用户名: 密码: 验证码:
小清河流域农业面源氮素污染模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮肥的广泛使用是近现代农业发展的重要推动力,对提高农产品产量起到了至关重要的作用;然而随着氮肥投入量增加,土壤中过量的氮素以各种形式进入周围环境。畜禽养殖业的快速发展也产生了大量氮素流失,农业生态系统氮流失是农业面源氮素污染的主要原因。本文选择包含径流和畜禽养殖过程的最新版Manure-DNDC模型,在山东小清河流域典型农田和畜禽养殖场进行验证;借助遥感与地理信息系统(GIS)技术,利用多种来源数据建立以乡镇为单位的小清河流域数据库;模拟评价2008年小清河流域农业生态系统氮平衡状况,分析农业面源氮素污染时空分布特征,并提出有效地优化管理措施。主要研究结果如下:
     (1)实地验证了改进版农业生态系统生物地球化学模型——Manure-DNDC。利用山东小清河流域典型轮作系统冬小麦/夏玉米、冬小麦/大葱、设施蔬菜地田间试验数据对Manure-DNDC进行了验证,结果表明Manure-DNDC模型能够较好地模拟农田土壤气候、作物生长、氮淋溶等动态过程。利用广饶县肉牛养殖场观测数据验证表明,模型能够较好地动态模拟畜禽养殖过程中排出的粪便和尿的氮素含量,以及圈舍氨挥发量。区域验证也取得了较好地效果,模型能够合理预测作物产量和径流量,其中对冬小麦和夏玉米总产量模拟的R~2值均在0.8以上。
     (2)建立了以乡镇为单元的小清河流域农业面源氮素污染评价基础数据库,构建了小清河流域农业生态系统氮平衡定量评价系统。针对小清河流域地势低平的特点,研究提出了遥感图像识别与GIS空间分析相结合的数据库构建方法,首先利用高分辨率遥感图像识别中下游主干河道,修改DEM后提取流域边界以及主要河流网络,再计算坡度、坡长、最大水流长度等地形因子。同时通过查表获取主要土壤侵蚀因子,利用模型估算土壤水分常数,结合实测土壤有机质含量、作物播种面积和管理措施、气象观测数据、以及畜禽养殖数据构建小清河流域以乡镇为单元的农业面源氮素污染数据库。将数据库与经验证后的Manure-DNDC模型结合,综合考虑地表产汇流与土壤侵蚀规律,构建了流域农业生态系统氮平衡综合评价系统,为定量评价奠定了基础。
     (3)小清河流域农田种植与畜禽养殖过程中产生大量氮素盈余,农业面源氮素污染负荷很高。2008年农田氮素投入总量为25.99万吨,其中化肥氮18.42万吨,有机肥氮6.66万吨,相当于每公顷农田施用化肥282.06 kg N、有机肥101.95 kg N。农田淋溶和径流损失氮素分别为2.38万吨、0.71万吨,平均淋溶和径流损失分别为36.42 kg N/hm~2、10.82kg N/hm~2。畜禽养殖过程中通过径流损失氮素4.66万吨,堆肥场所有3.50万吨氮素残留。农业生态系统氮素径流损失总量是淋溶损失总量的2.26倍,其中86.83%发生在畜禽养殖以及粪便处理过程中。
     (4)农田氮素淋溶具有明显的区域差异,水肥管理是影响氮素淋溶强度的主要因素。济南市南部、章丘市中北部、以及寿光市部分地区农田氮素淋溶比较严重,其中有41个乡镇超过30 kg/hm~2。氮素淋溶与施肥量的关系非常密切,当施肥量低于300 kg/hm~2时,70%以上的乡镇淋溶强度小于10 kg/hm~2,当施肥量大于400 kg/hm~2时,约20%的氮肥受到淋溶。降水与灌溉是农田氮素淋溶的主要驱动力,流域内约70%的氮素淋溶发生在六、七月份。从不同的轮作模式看,蔬菜三季轮作的氮素淋溶损失量最高,达到1.07万吨,单位面积氮素淋溶量为285.32 kg/hm2。小麦/玉米轮作模式的平均淋溶强度为18.72 kg/hm~2,因为播种面积较大,淋溶总量也达到6192.25吨氮。集约化粮食作物和设施蔬菜地是农田氮素淋溶的主要来源。
     (5)氮素径流损失强度主要受坡度、降水、土壤性质以及畜禽养殖量的影响,径流损失氮素以有机氮为主。农田氮素径流损失强度比较大的乡镇主要位于流域上游的济南市历城区、章丘市、邹平县南部的,流域中部的广大地区农田径流损失一般都低于5 kg/hm~2。农田氮素径流损失总量最大的是小麦/玉米轮作,其次是棉花以及小麦、玉米单作。畜禽养殖以及粪便处理过程中的氮素径流损失在整个流域内都很严重,有31个乡镇损失强度超过100 kg/hm~2,其中济南市南部和章丘市最突出,主要原因是畜禽养殖规模大。牛排出的氮素中以气体成分损失的比例最高,家禽排出的氮素施入农田的比例最高。
     (6)农田氮素投入过量、畜禽养殖规模与农田面积不匹配、畜禽粪便处理方式不合理是造成本地区农业面源氮素污染的主要原因。减轻小清河流域农业生态系统氮流失与农业面源氮素污染负荷的有效措施主要有控制集约化粮食作物和设施蔬菜地的氮肥投入量,适当减少蔬菜地灌溉量,限制坡耕地种植,控制畜禽养殖密度,使畜禽养殖规模与农田面积相匹配,完善畜禽粪便处理技术等。优化管理措施分析表明,当化肥氮总量降低15%时,氮素淋溶量降低41%,小麦、玉米和蔬菜产量没有明显下降。减少单位面积农田上的畜禽养殖量,可以有效降低土壤氮盈余量,控制农田氮流失,同时减少畜禽养殖过程中的氮素损失。
Application of chemical fertilizer substantially increased crop production in the 20th Century. However, overuse of nitrogenous fertilizer has introduced excessive nitrogen (N) into the environment in various forms. During the past decades, livestock industries rapidly grew to meet the increasing demand for dairy and meat products in China that has led to more N discharged into the air, soil and rivers. The excessive N loads formed the agricultural non-point source N pollution in the country. This study was to specify the sources of N pollution by means of a modeling tool. To handle the complexity of N cycling in the agroecosystems, a process-based model, Manure-DNDC, was adopted and modified to quantify N releases from the various agricultural sources in the Xiaoqinghe watershed. The main results were as follows:
     (1) Validation tests were conducted at site and regional scales to verify the applicability of Manure-DNDC for the domain watershed. The modified Manure-DNDC model is capable of simulating soil climate, crop biomass, N leaching parameters in typical winter wheat/summer maize, winter wheat/scallion and vegetable field. The model can also get good results for excretion N from livestock and ammonia from farm. The modified Manure-DNDC model is also capable of simulating crop product, surface runoff and soil erosion that drive the soil or manure N to move at horizontal dimension. R square for the production of winter wheat and summer maize simulation are higher than 0.8.
