用户名: 密码: 验证码:
煤矿底板采动变形及带压开采突水评判方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿底板采动变形问题的研究,不仅对于承压水上带压安全开采具有科学价值,而且可为采区巷道围岩变形控制维护提供关键依据。
     本文对采动底板应力分布特征、底板应力及其塑性区分布以及底板破坏深度等变形破坏规律进行了系统研究,研究发现:在前人对支承压力分布规律研究的基础上构建的采场完整支承压力作用下的底板应力分布模型能够得到底板内任一位置的应力分布解析解,通过杨村煤矿4602工作面的底板应力解析计算说明解析得出的底板下的应力分布规律具有实用性;从底板采动变形的角度厘定了底板破坏深度的概念,并采用FLAC3D数值模拟软件开展了底板破坏深度斜长、顶底板岩性组合、采深、采高、倾角的六因素五水平正交数值模拟试验,构建了首次考虑顶板岩性组合这一因素的斜长-顶底板岩性组合-采深-采高-倾角的底板破坏深度预测模型,通过10个煤矿相应的工作面底板破坏深度实测实例进行分析验证了该预测模型精度较高,可以满足工程使用。
     通过现场底板变形破坏综合实测深刻揭示了底板矿压显现过程及其分区特点、底板破坏深度分区特征以及底板变形与矿压显现的关联规律,具体表现为:采动矿压对底板的影响具有较远距离的采前“超前”显现和采后“滞后”延续的特点,且这种“超前”“滞后”影响具有分区特征;从采动底板变形与采动矿压的关联效应角度将底板所受采动矿压的扰动作用分为“超前聚压扰动”和“采后卸压扰动”两种类型,为合理解释底板采动变形破坏的力学机制提供了力学依据;底板破坏经历超前聚压破坏和采后卸压破坏两个过程,其破坏机制均为剪切破坏,前期为受压状态下的剪切破坏,后期为受拉状态下的剪切破坏,二者具有累进关系,即在采前聚压破坏基础上采后卸压破坏可导致破坏程度进一步加剧,但对于采动破坏深度不具有延伸效果。
     在70组底板破坏深度实测资料统计的基础上,探索了底板破坏深度与其影响因素的规律,构建了底板破坏深度预测的遗传-改进遗传算法优化BP神经网络模型(BP-GA、BP-GA-MOD)和PSO优化SVM模型(PSO-SVM)。基于MATLAB软件平台,编制了底板破坏深度非线性预测模型系统,能够实现底板破坏深度快速准确的预测。
     最后,首次明确建立了煤矿底板突水的三级评判模型,以此实现对煤矿底板突水由粗到细、由经验判别到力学分析的多级分布筛选递进评价预测。三级评判分别包括:煤矿底板突水初判、煤矿底板突水详判与煤矿底板突水精判。底板突水初判判据为P=0.0025M2-0.0865M-16.8534/M+2.2440临界方程,该方程是通过对华北七个矿区以及湖南涟邵矿区354个工作面突水点、202个巷道突水点以及318个安全回采工作面的调查分析,应用数学统计回归的方法所得。该临界方程形式与考虑动水压力作用下的底板均质裂隙弱板模型P-M临界方程形式一致;煤矿底板突水的详判,是在初判的基础上对可能发生突水的区域进行的进一步突水判别,综合指标法考虑了影响底板突水的诸多因素,以此判别将更为全面,考虑模型的简化,构建了基于膨胀界限抗渗强度的底板突水评判模型。煤矿底板突水精判,需要对底板岩体特性、含水层特性以及所赋存的地质条件进行更为详细的勘查,掌握突水评判区域非常精细准确的第一手资料,在此基础上,对底板进行力学稳定性分析,确定底板在采动矿压、水压作用下的潜在稳定性。
The study of mining deformation of floor is not merely of great scientific value for safetymining of coal mining above confined aquifer, but also provides crucial basis for control andmaintenance of surrounding rock in mining roadway.
     This dissertation aims to make systematic studies involving such aspects as stressdistribution of mining floor, floor stress and plastic zone distribution as well as deformationfailure law such as floor failure depth. The research results show that stress distribution modelof floor rock under the complete bearing pressure in the face based on the previous studies ondistribution regularities of bearing pressure enables to obtain the analytical solution of stressdistribution in any position inside the floor rock. Meanwhile, the stress distributionregularities computed by the stress of floor rock of mining face4602in Yangcun is of greatpractical applicability. And, the notion of floor rock failure depth is apportioned from theperspective of mining floor rock deformation. By employing numerical modeling softwareFLAC3D, six-factor and five-level orthogonal numerical simulation test of floor failure depthconcerning working face length, lithological association of roof rock and floor rock, miningdepth, mining height and dip angle was launched. Furthermore, the prediction model of floorrock failure depth where the lithological association of roof rock is considered for the firsttime which includes working face length, lithological association of roof rock and floor rock,mining depth, mining height and dip angle. On the basis of actual measurement and instanceson floor rock failure depth of corresponding mining faces in ten coal mines, it can beconcluded that this prediction model involves high precision which can meet the requirementof project.
