用户名: 密码: 验证码:
基于产形线切齿法的球面渐开线斜齿螺旋锥齿轮制造技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋锥齿轮是传递相交轴运动及动力的基本元件,它具有重合系数大、传动平稳、强度高等优点,被广泛应用到航空、航天、船舶、军工、汽车等领域及机床、工程机械等重要装备中。螺旋锥齿轮的齿廓应该是理想的球面渐开线。在国内外被广泛应用的格里森体制螺旋锥齿轮采用工程近似的方法。由于齿形设计往往是在平面内进行设计,而球面不同于圆柱面或圆锥面,是不能展开成平面的。因此格里森体制螺旋锥齿轮采用背锥展开在平面上假想的当量圆柱齿轮的齿面齿形,近似代替球面渐开线齿形,这样就从原理上产生了误差,导致了两个齿轮不能正确啮合并造成齿面接触不良。为了获得较好的接触区,需要对一对齿轮进行成对加工、成对装配,同时还需对机床和刀具进行复杂的调整和反复的试切、检验等。由于其原理存在误差,使得设计计算与制造工艺极其复杂,导致加工效率低、制造周期长并且切齿设备昂贵。虽然格里森制齿轮经过上百年的历史,到目前为止仍然有大批学者在研究其设计及加工问题,但依然不能摆脱其切齿体制及原理误差问题。同时格里森始终保持技术垄断,虽然了解其使用规范但其核心技术密不外宣。
     在格里森齿制中,为了使刀盘能够进行连续回转切削,所以将螺旋锥齿轮的齿线设计成了圆弧形,因此弧齿锥齿轮几乎成了螺旋锥齿轮的代名词。斜齿螺旋锥齿轮作为螺旋锥齿轮的一种具有螺旋锥齿轮重合系数大、传动平稳、强度高等传动特性的全部优点。由于弧齿螺旋锥齿轮的垄断,以及尚未探索出高效、高精度的斜齿螺旋锥齿轮的加工方法与技术,故斜齿螺旋锥齿轮的加工理论与技术尚不成熟。
     课题组经过多年研究,提出了一种基于球面渐开线齿面生成原理的螺旋锥齿轮齿面成形新方法—产形线切齿法。利用产形线切齿法进行螺旋锥齿轮的齿面加工,能够获得无原理误差的球面渐开线齿形的螺旋锥齿轮。为了能够使产形线切齿法在更大的范围内发挥优势,本文在此基础之上将对斜齿螺旋锥齿轮设计及切齿加工进行深入研究,建立斜齿螺旋锥齿轮制造技术新方法,其研究工作如下:
     对斜齿螺旋锥齿轮齿面生成原理进行了分析。构造了螺旋锥齿轮基圆锥及与基圆锥相切的基平面,斜齿螺旋锥齿轮齿面是由基平面上的线段(即齿面发生线)在基平面与基圆锥相对纯滚动过程中扫掠形成的曲面所生成。通过调整发生线参数及基平面相对于基圆锥滚动的方向得到左、右旋齿轮的两侧齿面。
     推导了球面渐开线斜齿螺旋锥齿轮节圆锥与基圆锥相关的几何参数关系式。传统的螺旋锥齿轮从设计、加工到啮合都是与齿轮的节圆锥相联系,而基于产形线的新型切齿法的球面渐开线螺旋锥齿轮从设计到加工需从齿轮基圆锥入手,本文建立了节圆锥与基圆锥相关的参数方程,推导出关键的几何参数求解公式,为球面渐开线斜齿螺旋锥齿轮的齿面设计、加工机床、刀具设计及加工工艺设计提供理论依据。
     提出了以齿面发生线的极径及球面渐开线生成过程的基圆锥转角为参数的斜螺旋锥齿轮齿面建模方法。分别建立了左、右旋齿轮的左、右齿面的数学模型;推导了斜齿螺旋锥齿轮副啮合方程,对斜齿螺旋锥齿轮的齿面接触形式进行了分析。
     建立了基于产形线加工原理的斜齿螺旋锥齿轮齿面加工数学模型。以螺旋锥齿轮齿面生成原理为基础,以基平面上的齿面发生线为切齿刀刃,根据球面渐开线斜齿螺旋锥齿轮的齿面生成的展成运动进行切齿运动分析,建立了切齿加工的运动方程。
     提出了利用指状铣刀实现齿槽加工及通过圆盘铣刀实现齿面精铣加工相结合的三轴联动的切齿加工新方法。以圆盘铣刀刀刃端面圆与基平面相垂直相交得到的结交线为齿面发生线,根据齿面生成的相对运动关系,通过机床的三轴联动实现球面渐开线斜齿螺旋锥齿轮齿面的精加工,并建立了精铣加工运动方程;推导了影响加工精度的加工分度转角方程;在精铣削加工运动方案基础上,通过调整切削区获得不同的切削锥面,利用指状铣刀在切削锥面上沿着该锥面与齿面相交得到的螺旋线向前进给,实现齿槽的加工,建立了齿槽加工运动方程,由此加工出齿面的等距曲面,为齿面的精铣削预留等厚的切削余量。
     进行了机床的切齿加工运动仿真。在VERICUT环境中先后进行了齿槽及齿面虚拟加工,为最终的切齿实验提供参考;在VERICUT完成的机床切齿仿真基础上,进行了机床及刀具的结构设计。
     为确定斜齿螺旋锥齿轮新的切齿加工方法的切削参数,对指状铣刀及盘铣刀进行了刀具振颤的研究与分析。建立了铣削颤振稳定域解析模型,并通过实验模态分析与测试,进行了模态参数识别;绘制了两种刀具的主轴转速与径向切深的二维稳定域图,旨在找出齿轮加工的稳定的切削域。
     根据所选的一对齿轮的几何参数,设计并制造了齿轮的工装夹具,进行了切齿实验,并且对切齿实验得到的齿轮进行了齿廓精度的检测,结果显示:齿面法向偏差在-7.7μm-11.7μm之间,验证了利用该方法进行斜齿螺旋锥齿轮加工的可行性。