     (2) Agricultural non-point source N pollution evaluation database for every town and agricultural eco-system N balance evaluation system was established in Xiaoqinghe watershed. The database was constructed combined with remote sensing image identifying and Geographical Information System (GIS) spatial analysis as the watershed was flat in middle and downstream. High resolution remote sensing data was used for indentifying main channels and then modify the DEM based on the channels. Then watershed boundary, river network, slope, slope length and longest flow path will be picked up using GIS spatial analysis. Soil erosion parameter was get from lookup table. Soil moisture constant was get from model simulation. Agricultural non-point source N pollution database for Xiaoqinghe watershed in every town will be available combined with measured soil organic matter, crop sown area and management, meteorological data, and livestock data. Agricultural eco-system N balance evaluation system was constructed integrate the database, modified Manure-DNDC, surface runoff and soil erosion.
     (3) Large amount of N surplus appeared in agricultural planting and livestock breeding in Xiaoqinghe watershed, which caused serious agricultural non-point source N pollution. Based on the baseline simulations for 2008, 259.9 million kg N was added to the agricultural soils in the Xiaoqinghe watershed, including 184.2 million kg N from synthetic fertilizer application and 66.6 million kg N from livestock manure. It means that 282.06 kg N from synthetic fertilizer and 101.95 kg N from manure was added to every hectare cropland. Driven by the rainfalls and irrigation application, 23.8 million kg N was leached from the cropping systems in the year. Driven by surface runoff, 46.6 and 7.1 million kg N were lost from livestock operation and cropping systems, respectively. Average leaching and runoff N lost from cropland were 36.42 kg N/hm~2 and 10.82kg N/hm2, respectively. At the end of year, there was 35.0 million kg N manure left in the livestock operation systems, mainly in form of compost. N lost by mean of runoff was 2.26 times of that lost by means of leaching, with 86.83% runoff lost happened in livestock breeding system. In general, the major agricultural non-point source of N in this watershed were livestock manure runoff losses and fertilizer leaching from the cropland.
     (4) Main factor affecting N leaching was water and fertilizer management. Regions with high leaching mainly located in south Jinan, central and north Zhangqiu, and Shouguang, with 41 towns higher than 30 kg/hm2. N lost from the cropping system was mainly related to fertilizer application rates. If fertilizer rate was lower than 300 kg/hm2, N leaching for more than 70% towns was lower than 10 kg/hm2. However, 20% of N will be leached if fertilizer rate was higher than 400 kg/hm~2. Precipitation and irrigation are main drivers for N leaching in cropland. About 70% N leaching happened in June and July. Rotations with three vegetable in a year suffered from the most serious N leaching with 10.7 million kg N and 285.32 kg/hm~2. Average leaching intensity for winter wheat and summer maize was 18.72 kg/hm~2, with 6.19 million kg N in total. Intensive grain crop and vegetable planting was main sources for cropland N leaching.
     (5) Land slope, precipitation and soil property played key roles in determining the intensity of the surface runoff and soil erosion. The N lost from surface runoff and soil erosion was mainly in organic forms. Towns with high intensity of soil erosion mainly locate in upstream of Xiaoqinghe watershed, such as Licheng in Jinan, Zhangqiu and Zouping. N leaching from surface runoff in middle of the watershed was mainly lower than 5 kg/hm2. Winter wheat and summer maize rotation, cotton, wheat, and maize were major planting mode for N runoff lost. N lost from livestock operation systems was heavy all over the watershed with 31 towns higher than 100 kg/hm~2. South Jinan and Zhangqiu was the most serious area because of the large livestock scale.
     (6) The main reason for agricultural non-point source N pollution in Xiaoqinghe watershed was too much synthetic fertilizer application, too much livestock compared to the cropland, and inappropriate manure operation system. Optional management practices were tested with the modeling approach. The results indicated that the effective measures for mitigating N loading for in the target watershed include optimizing fertilizer application rates for cropping systems, adjusting irrigation intensity for vegetable fields, abounding cultivation on the slop lands, and improving manure management practices. An assessment was conducted to identify the best management practices for mitigating N loads. The results indicated that N leaching loss could be decreased by 41% if synthetic N fertilizer application rate is reduced by 15%, which will maintain the crop yields. Reducing the livestock herd size in the counties with intensified animal farms would significantly reducing N loading rates.
引文
1蔡永明,张科利,李双才.不同粒径制间土壤质地资料的转换问题研究[J].土壤学报. 2003, 40(4): 511-517.
    2曹龙熹,符素华.基于DEM的坡长计算方法比较分析[J].水土保持通报. 2007, 27(5): 58-62.
    3曹宁,曲东,陈新平,张福锁,范明生.东北地区农田土壤氮、磷平衡及其对面源污染的贡献分析[J].西北农林科技大学学报(自然科学版). 2006, 34(7): 127-133.
    4陈克亮.川中丘陵小流域农田生态系统非点源氮污染研究[D].重庆:西南农业大学, 2003.
    5陈敏鹏,陈吉宁.中国种养系统的氮流动及其环境影响[J].环境科学. 2007, 28(10): 2342-2349.
    6陈能汪,洪华生,张珞平.流域尺度氮流失的环境风险评价[J].环境科学研究. 2006, 19(1): 10-14.
    7陈仁升,康尔泗,杨建平,王书功.黑河干流山区流域月蒸发力计算模型[J].水文. 2002, 22(6): 5-10.
    8陈仁升,康尔泗,杨建平,张济世.内陆河流域分布式水文模型——以黑河干流山区建模为例[J].中国沙漠. 2004, 24(4): 416-424.
    9陈友媛,惠二青,金春姬,邱汉学,吴德星.非点源污染负荷的水文估算方法[J].环境科学研究. 2003, 16(1): 10-13.