     By on-site comprehensive actual measurement of floor rock deformation failure, theprocess and partition features of mine pressure behavior on floor rock, partition features offloor rock failure depth as well as relevance law between floor rock deformation andunderground pressure behavior were expounded in great details. In other words, bycomprehensive actual measurement of floor rock deformation, the influence of miningunderground pressure on floor rock is characterized by manifestation of pre-mining “leading”at a long-distance and continuity of post-mining “lagging”. In addition, both “leading” and“lagging” impacts have partition features. Based on the linkage effects between mining floorrock deformation and mining underground pressure, the perturbation action of miningunderground pressure on floor rock can be classified into “leading pressure-gatheringperturbation” and “post-mining pressure-relieving perturbation”, which provided the mechanical basis for explaining the mechanism of mining floor rock deformation failure.What’s more, floor rock undergoes two processes of leading pressure-gathering breakage andpost-mining pressure-relieving breakage. And, their breakage mechanisms are shearbreakdowns which are under the pressing condition in the early stage and is under the tensioncondition is the late stage. They are related in progression. That’s to say, post-miningpressure-relieving breakage made after pre-mining pressure-gathering breakage can lead tofurther aggravation of failure degree. However, it involves no extension effects as to miningfailure depth.
     On the basis of actual measurement data on70groups of floor rock failure depth, floorrock depth and the regularities of its influential factors were explored. Besides, the predictedgenetic-improved genetic algorithm optimization BP neural network model and PSOoptimization SVM model by floor rock failure depth were constructed. Based on MATLABsoftware platform, non-linear predicted model system of floor rock failure depth wascompiled, which could achieve fast and accurate prediction of floor rock failure depth.
     Finally, three-level evaluation model of floor rock water inrush in mines was establishedin order to achieve multistage distribution and screening progressive evaluation predictionfrom thickness to thinness and from empirical judgment to mechanical analysis on floor rockwater inrush in mines. To be specific, three-level evaluation model refers to primary judgment,detailed judgment and accurate judgment of floor rock water inrush in mines. Firstly, thecriterion of primary judgment is critical equation P=0.0025M2-0.0865M-16.8534/M+2.2440which is obtained by investigating and analyzing water inrush points of354mining faces inseven mining areas in North China and Lianshao mining area in Hunan Province,202roadway water inrush points and318safety actual mining faces, and then adopting themethod of mathematical statistical regression. The form of this critical equation is inaccordance with that of weak plate of homogeneous crack model P-M in terms of theconsideration of dynamic water pressure. As for the detailed judgment of floor rock waterinrush in mines, it is a further judgment on the possible water inrush occurrence areas basedon the primary judgment. What’s more, aggregative indicator method has taken severalinfluential factors on floor rock water inrush into account. Due to this judgment, it is muchmore comprehensive. Considering model simplification, the evaluation model of floor rockwater was built up based on inpervious intensity of expanding boundary. When it comes toaccurate judgment, it entails more specific prospecting on floor rock characteristics, aquifercharacteristics and occurring geological conditions. In this way, the meticulous and accuratefirst-hand data of water inrush evaluation areas needs to be mastered. Based on the above,mechanical stability analysis of floor rock was analyzed and then potential stability of floor rock under the influence of mining underground pressure and water pressure was determined.
引文
11-1代表监测钻孔1的1#应变传感器探头,下文其他意义类同。
    2L为工作面迎头距测孔距离,负值为推过测孔距离。下文相同。
    [1]国家发展和改革委员会.发改能源[2012]640号煤炭工业发展“十二五”规划[S],2012.3.
    [2]袁亮.低透气性煤层群无煤柱煤与瓦斯共采理论与实践[M].北京:煤炭工业出版社,2008.10
    [3]据“十一五”期间(2006-2010年)全国煤矿水害事故分析报告资料
    [4]据“973”计划“煤矿突水机理与防治基础理论研究”项目,http:973.cumt.edu.cn/list.asp?bigclass=1&minclass=63
    [5]据2009年“全国煤矿防治水技术研讨会”资料
    [6]据2011年“全国煤矿防治水技术研讨会”资料
    [7]国家煤矿安全监察局.煤矿防治水规定[M].北京:煤炭工业出版社,2009
    [8]王作宇,刘鸿泉,葛亮涛.采场底板岩体移动[[J].煤炭学报,1989(3):62-69
    [9]程学丰,刘盛东,刘登宪.煤层采后围岩破坏规律的声波CT探测[J].煤炭学报,2001,26(2):153-155.
    [10]朱术云,姜振泉,姚普,等.采场底板岩层应力的解析法计算及应用[J].采矿与安全工程学报,2007,24(2):191-194.
    [11]肖洪天,温兴林,张文泉,等.分层开采底板岩层移动的现场观测研究[J].岩土工程学报,2001,23(1):71-74.
    [12]吴基文,樊成.煤层底板岩体阻水能力原位测试研究[J].岩土工程学报,2003,25(1):67-70.
