用户名: 密码: 验证码:
常温低基质PN-ANAMMOX耦合工艺脱氮效能及微生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中的氮素过多容易引起富营养化,给水体环境带来危害。与传统硝化反硝化生物脱氮相比,亚硝化(PN)-厌氧氨氧化(ANAMMOX)工艺具有节省曝气能耗、无需外加碳源、污泥产量低等优点,但其主要应用于高温(30-40℃)高氨氮(>500mg/L)污水处理。另外,微生物群落结构是其功能发生的基础,氨氧化菌(AOB)与厌氧氨氧化菌是亚硝化与厌氧氨氧化工艺中的功能微生物,本文通过对亚硝化与厌氧氨氧化反应器内微生物群落特性及功能菌群进行研究,为实现常温低基质PN-ANAMMOX提供理论基础与借鉴。
     开展生物膜(SBBR)和活性污泥(SBR)亚硝化试验,并比较两种形式反应器在常温低基质阶段的亚硝化效果。创建了浓度梯度驯化法,利用逐渐降低进水氨氮浓度方式来驯化反应器内AOB,进而实现了常温低基质条件下SBBR和SBR快速启动。SBBR与SBR微生物群落结构均受FA浓度影响而发生变化。在低氨氮阶段,SBR反应器内AOB属于亚硝化单胞均(Nitrosomonas),为反应器内优势菌群,NOB所占比例极少,这是SBR在常温低基质阶段保持稳定亚硝化的原因。
     开展低温ANAMMOX试验,以期为厌氧氨氧化工艺在冬季低温下运行提供借鉴。在冬季低温条件下(15-16.5℃),火山岩填料生物滤柱平均总氮去除负荷达1.57kg/(m~3d),明显高于陶粒填料反应器(0.52kg/(m~3d))。分析原因发现火山岩填料上ANAMMOX菌所占比例高于陶粒填料,火山岩更适合作为富集ANAMMOX菌的生物滤池填料。对火山岩填料生物滤柱沿层三氮分析,发现大部分氨氮与亚氮在反应器中部成比例去除,分析原因发现ANAMMOX菌在不同滤层菌种相同(Candidatus Kuenenia stuttgartiensis),但其在中部所占比例最高。另外,在反应器不同滤层,存在同一种AOB(Nitrosomonas sp. ENI-11)。
     在低温ANAMMOX生物滤柱基础上,通过降低进水氨氮浓度,考察反应器在常温低基质进水下的脱氮效果。试验进水为自然温度(14.5-24.5℃),反应器在低基质阶段Ⅰ(78.7mg/L氨氮)与低基质阶段Ⅱ(46.5mg/L氨氮)都有很好的脱氮效果,其中在低基质阶段Ⅱ总氮去除负荷平均值为2.26kg/(m~3·d),最高达3.04kg/(m~3d)。反应器中ANAMMOX菌在高、低基质阶段Ⅰ和Ⅱ菌属相同,同为Candidatus Kuenenia stuttgartiensis,但其在三个阶段的相对比例有所差异,分别为41.6%、37.9%和36.3%。在低基质阶段Ⅱ沿层脱氮试验表明,大部分氮素在生物滤柱中部得到去除。Candidatus Kuenenia stuttgartiensis对于温度和基质浓度有着较宽泛的适应性,发现其能在常温低基质环境中保持较高的活性,因而有希望将该ANAMMOX菌种应用于常温低氨氮污水处理。
     在前面单体亚硝化(PN)与厌氧氨氧化(ANAMMOX)基础上,进行PN-ANAMMOX串联试验,考察该工艺对常温(18-25℃)低基生活污水的脱氮效果。PN单元启动亚硝化后,推流式连续流运行80天时间内,保持较低的DO浓度(0.1-0.6mg/L),出水NO_2~--N/NH_4~+-N值比较稳定,可以为后续ANAMMOX单元提供适宜的进水。PN-ANAMMOX串联后,ANAMMOX单元添加成熟ANAMMOX污泥25天后启动成功,其最高总氮去除负荷达0.99kg/(m~3d),最高总氮去除率为85.6%,显示出良好的脱氮潜力。耦合因素分析发现,PN单元出水NO_2~--N/NH_4~+-N为关键因素,比值在1.01-1.45范围内时,ANAMMOX单元出水能够满足一级A标准(GB18918-2002)。
     PN-ANAMMOX耦合成功后,亚硝化污泥中以球形菌与短杆菌为主;功能微生物AOB为优势菌群,其菌属为Nitrosomonas sp.;PN单元存在一些异养菌,但并没有影响AOB的优势地位与反应器的亚硝化效果。ANAMMOX单元生物膜上微生物以球形菌为主,ANAMMOX菌为优势菌群;ANAMMOX菌种由接种的Candidatus Kuenenia stuttgartiensis转变为Candidatus Brocadia fulgida,后者更能适应含低基质有机物的生活污水环境,因而成为生物膜上优势ANAMMOX菌种;生物膜上还存在一些AOB与反硝化菌,它们与ANAMMOX菌一起组成功能菌群,以适应进水NO_2~--N/NH_4~+-N比值的微小波动,保持ANAMMOX单元稳定的脱氮效果。
The current wastewater treatment systems are required for removal ofnitrogenous compounds, which could cause eutrophication of surface water bodies.Compared with the conventional nitrification/denitrification process, partialnitrification (PN) coupled with anaerobic ammonium-oxidizing (ANAMMOX)process is an ideal biological nitrogen removal choice. It could save aeration energyconsumption, as well as less biomass production and without organic carbonconsumption. However, most of PN-ANAMMOX processes focused on treatingwarm (>30℃) and concentrated (>500mgN/L) waste streams. On the other hand,the key of promotion process relies on knowing the microbial communityinvolvement. Ammonia oxidizing bacteria (AOB) and ANAMMOX bacteria arefunctional microorganisms in PN-ANAMMOX process. Analysis of microbialcommunity structures and functional microorganisms will contribute to PN andANAMMOX processes optimization. Hence, the aim of the present study was toprovide theoretical guidance for PN-ANAMMOX process treating low strengthwastewater at ambient temperature.