    10崔振岭,陈新平,张福锁,徐久飞,石立委,李俊良.华北平原冬小麦/夏玉米轮作体系土壤硝态氮的适宜含量[J].应用生态学报. 2007, 18(10): 2227-2232.
    11邓佳.小流域氮素流失模拟研究[D].北京:中国科学院大气物理研究所, 2011.
    12董红敏,李玉娥,陶秀萍,彭小培,李娜,朱志平.中国农业源温室气体排放与减排技术对策[J].农业工程学报. 2008, 24(10): 269-273.
    13杜伟,遆超普,姜小三,陈国岩.长三角地区典型稻作农业小流域氮素平衡及其污染潜势[J].生态与农村环境学报. 2010, 26(1): 9-14.
    14范丽丽.基于SWAT模型的大宁河流域农业非点源污染研究[D].北京:北京师范大学, 2007.
    15范丽丽,沈珍瑶,刘瑞民,宫永伟.基于SWAT模型的大宁河流域非点源污染空间特性研究[J].水土保持通报. 2008, 28(4): 133-137.
    16范亚宁,李世清,李生秀.半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化[J].应用生态学报. 2008, 19(4): 799-806.
    17方玉东,封志明,胡业翠,王霖琳.基于GIS技术的中国农田氮素养分收支平衡研究[J].农业工程学报. 2007, 23(7): 35-41.
    18付东叶,高明波,朱国庆.山东省高青县境小清河对沿岸浅层地下水的污染影响分析[J].山东国土资源. 2007, 23(2): 41-44.
    19高新昊,江丽华,李晓林,刘兆辉,徐钰,魏建林.“等标污染法”在山东省水环境农业非点源污染源评价中的应用[J].中国生态农业学报. 2010, 18(5): 1066-1070.
    20高新昊,张绍迎,江丽华,刘兆辉,徐钰,郑福丽.山东省农业污染综合分析与评价[J].水土保持通报. 2010, 30(5): 182-186.
    21郭建华,赵春江,孟志军,王秀,马伟.北方旱作条件下玉米施用氮肥对氮吸收和淋溶的影响[J].土壤通报. 2008, 39(3): 562-565.
    22韩兴国,李凌浩,黄建辉.生物地球化学概论[M].北京:高等教育出版社, 1999.
    23郝芳华,程红光,杨胜天.非点源污染模型--理论方法与应用[M].北京:中国环境科学出版社, 2006.
    24郝芳华,王玲.分布式水文模型[M].郑州:黄河水利出版社, 2003.
    25侯伟,李法云,马溪平,范志平,孙博.土地利用变化对流域面源污染的累积生态效应影响[J].干旱区资源与环境. 2009, 23(7): 117-120.
    26黄现民,王洪涛.山东省环渤海地区农业面源污染防治对策研究[J].安徽农业科学. 2008, 36(15): 6300-6303.
    27黄向东,韩志英,石德智,黄啸,吴伟祥,刘玉学.畜禽粪便堆肥过程中氮素的损失与控制[J].应用生态学报. 2010, 21(1): 247-254.
    28黄彦,朱艳,王航,姚鑫锋,曹卫星,Hannaway D. B.,田永超.基于遥感与模型耦合的冬小麦生长预测[J].生态学报. 2011, 31(4): 1073-1084.
    29惠二青.小清河流域陆源无机氮非点源入海通量的研究[D].青岛:中国海洋大学, 2003.
    30惠二青,陈友媛,刘贯群,邱汉学.小清河流域无机氮非点源污染的量化研究[J].农业环境科学学报. 2005, 24(增): 108-113.
    31惠二青,刘贯群,邱汉学,陈友媛.适用于中大尺度流域的非点源污染模型[J].农业环境科学学报. 2005, 24(3): 552-556.
    32寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响[J].应用生态学报. 2005, 16(4): 660-667.
    33赖格英.太湖流域1960s~1990s营养物质输移的评估研究——基于分布式环境水文模型SWAT的数值模拟[D].南京:中国科学院南京地理与湖泊研究所, 2005.
    34李艾芬,章明奎.嘉兴市农业面源污染源和农田氮磷平衡的历史变化特点[J].农业环境与发展. 2009, 26(1): 89-93.
    35李长生.土壤碳储量减少:中国农业之隐患——中美农业生态系统碳循环对比研究[J].第四纪研究. 2000, 20(4): 345-350.
    36李长生.生物地球化学的概念与方法——DNDC模型的发展[J].第四纪研究. 2001, 21(2): 89-99.
    37李长生.陆地生态系统的模型模拟[J].复杂系统与复杂性科学. 2004, 1(1): 49-57.
    38李长生,肖向明,Frolking S.,Moore B.,Salas W.,邱建军,张宇,庄亚辉,王效科,戴昭华,刘纪远,秦小光,廖柏寒,Sass R.中国农田的温室气体排放[J].第四纪研究. 2003, 23(5): 493-503.
    39李恒鹏,刘晓玫,黄文钰.太湖流域浙西区不同土地类型的面源污染产出[J].地理学报. 2004, 59(3): 401-408.
    40李虎.小清河流域农田非点源氮污染定量评价研究[D].北京:中国农业科学院, 2009.
    41李虎,王立刚,邱建军. DNDC模型在农田氮素渗漏淋失中的应用[C]. 2009.
    42李怀恩.流域非点源污染模型研究进展与发展趋势[J].水资源保护. 1996(2): 14-18.
    43李硕. GIS和遥感辅助下流域模拟的空间离散化与参数化研究与应用[D].南京:南京师范大学, 2002.
    44李晓鹏,张佳宝,刘金涛,朱安宁.天然文岩渠流域土壤水分渗漏和氮素淋失模拟[J].环境科学. 2009, 30(3): 864-869.
    45李志博,王起超,陈静.农业生态系统的氮素循环研究进展[J].土壤与环境. 2002, 11(4): 417-421.
    46李宗新,董树亭,王空军,刘鹏,张吉旺,王庆成,刘春晓.不同施肥条件下玉米田土壤养分淋溶规律的原位研究[J].应用生态学报. 2008, 19(1): 65-70.
    47廖安平,刘良明,叶沅鑫,范登科,张宏伟. CBERS-02B星HR数据几何纠正模型研究[J].遥感信息. 2010(4): 63-67, 116.
    48刘丛强.生物地球化学过程与地表物质循环--西南喀斯特土壤--植被系统生源要素循环[M].北京:科学出版社, 2009.
    49刘光栋,吴文良,刘仲兰,王立平.华北农业高产粮区地下水面源污染特征及环境影响研究——以山东省桓台县为例[J].中国生态农业学报. 2005, 13(2): 125-129.