    [13]卫伟.矿压对肥城矿区底板破坏深度的实测研究[J].中国煤炭,2005,31(9):55-57.
    [14]何廷峻.利用跨采石门测试煤层底板破坏深度[J].矿山压力与顶板管理,2003,3:103-105.
    [15]施龙青,朱鲁,韩进,等.矿山压力对底板破坏深度监测研究[J].煤田地质与勘探,2004,32(6):20-23.
    [16]关英斌,李海梅,路军臣.显德汪煤矿9号煤层底板破坏规律的研究[J].煤炭学报,2003,28(2):121-125.
    [17]张平松,吴基文,刘盛东.煤层采动底板破坏规律动态观测研究[J].岩石力学与工程学报,2006,25(Supp.1):3009-3013.
    [18]朱术云,鞠远江,赵振中,等.超化煤矿“三软”煤层采动底板变形破坏的实测研究[J].岩土工程学报,2009,31(4):639-642
    [19]程久龙,于师建,宋扬等.煤层底板破坏深度的声波CT探测试验研究[J].煤炭学报,1999,24(6):576-579
    [20]翟培合.采场底板破坏及底板水动态监测系统研究[D].山东泰安:山东科技大学,2005
    [21]李子林,魏久传,刘同斌等.受水威胁工作面底板水情动态监测技术[J].煤炭学报,2006,31(增):78-81
    [22]张平松,吴基文,刘盛东.煤层采动底板破坏规律动态观测研究[J].岩石力学与工程学报,2006,25(S1):3009-3013
    [23]赵贤任,刘树才,李富等.煤层底板破坏带电阻率法异常特征研究[J].工程地球物理学报,2008,5(2):164-167
    [24]刘树才.煤矿底板突水机理及破坏裂隙带演化动态探测技术[D].江苏徐州:中国矿业大学,2008
    [25]段宏飞,姜振泉,朱术云等.综采薄煤层采动底板变形破坏规律实测分析[J].采矿与安全工程学报.2011,28(3):407-414.
    [26]段宏飞,姜振泉,张蕊等.杨村煤矿综采条件下薄煤层底板破坏深度的实测与模拟研究[J].煤炭学报,2011,26(S1):13-17.
    [27]弓培林,胡耀青,赵阳升等.带压开采底板变形破坏规律的三维相似模拟研究[J].岩石力学与工程学报,2005,24(23):4396-4372
    [28]冯梅梅,茅献彪,白海波等.承压水上开采煤层底板隔水层裂隙演化规律的实验研究[J].岩石力学与工程学报,2009,28(2):336一339
    [29]左人宇,龚晓南,桂和荣.多因素影响下煤层底板变形破坏规律研究[J].东北煤炭技术,1999,(5):2-6
    [30]冯启言,陈启辉.煤层开采底板破坏深度的动态模拟[J].矿山压力与顶板管理,1998,28(3):70-72
    [31]于小鸽.采场损伤底板破坏深度研究[D].山东青岛:山东科技大学,2011
    [32]李白英,弭尚振.采矿工程水文地质学[M].山东矿业学院教材,1988:20-50
    [33]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [34]王希良,梁建民,王进学.不同开采条件下煤层底板破坏深度的测试研究[J].煤,2000,9(3):22-23.
    [35]国家煤炭工业局,建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2000:46-58
    [36]王吉松,关英斌,鲍尚信,等.相似材料模拟在研究煤层底板采动破坏规律中的应用[J].世界地质,2006,25(1):86-90.
    [37]宋振骐,蒋宇静,杨增夫,等.煤矿重大事故预测和控制的动力信息基础的研究[M].北京:煤炭工业出版社,2003.
    [38]高延法,施龙青等.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社,1999:48-68
    [39]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15(2):46-55
    [40]黎良杰.采场底板突水机制的研究[D].徐州:中国矿业大学,1995
    [41]王作宇,刘鸿泉.论煤层底鼓突水[J].煤田地质与勘探,1989,2:41-43.
    [42]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993:130.
    [43]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社,1996.12.
    [44]彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社,2001.12.
    [45]施龙青,韩进.底板突水机理及预测预报[M].徐州:中国矿业大学出版社,2004.06.
    [46]维·德·斯列萨列夫.矿山岩石力学与矿井支护[M].北京:燃料工业出版社,1954.12.
    [47] B.斯列萨列夫.水体下安全采煤的条件,国外矿山防治水技术的发展和实践[R],冶金矿山设计院,1983.
    [48] MOTYKA J, BOSCH A P. Karstic phenomena in calcareous-dolomitic rocks and their influence overthe inrushes of water in lead-zine mines in Olkusz region(South of Poland)[J]. International Journal ofMine Water,1985,4(4):1-12
    [49] SAMMARCO O. Spontaneous inrush of water in underground mines[J]. International Journal of MineWater,1986,5(2):29-42
    [50] SAMMARCO O. Inrush prevention in an underground mine[J]. International Journal of Mine Water,1988,7(4):43-52
    [51] KUSCER D. Hydrological regime of the water inrush into the Kotredez CoalMine(Slovenia,Yugoslavia)[J]. Mine Water and Enviroment,1991,10:93-102
    [52] MIRONENKO V, STRELSKY F. Hydrogeomechanical problems in mining[J]. Mine Water andEnviroment,1993,12(1):35-40
    [53]中国统配煤矿总公司技术发展局,华北型煤田奥灰岩溶水综合防治工业性试验,1989.