Spiral bevel gears are the key components for transmitting speed and power betweenninterseeting axes and they are widely used in fields of aviation and space, ships, nationaldefense equipment, automotive vehicle and kinds of machines such as machine tools,engineering machine because of the advantages of large coincidence degree, steadytransmission and high strength. However, manufacturing technology of spiral bevel gearsbecomes a research hotspot in both domestic and overseas due to the complexity of thedesign process the difficulties in machining.
     The tooth profile of spherical involute is ideal profile of spiral bevel gear. In the cuttingprocess of spiral bevel gear, the machining method is the method of engineeringapproximation about gleason system spiral bevel gears that are widely used at home andabroad. Tooth profile design is always in-plane, but different from cylindrical surface and thecone surface, spherical surface can’t spread in-plane. So the tooth profile of bevel gear isapproximated by the profile of equivalent cylindrical gear which is unwrapped on the backcone. That the principium error which will be producted may lead to incorrect mesh and badcontact of gear surface. And process and assemble of a pair of mesh gear must be carried outin pairs. But the above method need be modified repeatedly. Although gleason gear has beenstudied more than one century. Up to now, many scholars take on the research of this field,and they have achieved many good results. However the question of theory error still couldnot be got rid of and complex design and manufacture can result in low efficiency, longperiod and high cost. In addition, gleason keep technological monopoly all along and thecore technology can not be shared to the external world.
     In the gleason system, toothed portion of spiral bevel gears is designed as a circular-arcin order to make cutter head cut continuous rotary. therefore, circular-arc bevel gear has beenthe pronoun of spiral bevel gears. One of spiral bevel gears-skew bevel gears have alladvantage of spiral bevel gear such as large coincidence degree, steady transmission andhigh strength. Up to now, high precision processing method of skew bevel gears has not beendeveloped and processing theory and technology of skew bevel gears are not enough mature.