    50刘建香,贾秋鸿,田树,杨云,郭云周.种植和施肥方式对云南坡耕地氮素流失的影响[J].云南农业大学学报:自然科学版. 2009, 24(4): 586-590.
    51刘铁梅,王燕,邹薇,孙东发,汤亮,曹卫星.大麦叶面积指数模拟模型[J].应用生态学报. 2010, 21(1): 121-128.
    52刘薇.基于SWAT模型的非点源污染模拟研究及应用[D].南京:河海大学, 2008.
    53刘兆存,金生,韩丽华.国内流域产汇流模型与应用分析[J].地球信息科学. 2007, 9(3): 96-103.
    54刘忠,李保国,傅靖.基于DSS的1978-2005年中国区域农田生态系统氮平衡[J].农业工程学报. 2009, 25(4): 168-175.
    55卢兵友.农业生态系统氮素循环研究概况[J].山东农业大学学报:自然科学版. 1992, 23(4): 457-460.
    56吕培茹.山东农用化学品污染历史、现状与防治对策[J].山东环境. 2002(107): 21-23.
    57吕耀.农业生态系统中氮素造成的非点源污染[J].农业环境保护. 1998, 17(1): 35-39.
    58马广文.长江流域农业区氮平衡研究[D].呼和浩特:内蒙古师范大学, 2008.
    59马广文,香宝,银山,郭建英,杨慧玲.长江流域农业区非点源氮的平衡变化及其区域性差异[J].环境科学研究. 2009, 22(2): 132-137.
    60马吉刚,梅泽本,夏泉,侯丙亮,赵蛟.山东小清河污水治理现状及对策[J].水土保持研究. 2003, 10(2): 108-111.
    61马立珊,汪祖强,张水铭,马杏法,张桂英.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报. 1997, 17(1): 39-47.
    62马绍赛,辛福言,崔毅,乔向英.黄河和小清河主要污染物入海量的估算[J].海洋水产研究. 2004, 25(5): 47-51.
    63庞靖鹏.非点源污染分布式模拟[D].北京:北京师范大学, 2007.
    64庞靖鹏,刘昌明,徐宗学.基于SWAT模型的径流与土壤侵蚀过程模拟[J].水土保持研究. 2007,14(6): 89-95.
    65秦福来.基于SWAT模型的非点源污染模拟研究[D].北京:首都师范大学, 2006.
    66秦小光,蔡炳贵,张鹏,王润生,刘东生.开展我国陆地生态系统碳氮循环的生物地球化学遥感动态评估的思路与建议[J].科技导报. 2002(8): 51-54.
    67邱建军,李虎,王立刚.中国农田施氮水平与土壤氮平衡的模拟研究[J].农业工程学报. 2008, 24(8): 40-44.
    68邱建军,王立刚,李虎,唐华俊,Changsheng,Li,Eric,Van,Ranst.农田土壤有机碳含量对作物产量影响的模拟研究[J].中国农业科学. 2009, 42(1): 154-161.
    69全国科学技术名词审定委员会.地理学名词(第二版)[M].北京:科学出版社, 2007.
    70全国土壤普查办公室.中国土种志[M].北京:农业出版社, 1993.
    71任秀文.基于SWAT模型的非点源污染模拟研究——以增江流域为例[D].广州:中山大学, 2007.
    72芮孝芳.水文学原理[M].北京:中国水利水电出版社, 2004.
    73沈涛. 3S技术支持下的农业立体污染监测研究[D].北京:北京师范大学, 2007.
    74盛巧玲.基于氮平衡的北京地区畜禽环境承载力研究[D].重庆:西南大学, 2009.
    75史志华,蔡崇法,丁树文,李朝霞,王天巍,张斌,沈晓鲤.基于GIS的汉江中下游农业面源氮磷负荷研究[J].环境科学学报. 2002, 22(4): 473-477.
    76孙立堂,曹升乐,陈继光,窦实.改进的SCS模型产流参数在小清河流域的率定[J].人民黄河. 2008, 30(5): 33-34.
    77谭永明.济南市小清河水质评价及环境需水量研究[D].济南:山东大学, 2009.
    78唐政,邱建军,李虎,王立刚.小清河流域水环境农业非点源污染研究[J].中国农学通报. 2008, 24(增): 44-48.
    79唐政,邱建军,邹国元,王立刚.有机种植条件下水肥管理对氮素淋洗和氮素平衡的影响研究[J].中国土壤与肥料. 2010(1): 19-24.
    80田家怡,高奎江,窦洪云,张锡仁.小清河流域暴雨与渤海莱州湾近海突发性污染风险评价的研究[J].海洋环境科学. 1993, 12(3-4): 59-68.
    81田家怡,慕金波,王安德.山东小清河流域水污染问题与水质管理研究[M].东营:石油大学出版社, 1991.
    82田家怡,庄会平.山东小清河污染的生态经济损失研究[J].生态学杂志. 1996, 15(2): 8-14.
    83田旭.基于ArcSWAT的松华坝水源保护区流域模拟及农业非点源污染控制[D].昆明:昆明理工大学, 2008.
    84汪邦稳,杨勤科,刘志红,赵心畅.基于DEM和GIS的修正通用土壤流失方程地形因子值的提取[J].中国水土保持科学. 2007, 5(2): 18-23.
    85汪凌.美国航天飞机雷达地形测绘使命简介[J].测绘通报. 2000(12): 38-40.
    86王宝海.陕西省耀州农户肉羊农牧生态系统氮素循环与平衡研究[D].杨凌:西北农林科技大学, 2006.
    87王激清,刘社平,高静.河北省农田生态系统氮养分平衡状况研究[J].河北北方学院学报:自然科学版. 2009, 25(1): 42-48.
    88王激清,马文奇,江荣风,张福锁.中国农田生态系统氮素平衡模型的建立及其应用[J].农业工程学报. 2007, 23(8): 210-215.
    89王江炜.城郊型集约化畜禽养殖场污染物综合防治--以山东半岛为例[J].环境保护. 2007(1): 69-71.
    90王奇,李杏朝,李俊杰,黄世存. CBERS-02B星HR与CCD影像融合研究[J].遥感技术与应用. 2008, 23(4): 467-470, 362.
    91王薇,蔡祖聪,钟文辉,王国祥.好氧反硝化菌的研究进展[J].应用生态学报. 2007, 18(11): 2618-2625.