     Partial nitrifying experiments were carried out basing on sequencing batchbiofilm reactor (SBBR) and sequencing batch reactor (SBR), which were used forcomparison partial nitrification treating low strength nitrogen wastewater at ambienttemperature. Partial nitrification of SBBR and SBR could be rapidly realized sinceAOB were domesticated in low strength wastewater as influent ammoniumconcentration gradually decreased. Free ammonia (FA) was the key factor affectingmicrobial community of both SBBR and SBR. Nitrosomonas were predominantAOB in SBR with low ammonia influent. The microbial characteristic ofpredominant AOB and less NOB contributed to stable partial nitrification of SBRtreating low strength wastewater at ambient temperature.
     Experiments of ANAMMOX were carried out under low temperature, with theaim to provide a reference for ANAMMOX process running and optimization inwinter time. The biofilter filled with volcanic rocks had higher nitrogen removalcapacity than that of ceramic packed biofilter at low temperature (15-16.5℃) inwinter. Total nitrogen removal rate of B2was1.57kg/(m~3d), which was muchhigher than that of B1(0.52kg/(m~3d)). The genus of ANAMMOX bacteria was bothCandidatus Kuenenia stuttgartiensis in two reactors. However, ANAMMOXbacteria had more densely distribution in volcanic rocks biofilter, which indicatedthat volcanic rocks were more suitable for ANAMMOX bacteria enrichment in biofilters. Nitrogen removal rate along volcanic ANAMMOX biofilter wasinvestigated. Results showed that a large proportion of ammonia and nitriteproportional disappeared in the middle part of biofilter. It was owed to theproportion of ANAMMOX bacteria in middle of biofilter was bigger than that inother parts by FISH analysis. There was only one type of ANAMMOX bacteriumand AOB present in different parts of biofilter, which were identified as CandidatusKuenenia stuttgartiensis and Nitrosomonas sp. ENI-11, respectively.
     Based on previous volcanic ANAMMOX biofilter, experiments were carriedout to investigate nitrogen removal rate of bioreactor for low strength wastewatertreatment at ambient temperature (14.5-24.5℃). The results showed ANAMMOXbiofilter had the ability to maintain high capacity of nitrogen removal rate underlow ammonia concentrations of periodⅠ(78.7mg/L) and periodⅡ(46.5mg/L). Forexample, average and maximum total nitrogen removal rates were2.26kg/(m~3·d)and3.04kg/(m~3·d) at periodⅡ. The sequence of ANAMMOX16SrRNAidentification revealed that Candidatus Kuenenia stuttgartiensis occurred in all highand low matrix periods. However, it had a little difference of relative proportions inthree periods, which were accounted for41.6%、37.9%and36.3%. Nitrogenremoval rate along biofilter showed that a large proportion of ammonia and nitriteproportional disappeared in the middle part of biofilter. Candidatus Kueneniastuttgartiensis had wide adaptability to variable temperature and substrateconcentrations, which indicated that it had potential to apply such ANAMMOXbacteria for low strength wastewater treatment at ambient temperature.
     On the basis of independent running partial nitrification and ANAMMOXreactors, PN-ANAMMOX experiments were developed for sewage treatment atambient temperature. After PN unit start-up, plug-flow continuous stream runningwas carried out with low DO concentration (0.1to0.6mg/L). EffluentNO_2~--N/NH_4~+-N of PN was relatively stable, which was suitable for subsequentANAMMOX unit. Biofilter was successful started up after25days by addingmature ANAMMOX sludge. The bioreactor had a satisfactory nitrogen removalpotential with maximum nitrogen removal rate of0.99kg/(m~3·d) and maximumnitrogen removal efficiency of85.6%. Analysis of PN-ANAMMOX couplingfactors showed that NO_2~--N/NH_4~+-N was the key factor, which could affect nitrogenremoval of ANAMMOX biofilter. The outlet water quality of ANAMMOX unitsatisfied the Standard A of the first class in “Discharge standard of pollutants formunicipal wastewater treatment plant (GB18918-2002)” when the ratio ofNO_2~--N/NH_4~+-N was between1.01to1.45.
     After PN-ANAMMOX successfully coupled, spherical and short rod bacteria were predominant in partial nitrifying sludge, in which AOB was the dominantbacteria. The genus of AOB was Nitrosomonas sp., which could be coexisted withother heterotrophic bacteria harmony in PN unit. Combining FISH analysis withSEM observations confirmed the superiority of ANAMMOX bacteria in thecultivated biofilm. The principal anammox bacteria shifted from members related toCandidatus Kuenenia stuttgartiensis present in the initial inoculum to membersrelated to Candidatus Brocadia fulgida in biofilm. Candidatus Brocadia fulgidawere the functional ANAMMOX bacteria in the reactor, which could survivecomfortably in sewage with a limited amount of COD. AOB and denitrifyingbacteria were also found in the bifofilm, which were the members of microbialcommunities living together with ANAMMOX bacteria. The functional microbialpopulations contributed to stable nitrogen removal rate of ANAMMOX unit toaccommodate the slight fluctuation of influent NO_2~--N/NH_4~+-N.
引文
[1]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    [2]曹建平.基于亚硝化和厌氧氨氧化的新型生物脱氮技术的应用研究[D].北京市环境保护科学研究院,2007:1-2.
    [3] Schmidt I., Sliekers O., Schmid M., et al. Aerobic and Anaerobic AmmoniaOxidizing Bacteria--Competitors or Natural Partners?[J]. FEMS MicrobiolEcol,2002,39(3):175-181.
    [4]李祥,黄勇,袁怡,等.亚硝化的实现及与厌氧氨氧化联合工艺研究[J].水处理技术,2011(12):10-14.
    [5]刘涛,李冬,曾辉平,等.氨氮浓度对CANON工艺功能微生物丰度和群落结构的影响[J].环境科学,2013(02):773-780.
    [6] Verstraete W., Philips S. Nitrification-Denitrification Processes andTechnologies in New Contexts [J]. Environmental Pollution,1998,102(1,Supplement1):717-726.