    [54]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报,1999,8(4):11-18.
    [55]施龙青,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业大学学报,2005,42(1):16-23.
    [56]施龙青.底板突水机理研究综述[J].山东科技大学学报:自然科学版,2009,28(3):17-23.
    [57]施龙青,宋振骐.采场底板“四带”划分理论研究[J].焦作工学院学报(自然科学版),2000,19(4):241-245.
    [58]张金才.煤层底板突水预测的理论与时间[J].煤田地质与勘探,1989,4:38-41.
    [59]张金才,刘天泉.煤层底板采动因素的分析与研究[J].煤矿开采,1993,4:35-39.
    [60]张金才,刘天泉.论煤层点采动裂隙带的深度及分布特征[J].煤炭学报,1990,6:46-55.
    [61]张金才,肖奎仁.煤层底板采动破坏特征研究[J].煤矿开采,1993,(3):44-49.
    [62]王作宇,刘鸿泉,王培彝等.承压水上采煤学科理论与实践[J].煤炭学报,1994,19(1):40-48.
    [63]杨映涛,李抗抗.用物理相似模拟技术研究煤层底板突水机理[J],煤田地质与勘探,1997,(25):33-36.
    [64]宋景义,王成绪等.论承压水在岩体裂隙中的静力学效应,煤科总院西安分院文集(第五集),1991.
    [65]牛建立.煤层底板采动岩水耦合作用与高承压水体上安全开采技术研究[D].煤炭科学研究总院西安分院博士学论文,2008.
    [66]郑纲.煤矿底板突水机理与底板突水实时监测技术研究[D].长安大学博士学位论文,2004.
    [67]许学汉,王杰等.煤矿突水预报研究.北京:地质出版社,1992.
    [68]荆自刚.峰峰二矿开采活动与底板突水关系研究[J].煤炭学报,1984,(4).
    [69]王良,庞荫恒,郝顾明等.采动矿压与底板突水的研究[J].煤田地质与勘探,1986,(3).
    [70]黎良杰,钱鸣高,殷有泉.采场底板突水相似材料模拟研究[J].煤田地质与勘探,1997,25(1):33-36.
    [71]钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J].岩土工程学报,1995,17(6):56-61.
    [72] Xu Jialin, Qian Minggao, Study and application of mining-induced fracture distribution in greenmining [J]. Journal of China University of Mining&Technology,2004,33(2):141-144.
    [73]钱鸣高,缪协兴,许家林,茅献彪.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [74]钱鸣高,石平五,许家林等.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [75] Xizheng Zhou,Jianbiao Bai. Calculating parameters of roadways by using numerical method
    [C].PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON COMPUTERMETHODS AND ADVANCES IN GEOMECHANICS. Edited by JIAN-XIN YUAN. Netherlands:A.A.Balkema Publishers,1997:1527-1530
    [76]黎良杰.采场底板突水机理的研究[D].中国矿业大学博士学位论文,1995.
    [77]黎良杰,钱鸣高,闻全,孟益平.底板岩体结构稳定性与底板突水关系的研究[J].中国矿业大学学报,1995,24(4):18-23.
    [78]浦海.保水采煤的隔水关键层模型及力学分析与应用[D].中国矿业大学博士学位论文,2007.
    [79]白海波.奥陶系顶部岩层渗流力学特性及作为隔水关键层应用研究[D].中国矿业大学博士学位论文,2008.
    [80]王经明.承压水沿底板递进导升机理的模拟与观测[J].岩土工程学报.1999,5(21):546-550
    [81]王经明.承压水沿底板递进导升机理的物理方法研究[J].煤田地质与勘探,1992,6(27):40-44
    [82]王经明.承压水沿煤层底板递进导升的突水机理及其应用[J].煤炭科学研究总院博士学位论文,2004
    [83] Wang Jingming, Ge Jiade, Wu Yuhua, Deng Xiqing, He Zhaoli, Mechanism on progressive intrusion ofpressure water under coal seams into protective aquiclude and its application in prediction of waterinrush[J]. Journal of Coal Science&Engineering,1996,2(2):9-15.
    [84] Wang Jingming, Li Jingsheng, Gao Zhilian, Yang Baoyu, Coupling model of two phase flow in afracture-rock matrix system and its stochastic feature analysis [J]. Journal of Coal Science&Engineering,1998,4(1):5-10.
    [85]高延法,于永辛,牛学良.水压在底板突水中的力学作用[J].煤田地质与勘探,1996,24(6):37-39.
    [86]高延法,李白英.受奥灰承压水威胁煤层采场底板变形破坏规律研究[J].煤炭学报,1992,17(2):32-39.