    92吴东国.密云水库流域土地利用变化水文响应初步研究[D].北京:北京林业大学, 2004.
    93吴耀国,李广勋.山东淄博孝妇河流域孔隙水污染原因分析[J].农业环境保护. 1999, 18(3): 111-114.
    94武深树,谭美英,龙岳林,黄璜,甘德欣,朱好.洞庭湖区畜禽粪便中氮素污染及其环境成本[J].农业工程学报. 2009, 25(6): 229-234.
    95武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D].北京:中国农业科学院, 2005.
    96夏斌. 2005年夏季环渤海16条主要河流的污染状况及入海通量[D].青岛:中国海洋大学, 2007.
    97谢毅文,陈晓宏,王兆礼,张强.土壤质地转换中优选插值方法研究[J].灌溉排水学报. 2009, 28(3): 50-57.
    98许其功.三峡库区典型流域农业非点源污染研究[D].北京:北京师范大学, 2007.
    99严素定.黄石市农业面源污染的解析及其空间异质性研究[J].农业工程学报. 2008, 24(9): 225-228.
    100晏娟,沈其荣,尹斌,张绍林,朱兆良.太湖地区稻麦轮作系统下施氮量对作物产量及氮肥利用率影响的研究[J].土壤. 2009, 41(3): 372-376.
    101杨勇,徐恺,杨静学,王云鹏. SRTM DEM数据提取河网方法及影响因素研究[J].计算机技术与发展. 2010, 20(1): 1-4, 107.
    102杨智硕,米伟亚.对暴雨选样间的频率转换问题的论证[J].莆田学院学报. 2006, 13(2): 81-85.
    103曾波,钟荣珍,谭支良.畜牧业中的甲烷排放及其减排调控技术[J].中国生态农业学报. 2009, 17(4): 811-816.
    104詹蕾,汤国安,杨昕. SRTM DEM提取河网的适用性研究——以陕西省典型实验区为例[J].科技创新导报. 2010(21): 6, 8.
    105张建永.基于SWAT模型的官厅水库流域非点源污染模拟与评价[D].北京:北京师范大学, 2002.
    106张世强,丁永建,卢健,刘时银.青藏高原土壤水热过程模拟研究(Ⅱ):土壤温度[J].冰川冻土. 2005, 27(1): 95-99.
    107张仲荣.太阳黑子和SOI对黄河上游径流的影响[D].兰州:兰州大学, 2008.
    108赵济,陈永文,韩渊丰,李祯,刘炎昭,李文.中国自然地理[M].北京:高等教育出版社, 1980.
    109赵金香,贾惠颖,袁梅.广饶县地下水水质调查评价与污染分析[J].地下水. 2008, 30(6): 98-99, 104.
    110赵人俊.流域水文模型----新安江模型与陕北模型[M].北京:水利水电出版社, 1984.
    111赵永宏,邓祥征,鲁奇.乌梁素海流域种养系统氮素收支及其对当地环境的影响[J].生态与农村环境学报. 2010, 26(5): 442-447.
    112赵章元,孔令辉.渤海海域环境现状及保护对策[J].环境科学研究. 2000, 13(2): 23-27.
    113甄兰.应用DNDC模型和GIS技术研究区域氮肥管理的环境效应[D].北京:中国农业大学, 2007.
    114中国地质图集编委会.中国地质图集[M].北京:地质出版社, 2002.
    115中国农业全书-山东卷编辑委员会.中国农业全书-山东卷[M].北京:中国农业出版社, 1994.
    116中国人民共和国统计局.中国统计年鉴2008[M].北京:中国统计出版社, 2008.
    117朱波,彭奎,谢红梅.川中丘陵区典型小流域农田生态系统氮素收支探析[J].中国生态农业学报. 2006, 14(1): 108-111.
    118朱立安,王继增,胡耀国,程炯,魏秀国,张会化.畜禽养殖非点源污染及其生态控制[J].水土保持通报. 2005, 25(2): 40-43.
    119朱萱,鲁纪行,边金钟,吴英辅,韩永彦,宋竞历.农田径流非点源污染特征及负荷定量化方法探讨[J].环境科学. 1985, 6(5): 6-11.
    120朱兆良.中国土壤氮素研究[J].土壤学报. 2008, 45(5): 778-783.
    121 Abbot M. B., Bathurst J. C., Cunge J. A., O Conell P. E., Rasmussen. Introduction to the European Hydrological System - Systeme Hydrological European, SHE, 1: History and philosophy of a physically-based, Distributed Modelling System[J]. Journal of Hydrology. 1986, 87(1-2): 45-59.
    122 Abrahamsen P., Hansen S. Daisy: an open soil-crop-atmosphere system model[J]. Environmental Modelling & Software. 2000, 15(3): 313-330.
    123 Bao X., Watanabe M., Wang Q., Hayashi S., Liu J. Nitrogen budgets of agricultural fields of the Changjiang River basin from 1980 to 1990[J]. Science of the Total Environment. 2006, 363(1-3): 136-148.
    124 Bassanino M., Grignani C., Sacco D., Allisiardi E. Nitrogen balances at the crop and farm-gate scale in livestock farms in Italy[J]. Agriculture, Ecosystems and Environment. 2007, 122(3): 282-294.
    125 Beasley D. B., Huggins L. F., Monke E. ANSWERS: A Model for Watershed Planning.[J]. Transactions of the ASABE. 1980, 23(4): 938-944.
    126 Bechmann M., Eggestad H. O., Vagstad N. Nitrogen balances and leaching in four agricultural catchments in southeastern Norway[J]. Environmental Pollution. 1998, 102(S1): 493-499.
    127 Bryan B., Kandulu J. Designing a Policy Mix and Sequence for Mitigating Agricultural Non-Point Source Pollution in a Water Supply Catchment[J]. Water Resources Management. 2011, 25(3): 875.
    128 Butterbach-Bahl K., Kahl M., Mykhayliv L., Werner C., Kiese R., Li C. A European-wide inventory of soil NO emissions using the biogeochemical models DNDC/Forest-DNDC[J]. Atmospheric Environment. 2009, 43(7): 1392-1402.
    129 Campling P., Terres J. M., Vande Walle S., Van Orshoven J., Crouzet P. Estimation of nitrogen balances from agriculture for EU-15: spatialisation of estimates to river basins using the CORINE Land Cover[J]. Physics and Chemistry of the Earth, Parts A/B/C. 2005, 30(1-3): 25-34.