    [7] Muller Eb Fau-Stouthamer A. H., Stouthamer Ah Fau-van Verseveld H. W.,van Verseveld H. W. Simultaneous NH3Oxidation and N2Production atReduced O2Tensions by Sewage Sludge Subcultured with ChemolithotrophicMedium [J]. Biodegradation,1995,6(4):339-49.
    [8]王惠,刘研萍,陶莹,等.厌氧氨氧化菌脱氮机理及其在污水处理中的应用[J].生态学报,2011(07):2019-2028.
    [9]李军媛.短程硝化—厌氧氨氧化耦合工艺处理低C/N废水试验研究[D].长安大学,2008:1-5.
    [10] Hovanec T. A., DeLong E. F. Comparative Analysis of Nitrifying BacteriaAssociated with Freshwater and Marine Aquaria [J]. Appl Environ Microbiol,1996,62(8):2888-2896.
    [11]吕炳南,陈志强.污水生物处理新技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [12] Voets J. P., Wanstaen H., Verstraete W. Removal of Nitrogen From HighlyNitrogenous Wastewater [J]. J Wat Pollution Control Fed,1975,47:394-398.
    [13] Peng Y., Zhu G. Biological Nitrogen Removal with Nitrification andDenitrification via Nitrite Pathway [J]. Appl Microbiol Biotechnol,2006,73(1):15-26.
    [14] Hellinga C., Schellen A. A. J. C., Mulder J. W., et al. The Sharon Process: AnInnovative Method for Nitrogen Removal from Ammonium-rich Waste Water[J]. Water Science and Technology,1998,37(9):135-142.
    [15] Laanbroek H., Bodelier P. E., Gerards S. Oxygen Consumption Kinetics ofNitrosomonas europaea and Nitrobacter hamburgensis Grown in MixedContinuous Cultures at Different Oxygen Concentrations [J]. Archives ofMicrobiology,1994,161(2):156-162.
    [16] Alleman J. Elevated Nitrite Occurrence in Biological Wastewater TreatmentSystems [J]. Water Sci Technol,1984,17:409-419.
    [17] Zhang L., Zhang S., Han X., et al. Evaluating the Effects of Nitrogen LoadingRate and Substrate Inhibitions on Partial Nitrification with Fish Analysis [J].Water Sci Technol,2012,65(3):513-518.
    [18]张子健,王舜和,王建龙,等.利用碱度控制SBR中短程硝化反应的进程[J].清华大学学报(自然科学版),2008(09):1475-1478.
    [19]于德爽,殷金兰,王晓霞,等.控制DO及FA条件下短程硝化过程系统稳定性研究[J].环境工程学报,2011(12):2677-2680.
    [20] Anthonisen A. C., Loehr R. C., Prakasam T. B., et al. Inhibition ofNitrification by Ammonia and Nitrous Acid [J]. J Water Pollut Control Fed,1976,48(5):835-852.
    [21] Kim D. J., Chang J. S., Lee D. I., et al. Nitrification of High StrengthAmmonia Wastewater and Nitrite Accumulation Characteristics [J]. WaterScience and Technology,2003,47(11):45-51.
    [22]董莲华,杨金水,袁红莉.氨氧化细菌的分子生态学研究进展[J].应用生态学报,2008,19(6):1381-1388.
    [23]郝永俊,吴松维,吴伟祥,等.好氧氨氧化菌的种群生态学研究进展[J].生态学报,2007,27(3):1573-1582.
    [24] Koops H. P., Pommerening-Roser A. Distribution and Eco-physiology of theNitrifying Bacteria Emphasizing Cultured Species.[J]. Fems MicrobiologyEcology,2001,37:1-9.
    [25] Stephen J. R., Chang Y. J., Macnaughton S. J., et al. Effect of Toxic Metals onIndigenous Soil beta-subgroup Proteobacterium Ammonia OxidizerCommunity Structure and Protection Against Toxicity by InoculatedMetal-resistant Bacteria [J]. Appl Environ Microbiol,1999,65(1):95-101.
    [26] Purkhold U., Wagner M., Timmermann G., et al.16s rRNA and amoA-basedPhylogeny of12Novel betaproteobacterial Ammonia-oxidizing Isolates:Extension of the Dataset and Proposal of a New Lineage within theNitrosomonads [J]. International Journal of Systematic and EvolutionaryMicrobiology,2003,53:1485-1494.
    [27] Strous M., Heijnen J. J., Kuenen J. G., et al. The Sequencing Batch Reactor asa Powerful Tool for the Study of Slowly Growing AnaerobicAmmonium-oxidizing Microorganisms [J]. Applied Microbiology andBiotechnology,1998,50(5):589-596.
    [28] Mulder A., Vandegraaf A. A., Robertson L. A., et al. Anaerobic AmmoniumOxidation Discovered in a Denitrifying Fluidized-bed Reactor [J]. FemsMicrobiology Ecology,1995,16(3):177-183.
    [29] van de Graaf A. A., Mulder A., de Bruijn P., et al. Anaerobic Oxidation ofAmmonium is a Biologically Mediated Process [J]. Appl Environ Microbiol,1995,61(4):1246-1251.
    [30]周德钧.短程硝化—厌氧氨氧化工艺处理模拟氨氮废水[D].华南理工大学,2012:15-18.
    [31]唐崇俭,郑平,陈建伟,等.基于基质浓度的厌氧氨氧化工艺运行策略[J].化工学报,2009,60(3):718-725.
    [32]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,17(2):193-198.
    [33] Strous M., Kuenen J. G., Jetten M. S. M. Key Physiology of AnaerobicAmmonium Oxidation [J]. Applied and Environmental Microbiology,1999,65(7):3248-3250.
    [34] Jetten M. S., Cirpus I., Kartal B., et al.1994-2004:10years of Research onthe Anaerobic Oxidation of Ammonium [J]. Biochem Soc Trans,2005,33:119-123.