     Based on the research practice of my group, new processing method-tracing line wasput forward to breach the current theoretical and this method can realize tooth machining atthe same time can obtain spiral bevel gears without principle errors. In this paper, study isimplemented on design and machining of skew bevel gears and manufacturing technologysystem will be established. The main research works in this dissertation are as follows.
     The generating principle of tooth surface was analyzed. Basic cone and basic planewere constructed. The tooth surface of spiral bevel gear with spherical involute was formedby the arc generating-line’s pure rolling on the base cone both sides tooth surface aregenerated by adjusting generating-line parameter and rolling direction.
     The relation of geometrical parameters between base cone and pitch cone were studied.Traditional design, machining and meshing are based on pitch cone. However, the newmachining method is related with base cone. In this paper, parameters equation of base coneand pitch cone are established and key geometry formula are deduced. Theoreticalfoundation are provided for design of gear surface, machine, cutting tool, process by theparameters equation.
     New method of gear surface was put forward based on two parameter which are polarradius and base cone corner. Mathematic model of left and right gears surface were setup. And meshing formula of spiral bevel gears was deduced. At the same time, consistencyof generating-line and meshing line were demonstrated.
     Mathematical model of gear surface about skew bevel gears was set up according totracing line. Based on generating theory of spiral bevel gears, gear surface of skew bevelgears are formed throught relative motion between gear blank and cutting which is used asedge generating line of base plane. And motion equation was set up finally.
     Three axes linkage method of cutting gear surface is put forward that gear groove areprocessed by finger milling cutter and finish machining of gear surface is carried out by discmilling tool. Head face edge of disc milling tool and base plane vertical intersect at thegenerating line. And the relative motion between gear blank and cutting follows thegenerating theory of gear surface. Finally, finish machining of gear surface was realized bythree axes linkage,and motion equation of finish machining was set up.Second,outer cornerformula was established. Based on finish machining project, processing of gear groove isaccomplished through finger milling cutter feed along spiral line of conical surface which isobtained by adjusting cutting section corner. And motion equation of gear groove was set up.
     The movement simulation and of NC machine working was carried out. Processing ofgear groove and finish machining of gear surface were accomplish accomplished.based onthe simulation, structure of machine and cutter were designed.
     Research of rremble was developed about disc milling tool and finger milling cutter inorder to determinate cutting parameters with new processing method. Analytical model offlutter instability is established and experimental modal parameter identification was carriedout. the figure of spindle speed and radial cutting depth were rendered about two cutters.
     Assembly technology clamp was designed and machined on the basis of a couple ofgears parameter and practical manufacture was carried. Gear profile of gear was measuredthe results showed that: gear surface normal error between-7.7μm-11.7μm, the performanceof this method is verified by experimental results.
引文
[1]北京齿轮厂.螺旋锥齿轮[M].北京:科学出版社,1974.
    [2]齿轮手册编委会.齿轮手册上、下册(第二版)[M].北京:机械工业出版社,2002.
    [3]机械工业部机械工人培训教材编审领导小组.齿轮工工艺学[M].北京:机械工业出版社,1985.
    [4] Litvin F L, Fuentes A, Hayasaka K. Design, manufacture, stress analysis, and experimental tests oflow-noise high endurance spiral bevel gears [J]. Mechanism and Machine Theory,2006,41(1):83-118.
    [5] Fuentes A, Litvin F L, Mullins B R, et al. Design and Stress Analysis of Low-Noise Adjusted BearingContact Spiral Bevel Gears [J]. Journal of Mechanical Design,2002,124(3):524-532.
    [6]李兆文,王勇.陈正洪.螺旋锥齿轮技术的研究现状[J].工具技术,2007,4l(l0):3-6.
    [7]刘凯.弧齿锥齿轮数控铣齿机运动分析及控制系统研究[D].南京:南京航空航天大学,2007.
    [8]洪肇斌.基于球面渐开线齿面生成原理的弧齿锥齿轮新型切削加工方法[D].长春:吉林大学,2013.
    [9]庄中.格里森弧齿锥齿轮磨齿技术的发展[J].汽车工艺与材料,2004,9:11-13.