    130 Carey M. A., Lloyd J. W. Modelling non-point sources of nitrate pollution of groundwater in the Great Ouse Chalk, U.K.[J]. Journal of Hydrology. 1985, 78(1-2): 83-106.
    131 Collins R. P., Jenkins A., Sloan W. T. A GIS framework for modelling nitrogen leaching from agricultural areas in the Middle Hills, Nepal[J]. International Journal of Geographical Information Science. 1998, 12(5): 479-490.
    132 Deng J., Zhu B., Zhou Z., Zheng X., Li C., Wang T., Tang J. Modeling nitrogen loadings from agricultural soils in Southwest China with modified DNDC[J]. Journal of Geophysical Research-Biogeoscience. 2011, doi:10.1029/2010JG001609.
    133 Farahbakhshazad N., Dinnes D. L., Li C., Jaynes D. B., Salas W. Modeling biogeochemical impacts of alternative management practices for a row-crop field in Iowa[J]. Agriculture, Ecosystems and Environment. 2008, 123(1-3): 30-48.
    134 Farr T. G., Rosen P. A., Caro E. The Shuttle Radar Topography Mission[J]. Reviews of Geophysics. 2007, 45(RG2004): 33.
    135 Franko U., Oelschlagel B., Schenk S. Simulation of temperature, water and nitrogen dynamics using the model CANDY[J]. Ecological Modelling. 1995, 81(1-3): 213-222.
    136 Freeze R. A., Harlan R. L. Blue print for a physically-based digital simulated hydrologic response model[J]. Journal of Hydrology. 1969, 70(9): 237-258.
    137 Frolking S., Qiu J., Boles S., Xiao X., Liu J., Zhuang Y., Li C., Qin X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China[J]. Global Biogeochemical Cycles. 2002, doi:10.1029/2001GB001425.
    138 Gassman P. W., Reyes M. R., Green C. H., Arnold J. G. The Soil and Water Assessment Tool: historical development, applications, and future research directions [J]. Transactions of the ASABE. 2007, 50(4): 1211-1250.
    139 Giltrap D. L., Li C., Saggar S. DNDC A process-based model of greenhouse gas fluxes from agricultural soils[J]. Agriculture, Ecosystems and Environment. 2010, 136(2010): 292-300.
    140 Giupponi C., Rosato P. Simulating impacts of agricultural policy on nitrogen losses from a watershed in Northern Italy[J]. Environment International. 1995, 21(5): 577-582.
    141 Goldstein A. L. Utilization of wetlands as BMPs for the reduction of nitrogen and phosphorus in agricultural runoff from south florida watersheds[J]. North American Lake Management Society Conference. Proceedings. 1986, 2(1): 345-350.
    142 Gowda P. H., Mulla D. J., Jaynes D. B. Simulated long-term nitrogen losses for a midwestern agricultural watershed in the United States[J]. Agricultural Water Management. 2008, 95(2008): 616-624.
    143 Gupta H. V., Kling H., Yilmaz K. K., Martinez G. F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling[J]. Journal of Hydrology. 2009, 377(1-2): 80-91.
    144 Haene K. D., Magyar M., De Neve S., Palmai O., Nagy J., Nemeth T., Hofman G. Nitrogen and phosphorus balances of Hungarian farms[J]. European Journal of Agronomy. 2007, 26(3): 224-234.
    145 Hall D. W., Risser D. W. Effects of agricultural nutrient management on nitrogen fate and transport in lancaster county pennsylvania[J]. Journal of the American Water Resources Association. 1993, 29(1): 55-76.
    146 Hansen S., Jensen H. E., Nielsen N. E., Svendsen H. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY[J]. Nutrient Cycling in Agroecosystems. 1991, 27(2): 245-259.
    147 Jachner S., van den Boogaart K. G., Petzoldt T. Statistical methods for the qualitative assessment of dynamic models with time delay (R package qualV)[J]. Journal of Statistical Software. 2007, 22(8):1-30.
    148 Jacks G., Sharma V. Nitrogen circulation and nitrate in groundwater in an agricultural catchment in Southern India[J]. Environmental Geology. 1983, 5(2): 61-64.
    149 Jansons V., Busmanis P., Dzalbe I., Kirsteina D. Catchment and drainage field nitrogen balances and nitrogen loss in three agriculturally influenced Latvian watersheds[J]. European Journal of Agronomy. 2003, 20(1-2): 173-179.
    150 Jenkinson D. S., Andrew S. P. S., Lynch J. M., Goss M. J., Tinker P. B. The Turnover of Organic Carbon and Nitrogen in Soil[J]. Philosophical Transactions: Biological Sciences. 1990, 329(1255): 361-368.
    151 Johnsson H., Bergstrom L., Jansson P., Paustian K. Simulated nitrogen dynamics and losses in a layered agricultural soil[J]. Agriculture, Ecosystems and Environment. 1987, 18(4): 333-356.
    152 Ju X., Liu X., Pan J., Zhang F. Fate of 15N-Labeled Urea Under a Winter Wheat-Summer Maize Rotation on the North China Plain[J]. Pedosphere. 2007, 17(1): 52-61.
    153 Kesner B. T., Meentemeyer V. A regional analysis of total nitrogen in an agricultural landscape[J]. Landscape Ecology. 1989, 2(3): 151-163.
    154 Krause P., Boyle D. P., Base F. Comparison of different efficiency criteria for hydrological model assessment[J]. Advances in Geosciences. 2005(5): 89-97.
    155 Krobel R., Sun Q., Ingwersen J., Chen X., Zhang F., Muler T., Roheld V. Modelling water dynamics with DNDC and DAISY in a soil of the North China Plain: A comparative study[J]. Environmental Modelling & Software. 2010, 25(4): 583-601.
    156 Kudeyarov V. N., Bashkin V. N. Nitrogen balance in small river basins under agricultural and forestry use[J]. Water, Air, and Soil Pollution. 1980, 14(1): 23-27.
    157 Kudeyarov V. N., Bashkin V. N. Study of landscape-agrogeochemical balance of nutrients in agricultural regions: Part III. Nitrogen[J]. Water, Air, and Soil Pollution. 1984, 23(2): 141-153.
    158 Kudeyarov V. N., Bashkin V. N., Kudeyarova A. Y. Losses of nitrogen, phosphorus and potassium from agricultural watersheds of minor rivers in the Oka Valley[J]. Water, Air, and Soil Pollution. 1981, 16(3): 267-276.