    [87]施龙青,韩进,宋扬.用突水概率指数法预测采场底板突水[J].中国矿业大学学报,1999,28(5):442-460
    [88]潘岳,谢金玉,顾善发.非均匀围压下矿井断层冲击地压的突变理论分析[J].岩石力学与工程,2001,20(3):310-314.
    [89]潘岳,刘英,顾善发.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程,2001,20(1):43-48.
    [90]陈忠辉,唐春安,傅宇方.岩石失稳破裂的变形突跳研究[J].工程地质学报,1997,5(2):143-149.
    [91] Kesseru, Z. S.矿坑突水的两个状态理论模型[J].水文地质译丛,1987.
    [92]邵爱军,等.煤矿地下水与底板突水[M].北京:地震出版社,2001.
    [93]王连国,宋扬.底板突水煤层的突变学特征[J].中国安全科学学报,1999,9(5):10-13.
    [94]王连国,宋扬.煤层底板突水突变模型[J].工程地质学报,2000,8(2):160-164.
    [95]王连国,宋扬.底板突水的非线性特征及预测[M].北京:煤炭工业出版社,2001.
    [96]王连国,宋扬,缪协兴.基于尖点突变模型的煤层底板突水预测研究[J].岩石力学与工程学报,2003,22(4):573-577.
    [97]王连国,缪协兴.岩石渗透率与应力、应变关系的尖点突变模型[J].岩石力学与工程学报,2005,24(23):4210-4214.
    [98]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149-154.
    [99]王凯,位爱竹,陈彦飞等.煤层底板突水的突变理论预测方法及应用[J].中国安全科学学报,2004,14(1):11-15.
    [100] Yang T H, Liu J, Zhu W C, et al. A coupled flow-stress-damage model for groundwater outburstsfrom an underlying aquifer into mining excavations[J]. International Journal of Rock Mechanics andMining Sciences.2007,44(1):87-97.
    [101] Cao S G, Liu Y B, Wang Y P. A forecasting and forewarning model for methane hazard in workingface of coal mine based on LS-SVM[J]. Journal of China University of Mining and Technology.2008,18(2):172-176.
    [102] Xing Shang L, Jia Lin X. A Model of void distribution in collapsed zone based on fractal theory[J].Procedia Earth and Planetary Science.2009,1(1):203-210.
    [103] Lu Y, Liu Y, Li X, et al. A new method of drilling long boreholes in low permeability coal byimproving its permeability[J]. International Journal of Coal Geology.2010,84(2):94-102.
    [104] Yavuz H. An estimation method for cover pressure re-establishment distance and pressuredistribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics andMining Sciences.2004,41(2):193-205.
    [105] Kong H L, Miao X X, Wang L Z, et al. Analysis of the Harmfulness of Water-Inrush from CoalSeam Floor Based on Seepage Instability Theory[J]. Journal of China University of Mining andTechnology.2007,17(4):453-458.
    [106] Zhu S Y, Jian Z Q, Hou H L, et al. Analytical model and application of stress distribution on miningcoal floor[J]. Journal of China University of Mining and Technology.2008,18(1):13-17.
    [107] Qiu D, Li S, Zhang L, et al. Application of GA-SVM in classification of surrounding rock based onmodel reliability examination[J]. Mining Science and Technology (China).2010,20(3):428-433.
    [108] Wang L G, Miao X X, Dong X, et al. Application of quantification theory in risk assessment of mineflooding[J]. Journal of China University of Mining and Technology.2008,18(1):38-41.
    [109] Yan Z G, Zhang H R, Du P J. Application of SVM in analyzing the headstream of gushing water incoal mine[J]. Journal of China University of Mining and Technology.2006,16(4):433-438.
    [110] Miao X X, Li S C, Chen Z Q. Bifurcation and catastrophe of seepage flow system in broken rock[J].Mining Science and Technology (China).2009,19(1):1-7.
    [111] Wang J A, Park H D. Coal mining above a confined aquifer[J]. International Journal of RockMechanics and Mining Sciences.2003,40(4):537-551.
    [112] Wang L G, Zhang Z K, Lu Y L, et al. Combined ANN prediction model for failure depth of coalseam floors[J]. Mining Science and Technology (China).2009,19(5):684-688.
    [113] Wei J, Li Z, Shi L, et al. Comprehensive evaluation of water-inrush risk from coal floors[J]. MiningScience and Technology (China).2010,20(1):121-125.
    [114] Wang L, Cheng Y, Yang Y, et al. Controlling the effect of a distant extremely thick igneous rock inoverlying strata on coal mine disasters[J]. Mining Science and Technology (China).2010,20(4):510-515.
    [115] Wang L, Miao X, Wu Y, et al. Discrimination conditions and process of water-resistant key strata[J].Mining Science and Technology (China).2010,20(2):224-229.
    [116] Wang L, Miao X, Wu Y, et al. Discrimination conditions and process of water-resistant key strata[J].Mining Science and Technology (China).2010,20(2):224-229.