    [35] Jetten M. S. M., Strous M., van de Pas-Schoonen K. T., et al. The AnaerobicOxidation of Ammonium [J]. Fems Microbiology Reviews,1998,22(5):421-437.
    [36] Strous M., vanGerven E., Kuenen J. G., et al. Effects of Aerobic andMicroaerobic Conditions on Anaerobic Ammonium-oxidizing (anammox)Sludge [J]. Applied and Environmental Microbiology,1997,63(6):2446-2448.
    [37]高大文,侯国凤,陶彧,等.厌氧氨氧化菌代谢有机物研究[J].哈尔滨工业大学学报,2012(02):89-93.
    [38] Strous M., Fuerst J. A., Kramer E. H. M., et al. Missing Lithotroph Identifiedas New Planctomycete [J]. Nature,1999,400(6743):446-449.
    [39] Kuenen J. G. Anammox bacteria: From Discovery to Application [J]. NatureReviews Microbiology,2008,6(4):320-326.
    [40] van Niftrik L., Geerts W. J., van Donselaar E. G., et al. Linking Ultrastructureand Function in Four Genera of Anaerobic Ammonium-oxidizing Bacteria:Cell plan, glycogen storage, and localization of cytochrome c proteins [J]. JBacteriol,2008,190(2):708-717.
    [41] Kartal B., van Niftrik L., Sliekers O., et al. Application, Eco-physiology andBiodiversity of Anaerobic Ammonium-oxidizing Bacteria [J]. Reviews inEnvironmental Science and Biotechnology,2004,3(3):255-264.
    [42] Kartal B., Rattray J., van Niftrik L. A., et al. Candidatus "anammoxoglobuspropionicus" a New Propionate Oxidizing Species of Anaerobic AmmoniumOxidizing Bacteria [J]. Syst Appl Microbiol,2007,30(1):39-49.
    [43] Quan Z. X., Rhee S. K., Zuo J. E., et al. Diversity of Ammonium-oxidizingBacteria in a Granular Sludge Anaerobic Ammonium-oxidizing (ANAMMOX)Reactor [J]. Environmental Microbiology,2008,10(11):3130-3139.
    [44] Gong Z., Yang F., Liu S., et al. Feasibility of a Membrane-aerated BiofilmReactor to Achieve Single-stage Autotrophic Nitrogen Removal Based onAnammox [J]. Chemosphere,2007,69(5):776-784.
    [45] Kuypers M. M. M., Sliekers A. O., Lavik G., et al. Anaerobic AmmoniumOxidation by Anammox Bacteria in the Black Sea [J]. Nature,2003,422(6932):608-611.
    [46] Woebken D., Lam P., Kuypers M. M. M., et al. A Microdiversity Study ofAnammox Bacteria Reveals a Novel Candidatus scalindua Phylotype inMarine Oxygen Minimum Zones [J]. Environmental Microbiology,2008,10(11):3106-3119.
    [47]郑平,张蕾.厌氧氨氧化菌的特性与分类[J].浙江大学学报(农业与生命科学版),2009,35(5):473-481.
    [48] Jetten M. S. M., Wagner M., Fuerst J., et al. Microbiology and Application ofthe Anaerobic Ammonium Oxidation ('Anammox') Process [J]. CurrentOpinion in Biotechnology,2001,12(3):283-288.
    [49] Jetten M. S. M., van Niftrik L., Strous M., et al. Biochemistry and MolecularBiology of Anammox Bacteria [J]. Critical Reviews in Biochemistry andMolecular Biology,2009,44(2-3):65-84.
    [50] Strous M., Pelletier E., Mangenot S., et al. Deciphering the Evolution andMetabolism of an Anammox Bacterium from a Community Genome [J].Nature,2006,440(7085):790-794.
    [51] Kartal B., Maalcke W. J., de Almeida N. M., et al. Molecular Mechanism ofAnaerobic Ammonium Oxidation [J]. Nature,2011.
    [52]陆慧锋,丁爽,郑平.厌氧氨氧化菌的中心代谢研究进展[J].微生物学报,2011(08).
    [53]丁爽,郑平,陆慧锋,等.基于宏基因组技术获得的对厌氧氨氧化菌代谢的新理解[J].应用与环境生物学报,2012(04):697-704.
    [54] Amann R. I., Binder B. J., Olson R. J., et al. Combination of16srRNA-targeted Oligonucleotide Probes with Flow Cytometry for AnalyzingMixed Microbial Populations [J]. Applied and Environmental Microbiology,1990,56(6):1919-1925.
    [55] Mobarry B. K., Wagner M., Urbain V., et al. Phylogenetic Probes forAnalyzing Abundance and Spatial Organization of Nitrifying Bacteria [J].Applied and Environmental Microbiology,1996,62(6):2156-2162.
    [56] Schmid M. C., Maas B., Dapena A., et al. Biomarkers for in Situ Detection ofAnaerobic Ammonium-oxidizing (Anammox) Bacteria [J]. Applied andEnvironmental Microbiology,2005,71(4):1677-1684.
    [57] Winkler M. K. H., Kleerebezem R., van Loosdrecht M. C. M. Integration ofAnammox into the Aerobic Granular Sludge Process for Main StreamWastewater Treatment at Ambient Temperatures [J]. Water Research,2012,46(1):136-144.
    [58] Winkler M. K., Yang J., Kleerebezem R., et al. Nitrate Reduction byOrganotrophic Anammox Bacteria in a Nitritation/anammox Granular Sludgeand a Moving Bed Biofilm Reactor [J]. Bioresour Technol,2012,114:217-223.
    [59] Muyzer G., Smalla K. Application of Denaturing Gradient Gel Electrophoresis(DGGE) and Temperature Gradient Gel Electrophoresis (TGGE) in MicrobialEcology [J]. Antonie Van Leeuwenhoek International Journal of General andMolecular Microbiology,1998,73(1):127-141.
    [60] Muyzer G., de Waal E. C., Uitterlinden A. G. Profiling of Complex MicrobialPopulations by Denaturing Gradient Gel Electrophoresis Analysis ofPolymerase Chain Reaction-amplified Genes Coding for16s rRNA [J]. ApplEnviron Microbiol,1993,59(3):695-700.
