用户名: 密码: 验证码:
钨合金材料性能测试及宏细观力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨合金的高强度、高密度、良好的塑性等特征使高比重钨合金在兵器工业中成了现代穿甲弹弹芯的主要材料。进一步提高弹芯材料的强度和韧性,发展高强韧钨合金成为兵器工业的重要课题。本文主要通过对钨合金宏细观力学性能的测试与计算,研究了钨合金材料变形强化后的细观结构参量与静态宏观力学性能之间的关系。
     对钨合金性能的测试主要内容包括宏观力学性能及细观各相及界面的力学性能的测试,并且利用人工神经网络BP算法对实验所得数据进行了处理及预测。预测结果表明,利用人工神经网络BP算法预测不同细观参量下钨合金的宏观力学性能是可行的。
     本文利用Eshelby等效夹杂的概念和Mori-Tanaka平均应力概念,由钨颗粒相的形状、组分和两相力学参数给出了钨合金宏观屈服强度和抗拉变形行为的分析计算。计算结果基本上反映了不同变形量工艺处理的钨合金材料的细观量与宏观量的关系。
     利用有限元方法对单向拉伸载荷作用下,不同变形量的93W合金进行了数值模拟计算,从钨合金的有限元计算可知,随着变形量的增加,钨颗粒长细比增大,颗粒极区的应力水平将会影响钨合金的性能,也即变形量的无限增大,并不能无限提高合金的性能,反而对合金性能有害。对于变形量较小的钨合金,首先在基体相中达到屈服,此时钨合金材料的屈服强度决定于基体相的屈服强度:而对于变形量较大的钨合金,钨颗粒中应力水平增加较快,将首先在钨颗粒相中达到屈服,此时钨合金材料的屈服强度决定于钨颗粒相的屈服强度。
In this paper, relations between the macro mechanical properties of the tungsten heavy alloy (WHA) and its micro structural characteristics were presented.
    It was tested that young's modulus, static yield strength and tensile strength of WHA and mechanical parameters of each phase including in the matrix phase and the tungsten phase, the W-W boundaries and W-matrix boundaries, and with the SEM, the micro structural of fracture was observed. The data of tests was dealt with BP Neural Networks and its results showed that BP Neural Networks was feasible to predict the trend of tensile strength of WHA with the change of the different shapes and volume fractions of W-phase.
    The hardening modulus of the matrix in plastic deformations was measured with MTS, and the macro-tensile strength of the tungsten alloys treated by different super-deforming technology was analyzed by using Eshelby method and Mori-Tanaka concept of 'average stress'. The fracture of the tungsten grains was supposed to be brittle. The results of analysis were comparable with the results of tests. The calculation with the finite element method simulating the different shapes of W-phase of 93 WHA also showed the same conclusions.
引文
[1] Yih S W H. Wang C T. Tungsten-Sources. Metallurgy. properties and Application. New York: Plenum Press. 1979:340
    [2] 难熔金属文集编辑组.难熔金属文集第三分册. 上海. 上海科学技术情报研究所,1976:23
    [3] 宋桂明等.钨与钨合金研究。航天工艺.1997,No.6:43-47
    [4] 张宝生,康志君.高密度钨合金的穿甲特性及其应用.中国钨业.1999,Vol.14,No.5~6:178-182
    [5] 尚福军.变形强化钨合金组织与准静态、动态性能的关系.中国兵器科学研究院(五二所)研究生硕士论文.2001
    [6] 焦彤等.90W和93W钨合金动加载下微(细)观响应分析.中国有色金属学报.2001,Vol.Ⅱ,S2:92-97
    [7] Z. LIN. G. BAO. Damage in A Tungsten Composite Due to Debonding at W-W Grain-Brondies. Acta metall, mater. 1995, Vol.43, No. 5: 1765-1774
    [8] 史洪刚等.锻造变形量对钨合金材料性能的影响。兵器材料科学与工程.1998,Vol.21,No.4:3-7
    [9] Zhang Zhaohui. Wang Fuchi. Research on the Deformation Dtrengthening Mechanism of a Tungsten Heavy Alloy by Hydrostatic Extrusion. International Journal of Refractory Metals & Hard Materials. 2001, Vol 19:177~182
    [10] Ho J. Ryu. Soon H. Hong and Woon H. Back. Mechanical Alloying Process of 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy. Journal of Materials Processing Technology. 1997, Vol.63:292-297
    [11] 史洪刚等.钨合金微观组织断裂分析计算.兵器材料科学与工程.1999.Vol.22,No.6:3-7
    [12] 刘小苹等.爆炸加载下钨合金的断裂特性.金属学报.1994,Vol30,No.4:181-186
    [13] 杨卓越等.静拉伸载荷下93W合金缺口效应和断裂特征研究.兵器材料科学与工程.1998,Vol.21,No.5:24-28
    