    [117] Islam M R, Hayashi D, Kamruzzaman A B M. Finite element modeling of stress distributions andproblems for multi-slice longwall mining in Bangladesh, with special reference to the Barapukuriacoal mine[J]. International Journal of Coal Geology.2009,78(2):91-109.
    [118] Tan Y L, Zhao T B, Xiao Y X. In situ investigations of failure zone of floor strata in mining closedistance coal seams[J]. International Journal of Rock Mechanics and Mining Sciences.2010,47(5):865-870.
    [119] Wu Q, Wang M, Wu X. Investigations of groundwater bursting into coal mine seam floors from faultzones[J]. International Journal of Rock Mechanics and Mining Sciences.2004,41(4):557-571.
    [120] Zhang J. Investigations of water inrushes from aquifers under coal seams[J]. International Journal ofRock Mechanics and Mining Sciences.2005,42(3):350-360.
    [121] Han J, Shi L Q, Yu X G, et al. Mechanism of mine water-inrush through a fault from the floor[J].Mining Science and Technology (China).2009,19(3):276-281.
    [122] Guo X, Ma X. Mine water discharge prediction based on least squares support vector machines[J].Mining Science and Technology (China).2010,20(5):738-742.
    [123] Cao S G, Hou S S, Li Z H. Theory and technology of preventing water from flooding roadways[J].Journal of China University of Mining and Technology.2008,18(4):500-503.
    [124]陈佩佩,管恩太,邱显水.我国华北煤矿底板突水危险性评价[J].煤矿开采,2004,9(2):1-9
    [125]武强,庞炜,戴迎春等.煤层底板突水脆弱性评价的GIS与ANN耦合技术[J].煤炭学报,2006,31(3):314-319
    [126]廖巍,周荣义,李树清.基于小波神经网络的煤层底板突水非线性预测方法研究[J].2006,16(11):24-28
    [127]靳德武,陈健鹏,王延福等.煤层底板突水预报人工神经网络系统的研究[J].西安科技学院学报,2000,20(3):214-216
    [128]黄国明,苏文智.利用神经网络预测煤层底板突水[J].华东地质学院学报,1999,19(2):170-184
    [129]王连国,宋扬.煤层底板突水组合人工神经网络预测[J].岩土工程学报,2001,23(4):502-505
    [130]姜成志,张绍兵.建立在神经网络基础上的煤矿突水预测模型[J].黑龙江科技学院学报,2006,16(1):8-11
    [131]尹尚先.煤层底板突水模式及机理研究[J].西安科技大学学报,2009,29(6):661-665
    [132]李连崇,唐春安,左宇军等.煤层底板下隐伏陷落柱的滞后突水机理[J].煤炭学报,2009,34(9):1212-1216.
    [133]朱德仁,岩石工程破坏准则[J].煤炭学报,1994,19(1):15-20.
    [134]张文泉,刘伟韬,王振安.煤矿底板突水灾害地下三维空间分布特征[J].中国地质灾害与防治学报,1997,8(1):39-45.
    [135]张文泉,刘伟韬,张红日等.煤层底板岩层阻水能力及其影响因素的研究[J].岩土力学,1998,19(4):31-35.
    [136]张希诚,施龙青,季良军.曹庄井田深部防治水工作研究[J].焦作工学院学报,1998,17(6):438-441.
    [137]卜昌森,张希诚.综合水文地质勘探在煤矿岩溶水害防治中的应用[J].煤炭科学技术,2001,29(3):32-34.
    [138]胡宽瑢,曹玉清.采掘工作面底板突水和防治原则的基本理论研究[J].华北地质矿产杂志,1997,12(3):203-292.
    [139]李金凯,王延福.华北类型岩溶煤矿床矿坑突水水量预测研究[J].水文地质与工程地质,1985,25-31.
    [140]李庆广,王延福.华北类型岩溶煤矿床矿坑突水水量预测方法研究[J].煤炭科学技术,1987,(3):24-26.
    [141]李京红,王晓明.带压安全开采预测模式及应用方法研究[J].煤田地质与勘探,1997,25(2):34-37.
    [142]施龙青,韩进等.用突水概率指数法预测采场底板突水[J].中国矿业大学学报,1999,28(5):442-460.
    [143]倪宏革,罗国煜.煤矿水害的优势面机理研究[J].煤炭学报,2000,25(5):518-521.
    [144]武强,张志龙,马积福.煤层底板突水评价的新型实用方法I——主控指标体系的建设[J].煤炭学报,2007,32(1):42-47.
    [145]武强,张志龙,张生元.煤层底板突水评价的新型实用方法II——脆弱性指数法[J].煤炭学报,2007,32(11):1121-1126.
    [146]武强,庞炜,戴迎春.煤层底板突水脆弱性评价的GIS与ANN耦合技术[J].煤炭学报,2006,31(3):314-319.
    [147]郑世书,孙亚军等. GIS在殷庄煤矿微山湖下采区工作面涌水预测中的应用[J].中国矿业大学学报,1994,23(2):48-56.