    [61] Bellucci M., Curtis T. P. Ammonia-oxidizing Bacteria in wastewater [J].Methods in Enzymology,2011,496:269-286.
    [62] Liu T., Li D., Zeng H., et al. Biodiversity and Quantification of FunctionalBacteria in Completely Autotrophic Nitrogen-removal Over Nitrite (Canon)Process [J]. Bioresour Technol,2012,118:399-406.
    [63] Wang Z. Y., Qi Y., Wang J., et al. Characteristics of Aerobic and AnaerobicAmmonium-oxidizing Bacteria in the Hyporheic Zone of a ContaminatedRiver [J]. World Journal of Microbiology&Biotechnology,2012,28(9):2801-2811.
    [64] Cao H. L., Li M., Dang H. Y., et al. Responses of Aerobic and AnaerobicAmmonia/ammonium-oxidizing Microorganisms to Anthropogenic Pollutionin Coastal Marine Environments [J]. Methods Enzymol,2011,496:35-62.
    [65]李磊,张立东,刘晶茹,等.实时荧光定量PCR对A2/O短程硝化系统内氨氧化菌的定量分析[J].环境工程学报,2012(10):3597-3602.
    [66] Ozdemir B., Mertoglu B., Yapsakli K., et al. Investigation of NitrogenConverters in Membrane Bioreactor [J]. Journal of Environmental Science andHealth Part a-Toxic/Hazardous Substances&Environmental Engineering,2011,46(5):500-508.
    [67] Yapsakli K., Aliyazicioglu C., Mertoglu B. Identification and QuantitativeEvaluation of Nitrogen-converting Organisms in a Full-scale LeachateTreatment Plant [J]. Journal of Environmental Management,2011,92(3):714-723.
    [68]杨庆,彭永臻,曾薇,等.城市污水SBR法短程生物脱氮系统硝化菌群的定量分析[J].北京工业大学学报,2007(08):843-848.
    [69]贺纪正,张丽梅,沈菊培,等.宏基因组学(metagenomics)的研究现状和发展趋势[J].环境科学学报,2008(02):209-218.
    [70] van Niftrik L., van Helden M., Kirchen S., et al. Intracellular Localization ofMembrane-bound Atpases in the Compartmentalized Anammox Bacterium'Candidatus kuenenia stuttgartiensis'[J]. Molecular Microbiology,2010,77(3):701-715.
    [71] Gori F., Tringe S. G., Kartal B., et al. The Metagenomic Basis of AnammoxMetabolism in Candidatus 'brocadia fulgida'[J]. Biochemical SocietyTransactions,2011,39:1799-1804.
    [72] van de Vossenberg J., Woebken D., Maalcke W. J., et al. The Metagenome ofthe Marine Anammox Bacterium 'candidatus scalindua profunda' Illustratesthe Versatility of this Globally Important Nitrogen Cycle Bacterium [J].Environ Microbiol,2013,15(5):1275-1289.
    [73]苏彩丽,余泳昌,季宝杰.短程硝化-厌氧氨氧化生物脱氮研究进展[J].环境科学与技术,2009(04):92-96.
    [74] van Dongen U., Jetten M. S., van Loosdrecht M. C. The Sharon-AnammoxProcess for Treatment of Ammonium Rich Wastewater [J]. Water Sci Technol,2001,44(1):153-160.
    [75] van der Star W. R. L., Abma W. R., Blommers D., et al. Startup of Reactors forAnoxic Ammonium Oxidation: Experiences from the First Full-scaleAnammox Reactor in Rotterdam [J]. Water Research,2007,41(18):4149-4163.
    [76]郝晓地,仇付国, derStar W. v., et al.厌氧氨氧化技术工程化的全球现状及展望[J].中国给水排水,2007,23(18):15-19.
    [77] Abma W., Schultz C., Mulder J., et al. The advance of anammox [J]. Water,2007,21:36-37.
    [78] Thole D., Cornelius A., Rosenwinkel K. Full Scale Eexperiences withDeammonification of Sludge Liquor at Hattingen Wastewater Treatmen Plant[J]. GWF,Wasser/Abwasser,2005,146(2):104-109.
    [79] Gut L., Plaza E., Trela J. Combined Partial Nitritaton/anammox System forTreatment of Digester Supernatant [J]. Water Sci Technol,2006,53(12):149-159.
    [80] Kartal B., Kuenen J. G., van Loosdrecht M. C. Engineering. Sewage Treatmentwith Anammox [J]. Science,2010,328(5979):702-703.
    [81]田智勇,李冬,宋永会,等.城市污水再生中的厌氧氨氧化生物脱氮新思路[J].环境工程技术学报,2011,1(04):311-316.
    [82]马金明,李冬,吴迪,等.低温城市生活污水再生全流程中A/O高效除磷研究[J].水处理技术,2012,37(12):103-108.
    [83]田智勇,李冬,杨宏,等.上向流厌氧氨氧化生物滤池的启动与脱氮性能[J].北京工业大学学报,2009(04):509-515.
    [84]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [85] Zhou J., Bruns M. A., Tiedje J. M. DNA Recovery from Soils of DiverseComposition [J]. Appl Environ Microbiol,1996,62(2):316-322.
    [86] Schmid M., Walsh K., Webb R., et al. Candidatus "scalindua brodae", sp. Nov.,Candidatus "scalindua wagneri", sp. Nov., Two New Species of AnaerobicAmmonium Oxidizing Bacteria [J]. Syst Appl Microbiol,2003,26(4):529-538.
    [87] Ovreas L., Forney L., Daae F. L., et al. Distribution of Bacterioplankton inMeromictic Lake Saelenvannet, as Determined by Denaturing Gradient GelElectrophoresis of PCR-amplified Gene Fragments Coding for16s rRNA [J].Appl Environ Microbiol,1997,63(9):3367-3373.