    159 Kustermann B., Christen O., Hulsbergen K. Modelling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management[J]. Agriculture, Ecosystems and Environment. 2010, 135(1-2): 70-80.
    160 Lantinga E. A., Oomen G. J. M., Schiere J. B. Nitrogen Efficiency in Mixed Farming Systems[J]. Journal of Crop Improvement. 2004, 12(1): 437-455.
    161 Leip A., Britz W., Weiss F., de Vries W. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI[J]. Environmental Pollution. 2011, doi:10.1016/j.envpol.2011.01.040.
    162 Li C. Modeling trace gas emissions from agricultural ecosystems[J]. Nutrient Cycling in Agroecosystems. 2000(58): 259-276.
    163 Li C. Quantifying greenhouse gas emissions from soils Scientific basis and modeling approach[J]. Soil Science and Plant Nutrition. 2007(53): 344-352.
    164 Li C., Aber J., Stange F., Butterbach-Bahl K., Papen H. A process-oriented model of N2O and NO emissions from forest soils 1. Model development[J]. Journal of Geophysical Research. 2000, 105(D4): 4369-4384.
    165 Li C., Cui J., Sun G., Trettin C. Modeling Impacts of Management on Carbon Sequestration andTrace Gas Emissions in Forested Wetland Ecosystems[J]. Environmental Management. 2004, 33(S1): S176-S186.
    166 Li C., Farahbakhshazad N., Jaynes D. B., Dinnes D. L., Salas W., McLaughlin D. Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa[J]. Ecological Modelling. 2006, 196(1-2): 116-130.
    167 Li C., Frolking S., Butterbach-Bahl K. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing[J]. Climatic Change. 2005(72): 321-338.
    168 Li C., Frolking S., Frolking T. A. A model of nitrous oxide evolution from soil driven by rainfall events 1. Model structure and sensitivity[J]. Journal of Geophysical Research. 1992a, 97(D9): 9759-9776.
    169 Li C., Frolking S., Frolking T. A. A model of nitrous oxide evolution from soil driven by rainfall events 2. Model applications[J]. Journal of Geophysical Research. 1992b, 97(D9): 9777-9783.
    170 Li C., Frolking S., Harriss R. Modeling carbon biogeochemistry in agricultural soils[J]. Global Biogeochemical Cycles. 1994, 8(3): 237-254.
    171 Li C., Frolking S., Xiao X., Moore III B., Boles S., Qiu J., Huang Y., Salas W., Sass R. Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions A case study for water management of rice agriculture of China[J]. Global Biogeochemical Cycles. 2005, 19(GB3010), doi:10.1029/2004GB002341.
    172 Li C., Mosier A., Wassmann R., Cai Z., Zheng X., Huang Y., Tsuruta H., Boonjawat J., Lantin R. Modeling greenhouse gas emissions from rice-based production systems Sensitivity and upscaling[J]. Global Biogeochemical Cycles. 2004, 18(GB1043), doi:10.1029/2003GB002045.
    173 Li C., Qiu J., Frolking S., Xiao X., Salas W., Moore III B., Boles S., Huang Y., Sass R. Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000[J]. Geophysical Research Letters. 2002, 29(20, 1972), doi:10.1029/2002GL015370.
    174 Li C., Salas W., DeAngelo B., Rose S. Assessing Alternatives for Mitigating Net Greenhouse Gas Emissions and Increasing Yields from Rice Production in China Over the Next Twenty Years[J]. Journal of Environmental Quality. 2006(35): 1554-1565.
    175 Li C., Salas W., Mitloehner F., Rotz A., Zhang R. Development of Manure-DNDC, a Process-Based Model Quantifying Greenhouse Gas Emissions and Ammonia Volatilization from Animal Farms[J]. 2011: ready to be published.
    176 Liu J., Liu H., Huang S., Yang X., Wang B., Li X., Ma Y. Nitrogen efficiency in long-term wheat-maize cropping systems under diverse field sites in China[J]. Field Crops Research. 2010, 118(2): 145-151.
    177 Loague K., Green R. E. Statistical and graphical methods for evaluating solute transport models: Overview and application[J]. Journal of Contaminant Hydrology. 1991, 7(1-2): 51-73.
    178 Lord E. I., Anthony S. G., Goodlass G. Agricultural nitrogen balance and water quality in the UK[J]. Soil Use and Management. 2002, 18(4): 363-369.
    179 Ma L., Malone R. W., Heilman P., Karlen D. L., Kanwar R. S., Cambardella C. A., Saseendran S. A., Ahuja L. R. RZWQM simulation of long-term crop production, water and nitrogen balances in Northeast Iowa[J]. Geoderma. 2007, 140(3): 247-259.
    180 McFeeters S. K. The Use of Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features[J]. International Journal of Remote Sensing. 1996, 17(7): 1425-1432.
    181 Messer J., Brezonik P. L. Agricultural nitrogen model: A tool for regional environmental management[J]. Environmental Management. 1983, 7(2): 177-187.
    182 Miller R. L. State water quality control program in Arizona[J]. Journal of the American Water Resources Association. 1978, 14(6): 1503-1506.
    183 Mishima S. The recent trend of agricultural nitrogen flow in Japan and improvement plans[J]. Nutrient Cycling in Agroecosystems. 2002, 63(2): 151-163.
    184 Molina J. A. E., Clapp C. E., Shaffer M. J., Chichester F. W., Larson W. E. NCSOIL, a model of nitrogen and carbon transformations in soil: description, calibration, and behavior[J]. Soil Science Society of America Journal. 1983, 47(1): 85-91.
    185 Moriasi D. N., Arnold J. G., Van Liew M. W., Bingner R. L., Harmel R. D., Veith T. L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations[J]. Transactions of the ASABE. 2007, 50(3): 885-900.
    186 Nash J. E., Sutcliffe J. V. River flow forecasting through conceptual models part I—A discussion of principles[J]. Journal of Hydrology. 1970, 10(3): 282-290.
    187 Oenema O. Nitrogen budgets and losses in livestock systems[J]. International Congress Series. 2006, 1293(2006): 262-271.
    188 Oomen G. J. M., Lantinga E. A., Goewie E. A., Van der Hoek K. W. Mixed farming systems as a way towards a more efficient use of nitrogen in European Union agriculture[J]. Environmental Pollution. 1998, 102(S1): 697-704.
    189 Pannell D. J., Falconer D. A. The relative contributions to profit of fixed and applied nitrogen in a crop-livestock farm systems[J]. Agricultural Systems. 1988, 26(1): 1-17.