    [148]尹会永,魏久传,刘同彬.基于多源信息复合的煤层底板突水评价[J].山东科技大学学报(自然科学版),2008,27(2):6-9.
    [149]石秀伟,胡耀青,张和生.基于GIS的煤层底板突水预测理论模型[J].太原理工大学学报,2008,39(专辑):244-246.
    [150]雷贵生,韩德品.矿井电法探测工作面底板潜在突水构造的应用[J].煤炭科学技术,2007,35(6):24-26.
    [151]于小鸽,施龙青,魏久传.采场底板“四带”划分理论在底板突水评价中的应用[J].山东科技大学学报(自然科学版),2006,25(4):14-17.
    [152]中国生,江文武,徐国元.底板突水的突变理论预测[J].辽宁工程技术大学学报,2007,26(2):216-218.
    [153]刘伟韬,张文泉,李加祥.用层次分析—模糊评判进行底板突水安全性评价[J].煤炭学报,2000,25(3):278-282.
    [154]武强,刘金韬,董东林等.煤层底板断裂突水时间弱化效应机理的仿真模拟研究——以开滦赵各庄煤矿为例[J].煤炭学报,2001,75(4):554-561.
    [155]王连国,宋扬.煤层底板突水自组织临界特性研究[J].岩石力学与工程学报,2002,21(8):1205-1208.
    [156]海龙,梁冰.倾斜煤层开采对底板突水影响的数值模拟[J].辽宁工程技术大学学报(自然科学版),2009,28(Suppl):216-218.
    [157]任艳芳,齐庆新.采动影响下煤层底板突水预测[J].辽宁工程技术大学学报(自然科学版),2009,28(Suppl):263-265.
    [158]韩进,施龙青,翟培合等.多属性决策及D-S证据理论在底板突水决策中的应用[J].岩石力学与工程学报,2009,28(增2):3727-3732.
    [159]邵太升,邵爱军,彭建平.峰峰五矿底板突水数值模拟及涌水量预测[J].水文地质工程地质,2009,4:27-31.
    [160]乔伟,李文平,赵成喜.煤矿底板突水评价突水系数-单位涌水量法[J].岩石力学与工程学报,2009,28(12):2466-2474.
    [161]孟召平,王睿,汪元有,等.开滦范各庄井田12煤层底板突水危险性的地质评价[J].采矿与安全工程学报,2010,27(3):310-315.
    [162]蒋金泉.采场围岩应力与运动[M].北京:煤炭工业出版社,1992.
    [163]肖远见,李美海,周定武.开采层底板岩层的应力分布实验及探讨[J].矿业安全与环保,2005,22(5):28-21.
    [164]张晓君.矿柱及围岩对采空区破坏影响的数值模拟研究[J].采矿与安全工程学报,2006,22(1):122-126.
    [165]郭文兵,李楠,王有凯.软岩巷道围岩应力分布规律光弹性模拟实验研究[J].煤炭学报,2002,27(6):596-600.
    [166]谢广祥,杨科,常聚才.综放开采煤层支承压力分布规律现场实测分析[J].煤炭科学技术,2006,24(2):1-2.
    [167]谢广祥,杨科,刘全明.综放倾向煤柱支承压力分布规律研究[J].岩石力学与工程学报,2006,25(2):545-549.
    [168] Medhurst.T. P,Brown.E. T. A study of the mechanical behaviour of coal for pillar design[J].International Journal of Rock Mechanics&Mining Sciences,1998,25(8):1087-1105.
    [169] Tonon.F, Amadei.B. Stresses in anisotropic rock masses: an engineering perspective building ongeological knowledge[J]. International Journal of Rock Mechanics&Mining Sciences,2002,40:1099–1120.
    [170] Singh R.N, Porter I, Hematian J. Finite element analysis of three-way roadway junctions in longwallmining[J]. International Journal of Coal Geology,2001,45:115-125.
    [171] Miao Xie-xing,Lu Ai-hong,Mao Xian-biao,et al. Numerical simulation for roadways in swellingrock under coupling functio of water and ground pressure[J]. Journal of China University of Miningand Technolog,2002,12(2):120-125.
    [172] Jing Hong-wen, Xu Guo-an, Ma Shi-zhi. Numerical analysis on displacemen law of discontinuousrock mass in broken rock zone for deep eoadway[J]. Journal of China University of Mining andTechnolog,2001,11(2):122-127.
    [173]Tang Ju-peng, Pan Yi-shan, Li Ying-jie. Numerical simulation of deep-level rockburst in Fuxincoalfield[J]. Journal of Coal Science and Engineering,2005,11(1):12-16.
    [174] Liu Yu-de,Zhang Dong-sheng, Wang Hong-sheng,et al. Simulation Analysis of Coal Mining withTop-Coal Caving Under Hard-and-Thick Strata[J]. Journal of China University of Mining andTechnolog,2006,16(2):110-114.
    [175] Yasitli N.E, Unver B.2Dnumerical modeling of longwall mining with top-coal caving[J].International Journal of Rock Mechanics&Mining Sciences,2005,42:219–225.