    [88] Nicolaisen M. H., Ramsing N. B. Denaturing Gradient Gel Electrophoresis(DGGE) Approaches to Study the Diversity of Ammonia-oxidizing Bacteria[J]. J Microbiol Methods,2002,50(2):189-203.
    [89] Attard E., Poly F., Commeaux C., et al. Shifts Between Nitrospira-andNitrobacter-like Nitrite Oxidizers Underlie the Response of Soil PotentialNitrite Oxidation to Changes in Tillage Practices [J]. EnvironmentalMicrobiology,2010,12(2):315-326.
    [90] Bassam B. J., Caetano-Anolles G., Gresshoff P. M. Fast and Sensitive SilverStaining of DNA in Polyacrylamide Gels [J]. Anal Biochem,1991,196(1):80-83.
    [91]马放,任南琪,杨基先.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [92]吴定心.自养硝化细菌的分离纯化[D].武汉:华中农业大学,2009:14-17.
    [93]张辉,李培军,胡筱敏,等.亚硝化细菌的筛选及培养条件的研究[J].化工环保,2006,26(5):366-369.
    [94]布坎南R. E.,吉本斯N. E.伯杰细菌鉴定手册[M].北京:科学出版社.1984.
    [95] Purkhold U., Pommerening-Roser A., Juretschko S., et al. Phylogeny of AllRecognized Species of Ammonia Oxidizers Based on Comparative16s rRNAand amoA Sequence Analysis: Implications for Molecular Diversity Surveys[J]. Appl Environ Microbiol,2000,66(12):5368-5382.
    [96] Amann R. I., Krumholz L., Stahl D. A. Fluorescent-oligonucleotide Probing ofWhole Cells for Determinative, Phylogenetic, and Environmental Studies inMicrobiology [J]. Journal of Bacteriology,1990,172(2):762-770.
    [97] Daims H., Brühl A., Amann R., et al. The Domain-specific Probe eub338isInsufficient for the Detection of all Bacteria: Development and Evaluation of aMore Comprehensive Probe Set [J]. Systematic and Applied Microbiology,1999,22(3):434-444.
    [98] Weisburg W. G., Barns S. M., Pelletier D. A., et al.16s Ribosomal DNAAmplification for Phylogenetic Study [J]. Journal of Bacteriology,1991,173(2):697-703.
    [99] Neef A., Amann R., Schlesner H., et al. Monitoring a Widespread Bacterialgroup: In Situ Detection of Planctomycetes with16s rRNA-targeted Probes [J].Microbiology-Uk,1998,144:3257-3266.
    [100]赵志瑞,马斌,张树军,等.高氨氮废水与城市生活污水短程硝化系统菌群比较[J].环境科学,2013(04):1448-1456.
    [101]何争光,郑敏,贾胜勇. DO对SBBR处理味精废水脱氮效果的影响[J].水处理技术,2012(10):103-104-105-106.
    [102]许朕,杨朝晖,曾光明,等.供氧充足环境下SBBR实现短程硝化的控制研究[J].环境科学,2008(07):1860-1866.
    [103]张立秋,张朝升,张可方,等. SBBR系统短程硝化处理低碳城市污水研究[J].中国给水排水,2012(07):12-16.
    [104] Park S., Bae W. Modeling Kinetics of Ammonium Oxidation and NitriteOxidation under Simultaneous Inhibition by Free Ammonia and Free NitrousAcid [J]. Process Biochemistry,2009,44(6):631-640.
    [105]傅金祥,汪洋,杨勇. FA与FNA对A/O工艺短程硝化处理垃圾渗滤液的影响[J].工业水处理,2012(05):48-51.
    [106] Chung J., Shim H., Park S. J., et al. Optimization of Free AmmoniaConcentration for Nitrite Accumulation in Shortcut Biological NitrogenRemoval Process [J]. Bioprocess Biosyst Eng,2006,28(4):275-282.
    [107] Li J. P., Elliott D., Nielsen M., et al. Long-term Partial Nitrification in anIntermittently Aerated Sequencing Batch Reactor (SBR) TreatingAmmonium-rich Wastewater under Controlled Oxygen-limited Conditions [J].Biochemical Engineering Journal,2011,55(3):215-222.
    [108]李占,李冬,陶晓晓,等.序批式生物膜反应器常温亚硝化启动试验研究[J].现代化工,2010,30(10):69-73.
    [109] Xia S., Li J., Wang R. Nitrogen Removal Performance and MicrobialCommunity Structure Dynamics Response to Carbon Nitrogen Ratio in aCompact Suspended Carrier Biofilm Reactor [J]. Ecological engineering,2008,32:256-262.
    [110] Wan C.Y., De Wever H., Diels L., et al. Biodiversity and Population Dynamicsof Microorganisms in a Full-scale Membrane Bioreactor for MunicipalWastewater Treatment [J]. Water Research,2011,45(3):1129-1138.
    [111] Lydmark P., Almstrand R., Samuelsson K., et al. Effects of EnvironmentalConditions on the Nitrifying Population Dynamics in a Pilot WastewaterTreatment Plant [J]. Environ Microbiol,2007,9(9):2220-2233.
    [112] Otawa K., Asano R., Ohba Y., et al. Molecular Analysis of AmmoniaOxidizing Bacteria Community in Intermittent Aeration Sequencing BatchReactors Used for Animal Wastewater Treatment [J]. Environ Microbiol,2006,8(11):1985-1996.
    [113] Limpiyakorn T., Kurisu F., Sakamoto Y., et al. Effects of Ammonium andNitrite on Communities and Populations of Ammonia-oxidizing Bacteria inLaboratory-scale Continuous-flow Reactors [J]. FEMS Microbiol Ecol,2007,60(3):501-512.
    [114]曾薇,张悦,李磊,等.生活污水常温处理系统中AOB与NOB竞争优势的调控[J].环境科学,2009(05):1430-1436.
    [115] Kim D. J., Lee D. I., Keller J. Effect of Temperature and Free Ammonia onNitrification and Nitrite Accumulation in Landfill Leachate and Analysis of ItsNitrifying Bacterial Community by FISH [J]. Bioresource Technology,2006,97(3):459-468.