    190 Parris K. Agricultural nutrient balances as agri-environmental indicators: an OECD perspective[J]. Environmental Pollution. 1998, 102(S1): 219-225.
    191 Parsons R. L., Pease J. W., Bosch D. J. Simulating nitrogen losses from agricultural land: implications for water quality and protection policy[J]. Journal of the American Water Resources Association. 1995, 31(6): 1079-1087.
    192 Parton W. J., Rasmussen P. E. Long-term effects of crop management in wheat/fallow: II. CENTURY model simulations[J]. Soil Science Society of America Journal. 1994, 58(2): 530-536.
    193 Pathak H., Li C., Wassmann R., Ladha J. K. Simulation of Nitrogen Balance in Rice-Wheat Systems of the Indo-Gangetic Plains[J]. Soil Science Society of America Journal. 2006, 70(5): 1612-1622.
    194 Powell J. M., Mohamed-Saleem M. A. Nitrogen and phosphorus transfers in a crop-livestock system in West Africa[J]. Agricultural Systems. 1987, 25(4): 261-277.
    195 Qiu J., Li C., Wang L., Tang H., Li H., Van R. E. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China[J]. Global Bigeochemical Cycles. 2009, 23(GB1007), doi:10.1029/2008GB003180.
    196 Qiu J., Li H., Wang L., Tang H., Li C., Van R. E. GIS-model based estimation of nitrogen leaching from croplands of China[J]. Nutrient Cycling in Agroecosystems. 2011, doi 10.1007/s10705-011-9425-5.
    197 Ramos C. Effect of agricultural practices on the nitrogen losses to the environment[J]. Nutrient Cycling in Agroecosystems. 1995, 43(1): 183-189.
    198 Refsgaard J. C., Storm B. MIKE SHE Computer Models in Watershed Hydrology[M]. Water Resource Publications, Singh V. P., Colorodo, USA:1995, 806-846.
    199 Roberts G. Nitrogen inputs and outputs in a small agricultural catchment in the eastern part of the United Kingdom[J]. Soil Use and Management. 1987, 3(4): 148-154.
    200 Rosswall T., Paustian K. Cycling of nitrogen in modern agricultural systems[J]. Plant and Soil. 1984, 76(1): 3-21.
    201 Rykiel E. J. Testing ecological models: The meaning of validation[J]. Ecological Modelling. 1996, 90(3): 229-244.
    202 Saxton K. E., Rawls W. J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions[J]. Soil Science Society of America Journal. 2006, doi:10.2136/sssaj2005.0117.
    203 Schaap M. G., Leij F. J., van Genuchten M. T. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions[J]. Journal of Hydrology. 2001, 251(3-4): 163-176.
    204 Schroder H. Nitrogen losses from Danish agriculture -- trends and consequences[J]. Agriculture, Ecosystems and Environment. 1985, 14(3-4): 279-289.
    205 Shen Z., Hong Q., Chu Z., Gong Y. A framework for priority non-point source area identification and load estimation integrated with APPI and PLOAD model in Fujiang Watershed, China[J]. Agricultural Water Management. 2011, 98(6): 977-989.
    206 Shen Z., Liao Q., Hong Q., Gong Y. An overview of research on agricultural non-point source pollution modelling in China[J]. Separation and Purification Technology. 2011, doi:10.1016/j.seppur.2011.01.018.
    207 Shindo J., Okamoto K., Kawashima H., Konohira E. Nitrogen flow associated with food production and consumption and its effect on water quality in Japan from 1961 to 2005[J]. Soil Science and Plant Nutrition. 2009, 55(4): 532-545.
    208 Smaling E. M. A., Fresco L. O. A decision-support model for monitoring nutrient balances under agricultural land use (NUTMON)[J]. Geoderma. 1993, 60(1-4): 235-256.
    209 Smith P., Smith J. U., Powlson D. S., McGill W. B., Arah J. R. M., Chertov O. G., Coleman K., Franko U., Frolking S., Jenkinson D. S., Jensen L. S., Kelly R. H., Klein-Gunnewiek H., Komarov A. S., Li C., Molina J. A. E., Mueller T., Parton W. J., Thornley J. H. M., Whitmore A. P. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments[J]. Geoderma. 1997, 81(1-2): 153-225.
    210 Sun B., Shen R., Bouwman A. F. Surface N Balances in Agricultural Crop Production Systems in China for the Period 1980-2015[J]. Pedosphere. 2008, 18(3): 304-315.
    211 Tonitto C., David M. B., Drinkwater L. E., Li C. Application of the DNDC model to tile-drained Illinois agroecosystems:model calibration,validation,and uncertainty analysis[J]. Nutrient Cycling in Agroecosystems. 2007, 78(1), doi 10.1007/s10705-006-9076-0.
    212 Tonitto C., David M. B., Li C., Drinkwater L. E. Application of the DNDC model to tile-drained Illinois agroecosystems:model comparison of conventional and diversified rotations[J]. Nutrient Cycling in Agroecosystems. 2007, 78(1), doi 10.1007/s10705-006-9074-2.
    213 Wegehenkel M., Mirschel W. Crop growth, soil water and nitrogen balance simulation on three experimental field plots using the Opus model--A case study[J]. Ecological Modelling. 2006, 190(1-2): 116-132.
    214 Williams J. R. Chapter 25: The EPIC model[M]. Computer models of watershed hydrology, Singh V. P., Water Resources Publications, 1995, 909-1000.
    215 Yuan Y., Bingner R. L., Rebich R. A. Evaluation of ANN AGNPS nitrogen loading in anagricultural watershed[J]. Journal of the American Water Resources Association. 2003, 39(2): 457-466.
    216 Zebarth B. J., Paul J. W., Van Kleeck R. The effect of nitrogen management in agricultural production on water and air quality: evaluation on a regional scale[J]. Agriculture, Ecosystems and Environment. 1999, 72(1999): 35-52.
    217 Zhang H., Huang G. H. Assessment of non-point source pollution using a spatial multicriteria analysis approach[J]. Ecological Modelling. 2011, 222(2): 313-321.
    218 Zhang Y., Li C., Zhou X., Moore III B. A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture[J]. Ecological Modelling. 2002, 151(1): 75-108.
    219 Zougmor R., Mando A., Stroosnijder L., Guillobez S. Nitrogen flows and balances as affected by water and nutrient management in a sorghum cropping system of semiarid Burkina Faso[J]. Field Crops Research. 2004, 90(2-3): 235-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700