).水稻黄单胞菌过敏性反应激发子的研究.博士学位论文,南京农业大学.
    119.吴忠义,张大鹏,贾文锁(1999).蚕豆叶片下表皮 ABA 结合蛋白的分离纯化.植物学报,41(8):842-845
    120.燕平梅,章艮山(2000).水分胁迫下脯氨酸的累积及其可能的意义.太原师范专科学校学报,4:27-28.
    121.余晓江(2002).Harpin_(Xoo)启动番茄Pto介导的蛋白质激酶级联抗病防卫反应.硕士学位论文,南京农业大学.
    122.余叔文,汤章诚(2001).植物生理与分子生物学(第2版).北京:科学出版社,721-738.
    123.张宪政(1992).植物生理研究法.北京:农业出版社
    124.赵立平,梁元存,刘爱新,董汉松(1997).表达harpin基因的大肠杆菌DH5α(pCPP430)诱导植物抗病性研究.高技术通讯,7(9):1-4.
    125.周燮,郑志富,陈溥言(1996).转—识别脱酸酸甲酯的单克隆抗体的制备与应用.植物生理学报,22:284-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700