    [116]李冬,陶晓晓,李占,等.常温SBR亚硝化快速启动及优化试验研究[J].环境科学,2011(06):1653-1659.
    [117] Guo J., Wang S., Huang H., et al. Efficient and Integrated Start-up Strategy forPartial Nitrification to Nitrite Treating Low C/N Domestic Wastewater [J].Water Science and Technology,2009,60(12):3243-3251.
    [118] Blackburne R., Yuan Z. G., Keller J. Partial Nitrification to Nitrite Using LowDissolved Oxygen Concentration as the Main Selection Factor [J].Biodegradation,2008,19(2):303-312.
    [119]周德钧,周少奇,梅丹.环境温度下短程硝化的低氧启动与维持[J].中国给水排水,2012(03):28-31.
    [120]张小玲,王志盈.低溶解氧下SBR内短程硝化影响因素试验研究[J].环境科学与技术,2011(01):163-166.
    [121] Park H. D., Noguera D. R. Characterization of two Ammonia-oxidizingBacteria Isolated from Reactors Operated with Low Dissolved OxygenConcentrations [J]. Journal of Applied Microbiology,2007,102(5):1401-1417.
    [122] Ward B. B., Martino D. P., Diaz M. C., et al. Analysis of Ammonia-oxidizingBacteria from Hypersaline Mono Lake, California, on the Basis of16s rRNASequences [J]. Applied and Environmental Microbiology,2000,66(7):2873-2881.
    [123] Stein L. Y., Arp D. J., Berube P. M., et al. Whole-genome Analysis of theAmmonia-oxidizing Bacterium, Nitrosomonas eutropha C91: Implications forNiche Adaptation [J]. Environmental Microbiology,2007,9(12):2993-3007.
    [124] Ballinger S. J., Head I. M., Curtis T. P., et al. Molecular Microbial Ecology ofNitrification in an Activated Sludge Process Treating Refinery Wastewater [J].Water Science and Technology,1998,37(4-5):105-108.
    [125] Wertz S., Poly F., Le Roux X., et al. Development and Application of aPCR-Denaturing Gradient Gel Electrophoresis Tool to Study the Diversity ofNitrobacter-like nxrA Sequences in Soil [J]. Fems Microbiology Ecology,2008,63(2):261-271.
    [126] Poly F., Wertz S., Brothier E., et al. First Exploration of Nitrobacter Diversityin Soils by a PCR Cloning-sequencing Approach Targeting Functional GenenxrA [J]. Fems Microbiology Ecology,2008,63(1):132-140.
    [127] von Wintzingerode F., Gobel U. B., Stackebrandt E. Determination ofMicrobial Diversity in Environmental Samples: Pitfalls of PCR-based rRNAAnalysis [J]. Fems Microbiology Reviews,1997,21(3):213-229.
    [128] Coskuner G., Ballinger S. J., Davenport R. J., et al. Agreement BetweenTheory and Measurement in Quantification of Ammonia-oxidizing Bacteria[J]. Applied and Environmental Microbiology,2005,71(10):6325-6334.
    [129]吕鑑,孟凡能,张树军,等.半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究[J].北京工业大学学报,2011(11):1737-1742.
    [130]郝晓地,魏丽,仇付国.火山岩填料曝气生物滤池内循环强化脱氮试验研究[J].环境工程学报,2009(02):239-245.
    [131] Li X. R., Du B., Fu H. X., et al. The Bacterial Diversity in an AnaerobicAmmonium-oxidizing (Anammox) Reactor Community [J]. Systematic andApplied Microbiology,2009,32(4):278-289.
    [132]于英翠,高大文,陶彧,等.利用序批式生物膜反应器启动厌氧氨氧化研究[J].中国环境科学,2012(05):843-849.
    [133]林海,王筱雯,董颖博,等.一种高浓度微生物制剂用于A2/O生物膜反应器的挂膜研究[J].北京科技大学学报,2013(03):402-408.
    [134] Wang T., Zhang H. M., Gao D. W., et al. Enrichment of Anammox Bacteria inSeed Sludges from Different Wastewater Treating Processes and Start-up ofAnammox process [J]. Desalination,2011,271(1-3):193-198.
    [135] Hendrickx T. L., Wang Y., Kampman C., et al. Autotrophic Nitrogen Removalfrom Low Strength Wastewater at Low Temperature [J]. Water Res,2012,46(7):2187-2193.
    [136]秦玉洁,周少奇,朱明石.厌氧氨氧化反应器微生态的研究[J].环境科学,2008(06):1638-1643.
    [137] Shannon C. E. The Mathematical Theory of Communication.1963[J]. MDComput,1997,14(4):306-317.
    [138] Iino T., Mori K., Uchino Y., et al. Ignavibacterium album gen. Nov., sp nov., aModerately Thermophilic Anaerobic Bacterium Isolated from Microbial Matsat a Terrestrial Hot Spring and Proposal of Ignavibacteria classis nov., for aNovel Lineage at the Periphery of Green Sulfur Bacteria [J]. InternationalJournal of Systematic and Evolutionary Microbiology,2010,60:1376-1382.
    [139] Lee L., Tin S., Kelley S. Culture-independent Analysis of Bacterial Diversityin a Child-care Facility [J]. BMC Microbiology,2007,7(1):27.
    [140] Imachi H., Aoi K., Tasumi E., et al. Cultivation of Methanogenic Communityfrom Subseafloor Sediments Using a Continuous-flow Bioreactor [J]. IsmeJournal,2011,5(12):1913-1925.
    [141] Alves M. P., Rainey F. A., Nobre M. F., et al. Thermomonas hydrothermalis spnov., a New Slightly Thermophilic gamma-Proteobacterium Isolated from aHot Spring in Central Portugal [J]. Systematic and Applied Microbiology,2003,26(1):70-75.
    [142] Schmid M., Twachtmann U., Klein M., et al. Molecular Evidence for GenusLevel Diversity of Bacteria Capable of Catalyzing Anaerobic AmmoniumOxidation [J]. Syst Appl Microbiol,2000,23(1):93-106.