    
    [14]齐志望等.大变形锻造钨合金显微组织特征研究.兵器材料科学与工程.1999,Vol.22.No.4:18-23
    [15]黄继华等.钨合金变形微观力学行为的计算机数值模拟.北京科技大学学报.1997,Vol.19,No.6:546-549
    [16]黄继华等.高密度钨合金性能的计算机数值模拟研究—钨含量对合金性能的影响.稀有金属材料与工程.1998,Vol.27,No.6:344-347
    [17]黄继华等.钨合金力学行为的计算机数值模拟—宏观力学性能.北京科技大学学报.1997,Vol.19,No.6:550-553
    [18]华劲松等.93W合金有关力学参量的综合选评.高压物理学报.2002,Vol.16.No.1:17-21
    [19]马红磊等.高比重钨合金力学性能影响因素分析.材料科学与工程学报.2003,Vol.21,No.5:668-670
    [20]姜春兰等.93钨合金材料的模量、比热及热膨胀系数的温度效应.兵器材料科学与工程.2000,Vol.23,No.5:3-7
    [21]Soon H. Hong, Ho J. Ryu. Combination of Mechanical Alloying and Two-Stage Sintering of a 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy. MATERIALS SCIENCE AND ENGINEERING. A344(2003): 253-260
    [22]R. Gero, L, Borukhin, I. Pikus. Some Structural Effects of Plastic Deformation on Tungsten Heavy Metal Alloys. Materials Science and Engineering. A302 (2001): 162-167
    [23]G. R. Goren-Muginstein, A. Rosen. The Effects of Cold Deformation on Grain Refinement of Heavy Metals. Materials Science and Engineering. A238(1997): 351-356
    [24]Bao F. tamesh K T. Plastic flow of a tungsten-based composite under quasi-static compression. Acta metal. 1993, Vol.41, No. 9:2711
    [25]Rabin H, Geman R M. characteristics of liquid phase sintered tungsten heavy alloys. Metallurgical transactions. 1988. 19A. 1523
    [26]Amari. S.I.. A theory of adaptive pattern classification. IEEE Trans. On Electronic Computers. 1967. EC-16:299
    [27]Bryson. A. and Ho. Y.C. Applied Optimal Control. New York. 1969
    
    
    [28] Werbos. P.. New tools for prediction and analysis in the behavioral science [dissertation]. Harvard University. 1974
    [29] Braun. H. ENZO-M. A hybrid approach for optimizing neural networks by evolution and learning, in Davider. Y. et al. Parallel problem solving from nature. Berlin. Spring-Verlag. 1994:440
    [30] 张立明编著. 人工神经网络的模型及其应用.上海.复旦大学出版社
    [31] 阎平凡、张长水编著。 人工神经网络与模拟进化计算. 2000. 北京。清华大学出版社
    [32] 段祝平等. 力学进展.第一期,1980:1
    [33] K. Tanaka. and T. Mori. Acta Met. 1970. 18:931
    [34] T. Mori. and K. Tanaka. Acta Met. 1973.21: 571.
    [35] A. Rotta. and R.E. Bolmaro. Mater. Sci. Eng. 1997. A299:182
    [36] A. Rotta. and R.E. Bolmaro. Mater. Sci. Eng. 1997. A299:192
    [37] M. Kato. T. Fujj. and S. Ouaka. Mater. Sci. Eng. 2000. A285:144
    [38] J.D. Eshelby. Proc. R. Soc.. London. 1957. A241: 376
    [39] T. Mori. and K. Tanaka. J. Plasticity. 1972. 2:199
    [40] H.J.Ryu. SH. Hong. W.H.Back. Mater.Sci.Eng.. 2000. A291: 91
    [41] E.E. Underwood. Quantitative Stereology. Addison-Wesley. Reading. MA. 1970
    [42] 王自强。段祝平.塑性细观力学.北京.科学出版社.1995:144-165
    [43] 史洪刚等.钨合金微观性能测试与研究报告:1-11
    [44] 黎明等.纳米压痕技术及其应用.中国机械工程.2002,VOL.13.No.16:1437-1739
    [45] James Glimm. David H.Sharp. 多尺度科学:面向21世纪的挑战.力学进展.1998,Vol.28。No.24:545-551
    [46] 郭雅芳等.多尺度材料模型研究及应用.材料导报.2001,Vol.15. No.7:9-11
    [47] 赵巍等.多尺度系统理论研究概况.电子与信息导报.2001,Vol.23.No.12:1427-1433
    [48] Jacob Fish, Kamlun Shek. Multiscale Analysis of composite materials and
    
    structures. Composites Science and Technology. 60(2000): 2547-2556
    [49] Masaharu Kato. Toshiyuki Fujii. Susumu Onaka. Effects of shape and volume fraction of second phase on stress states in two-phase materials. Materials Science and Engineering. A285(2000): 144-150
    [50] H.Elghazal. G.Lormand. A. Hamel. D.Girodin. A.Vincent. Microplastisity characteristics obtained through nano-indentation measurements: application to surface hardened steels. Materials Sciences and Engineering. A303(2001):110-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700