    [176] Ma Jin-rong,Debasis Deb, Chugh Y.P. Analysis of the effects of weak floor strata on longwall facestability using finite element modeling[J]. Journal of Coal Science and Engineering,2001,7(1):1-8.
    [177] Huang Kan,Peng Su-ping, Luo Li-ping,et al. Determination of rational staggered distance betweendouble-longwall Faces in mining operation on confined aquifer[J]. Journal of China University ofMining and Technolog,2000,10(2):216-220.
    [178] Zhao Chong-bin,Hebblewhite B.K,Galvin J.M. Analytical solutions for mining induced horizontalstress in floors of coal mining panels[J]. Computer Methods in Applied Mechanics and Engineering,2000,184:125-142.
    [179]孙建.倾斜煤层底板破坏特征及突水机理研究[D].中国矿业大学,2011.
    [180]范钦珊.工程力学[M].北京:机械工业出版社,2002.
    [181]李志西,杜双奎.试验优化设计与统计分析[M].北京:科学出版社,2010.6.
    [182]余航,焦李成.基于正交试验设计的克隆选择函数优化[J].软件学报,2010,(5);950-967.
    [183]郭文兵,邹友峰,邓喀中.煤层底板采动导水破坏深度计算的神经网络方法[J].中国安全科学学报.2003(3):37-40.
    [184]于小鸽,韩进,施龙青等.基于BP神经网络的底板破坏深度预测[J].煤炭学报.2009(6):731-736.
    [185]于小鸽.采场损伤底板破坏深度研究[D].山东科技大学,2011.
    [186]张朋,王一,刘盛东,等.工作面底板变形与破坏电阻率特征[J].煤田地质与勘探.2011(1):64-67.
    [187]高召宁,孟祥瑞,赵光明.煤层底板变形与破坏规律直流电阻率CT探测[J].重庆大学学报.2011(8):90-96.
    [188]张小鸣.煤层底板突水动态监测系统的设计与实现[J].煤炭工程.2011(1):108-110.
    [189]臧思茂,张德辉,李刚.煤层开采对底板的破坏规律及其水害防治技术[J].辽宁工程技术大学学报(自然科学版).2011(3):341-344.
    [190]臧思茂,崔芳鹏,王书强,等.团柏煤矿下组煤开采底板突水防治技术与对策[J].煤炭科学技术.2011(6):93-96.
    [191]贾明魁.赵固一矿高压水工作面底板突水性评价[J].煤炭科学技术.2011(1):18-22.
    [192]王秋生,姜玉海.底板破坏深度动态监测技术的应用[J].煤矿安全.2011(2):90-92.
    [193]李冲.邯邢地区煤层底板破坏规律研究[D].河北工程大学,2011.
    [194]李宏武.煤层底板破坏深度的应变法研究[J].矿业安全与环保.2011(6):44-46.
    [195]高召宁,孟祥瑞.采动条件下煤层底板变形破坏特征研究[J].矿业安全与环保.2010(3):17-20.
    [196]徐玉增.葛泉矿带压开采下组煤底板破坏深度探测研究[J].中国煤炭.2010(4):48-51.
    [197]王家臣,许延春,徐高明,等.矿井电剖面法探测工作面底板破坏深度的应用[J].煤炭科学技术.2010(1):97-100.
    [198]史峰,王小川,郁磊等. MATLAB神经网络30个案例分析[M].北京:北京航空航天大学生出版社,2010.
    [199] Technical Committee for Earthquake Geotechnical Engineering,TG4,ISSMFE.Manual for Zonationon Seismic Geotechnical Hazards[M].Tokyo: The Japanese Society of Soil Mechanics andFoundation Engineering,1993,47-70.
    [200]孙进忠,陈祥,王余庆.岩土边坡地震崩滑的三级评判预测[J].地震研究.27(3):256-263.
    [201]中国统配煤矿总公司生产局,煤矿科技情报研究所.煤矿水害事故典型案例汇编[M].北京:煤炭工业出版社,1992
    [202]中国煤田地质总局.中国煤田水文地质学[M].北京:煤炭工业出版社,2000.
    [203]段宏飞,姜振泉,朱术云等.深部矿井岩石水稳性微观机理及强度软化特性试验研究[J].岩土工程学报,2012,34(9):2774-2782(EI收录)
    [204]李金凯.矿井岩溶水防治[M].北京:煤炭工业出版社,1990.
    [205]《中国煤矿防治水技术经验汇编》编委会.中国煤矿防治水技术经验汇编[M].北京:煤炭工业出版社,1998.
    [206]吴基文,张朱亚,赵开全等.淮北矿区高承压岩溶水体上采煤底板水害防治措施[C].矿山地质灾害成灾机理与防治技术研究与应用.张明旭,赵伟主编.徐州:中国矿业大学出版社,2009:12-16.
    [207]姜振泉,季梁军,左如松,等.岩石在伺服条件下的渗透性与应变、应力的关联性特征[J].岩石力学与工程学报,2002,21(10):1442-1446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700