    [143] Egli K., Fanger U., Alvarez P. J. J., et al. Enrichment and Characterization ofan Anammox Bacterium From a Rotating Biological Contactor TreatingAmmonium-rich Leachate [J]. Archives of Microbiology,2001,175(3):198-207.
    [144]李冬,王俊安,陶晓晓,等.常温条件下厌氧氨氧化生物滤池影响因素[J].哈尔滨工业大学学报,2010(06):869-872.
    [145][145] Dosta J., Fernandez I., Vazquez-Padin J. R., et al. Short-and Long-termEffects of Temperature on the Anammox Process [J]. Journal of HazardousMaterials,2008,154(1-3):688-693.
    [146] Winkler M. K., Kleerebezem R., van Loosdrecht M. C. Integration ofAnammox into the Aerobic Granular Sludge Process for Main StreamWastewater Treatment at Ambient Temperatures [J]. Water Res,2012,46(1):136-144.
    [147] Kartal B., van Niftrik L., Rattray J., et al. Candidatus 'brocadia fulgida': AnAutofluorescent Anaerobic Ammonium Oxidizing Bacterium [J]. FEMSMicrobiol Ecol,2008,63(1):46-55.
    [148] Bae H., Chung Y. C., Jung J. Y. Microbial Community Structure andOccurrence of Diverse Autotrophic Ammonium Oxidizing Microorganisms inthe Anammox Process [J]. Water Sci Technol,2010,61(11):2723-2732.
    [149] Etchebehere C., Errazquin M. I., Dabert P., et al. Comamonas nitrativorans spnov., a Novel Denitrifier Isolated from a Denitrifying Reactor TreatingLandfill Leachate [J]. International Journal of Systematic and EvolutionaryMicrobiology,2001,51:977-983.
    [150]唐崇俭,郑平,陈建伟.流加菌种对厌氧氨氧化工艺的影响[J].生物工程学报,2011(01):1-8.
    [151] Okabe S., Oshiki M., Takahashi Y., et al. Development of Long-term StablePartial Nitrification and Subsequent Anammox Process [J]. BioresourceTechnology,2011,102(13):6801-6807.
    [152] Ma B., Zhang S., Zhang L., et al. The Feasibility of Using a Two-stageAutotrophic Nitrogen Removal Process to Treat Sewage [J]. BioresourTechnol,2011,102(17):8331-8334.
    [153]李伙生,周少奇,孙艳波.2种UASB的anammox与反硝化协同作用对比研究[J].环境工程学报,2010(02):247-252.
    [154]赖杨岚,周少奇.厌氧氨氧化与反硝化的协同作用特性研究[J].中国给水排水,2010(13):6-10.
    [155]郭建华,王淑莹,郑雅楠,等.实时控制实现短程硝化过程中种群结构的演变[J].哈尔滨工业大学学报,2010,42(8):1259-1263.
    [156] Trigo C., Campos J. L., Garrido J. M., et al. Start-up of the Anammox Processin a Membrane Bioreactor [J]. Journal of Biotechnology,2006,126(4):475-487.
    [157] Sinha B., Annachhatre A. P. Assessment of Partial Nitrification ReactorPerformance through Microbial Population Shift Using Quinone Profile, FISHand SEM [J]. Bioresource Technology,2007,98(18):3602-3610.
    [158] Isaka K., Date Y., Sumino T., et al. Growth Characteristic of AnaerobicAmmonium-oxidizing Bacteria in an Anaerobic Biological Filtrated Reactor[J]. Applied Microbiology and Biotechnology,2006,70(1):47-52.
    [159] Dapena Mora A., Van Hulle S. W. H., Luis Campos J., et al. Enrichment ofAnammox Biomass from Municipal Activated Sludge: Experimental andModelling Results [J]. Journal of Chemical Technology and Biotechnology,2004,79(12):1421-1428.
    [160] Yoon D. N., Park S. J., Kim S. J., et al. Isolation, Characterization, andAbundance of Filamentous Members of Caldilineae in Activated Sludge [J].Journal of Microbiology,2010,48(3):275-283.
    [161] Malik A., Sakamoto M., Hanazaki S., et al. Coaggregation amongNonflocculating Bacteria Isolated from Activated Sludge [J]. Applied andEnvironmental Microbiology,2003,69(10):6056-6063.
    [162] Sproer C., Reichenbach H., Stackebrandt E. The Correlation betweenMorphological and Phylogenetic Classification of Myxobacteria [J].International Journal of Systematic Bacteriology,1999,49:1255-1262.
    [163] Zumft W. G. Cell Biology and Molecular Basis of Denitrification [J].Microbiology and Molecular Biology Reviews,1997,61(4):533-616.
    [164] Su J. J., Liu B. Y., Chang Y. C. Identifying an Interfering Factor on ChemicalOxygen Demand (cod) Determination in Piggery Wastewater and Eliminatingthe Factor by an Indigenous Pseudomonas stutzeri strain [J]. Letters inApplied Microbiology,2001,33(6):440-444.
    [165] Zhao C., Zhang Y., Li X. B., et al. Biodegradation of Carbazole by the SevenPseudomonas sp strains and Their Denitrification Potential [J]. Journal ofHazardous Materials,2011,190(1-3):253-259.
    [166] Xiao Y., Zeng G. M., Yang Z. H., et al. Coexistence of Nitrifiers, Denitrifiersand Anammox Bacteria in a Sequencing Batch Biofilm Reactor as Revealedby PCR-DGGE [J]. Journal of Applied Microbiology,2009,106(2):496-505.
    [167] Zhang G., Zhao Q., Jiao Y., et al. Efficient Electricity Generation from SewageSludge Using Biocathode Microbial Fuel Cell [J]. Water Research,2011,46(1):43-52.
    [168] Park H., Rosenthal A., Jezek R., et al. Impact of Inocula and Growth Mode onthe Molecular Microbial Ecology of Anaerobic Ammonia Oxidation(Anammox) Bioreactor Communities [J]. Water Research,2010,44(17):5005-5013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700