    [10]北京齿轮厂.螺旋锥齿轮[M].科学出版社,1974.
    [11]天津齿轮机床研究所,西安交通大学.格里森锥齿轮技术资料译文集[M].机械工业出版社,1986.
    [12] Gleason Seminar. Spiral bevel and hypoid gear technology update [R]. Beijing: Gleason Corporation,2007.
    [13]刘鹄然,陈良玉,刘志峰.奥利康与克林根贝尔格制铣齿机工作原理的新认识[J].机械传动,1998,22(3):36-37.
    [14] Ma N, Xu W J, Wang X Y, et al. Mathematical modeling for finishing tooth surfaces of spiral bevelgears using pulse electrochemical dissolution [J]. Int J Adv Manuf Technol,2011,54(9-12):979-986.
    [15] Deng X B, Hua L, Han X H. Three-dimensional FE modelling simulation of cold rotary forging ofspiral bevel gear [J]. IRONMAKING&STEELMAKING,2011,38(2):101-111.
    [16]胡来瑢.空间啮合原理及应用[M].煤炭工业出版社,1987.
    [17] Yang Z J, Wang Y K, Li L N, et al. Mathematical Model of Spiral Bevel Gears Manufactured byGenerating Line Method [C]. Advanced Materials Research,2011,154-155:103-108.
    [18]曾韬.螺旋锥齿轮设计与加工[M].哈尔滨工业大学出版社,1989.
    [19]樊奇,让·德福.格里森专家制造系统(GEMS)开创弧齿锥齿轮及双曲面齿轮数字化制造新纪元[J].世界制造技术与装备市场,2005,4:87-93.
    [20]彭福华.渐开线齿轮产形线切齿法[M].长春:吉林科学技术出版社,2008.
    [21] Litvin F L, Tsung Weijiung, Coy J J, Method for Generation of Spiral Bevel Gears with ConjugateGear Tooth Surfaces, Journal of Mechanims Transmisions and Automation in Design,1987,109(6):163~170.
    [22]天津齿轮机床研究所、西安交通大学编译.格里森锥齿轮技术资料译文集第一、三分册[M].北京:机械工业出版社,1986.
    [23]邓效忠.高重合度弧齿锥齿轮的设计理论及实验研究[D].西安:西北工业大学,2002.
    [24]郑昌启.弧齿锥齿轮和准双曲面齿轮[M].北京:机械工业出版社,1988.
    [25]李兆文,王勇,陈正洪.螺旋锥齿轮技术的研究现状[D].成都:工具技术,2007.
    [26] M.L.Baxter.Basic Geometry and Tooth Contact of Hypoid Gears[J].IndustrialMathematics,1961,11(2):12-28.
    [27] M.L.Baxter.Second Order Surface Generation.[J].Industrial Mathematics,1973,23(2):85-106.
    [28]西安交通大学机制教研室齿轮研究组.弧齿锥齿轮与准双曲面齿轮加工调整原理[M].上海:上海科学技术出版社,1979.
    [29]郑昌启.局部共扼原理及其在弧齿锥齿轮切齿计算中的应用[J].机械工程学报,1979,15(2):73-106.
    [30]郑昌启.弧齿锥齿轮和准双曲面齿轮的齿面接触分析计算原理[J].机械工程学报,1981,17(2):1-12.
    [31]吴序堂.准双曲面齿轮啮合原理及其在刀倾半展成加工中的应用[J].西安交通大学学报,1981,15(1):9-24.
    [32]吴序堂.格里森准双曲面齿轮刀倾全展成切齿法的研究[J].机械工程学报,1985,21(2):54-79.
    [33]韩佳颖,王太勇,李清,郑慧江.基于解析计算的螺旋锥齿轮切削仿真算法[J].农业机械学报,2010,41(12):223-227.
    [34]熊越东,王太勇,张威.螺旋锥齿轮数控加工参数转换计算方法[J].组合机床与自动化加工技术,2006,8:5-8.
    [35]徐彦伟.弧齿锥齿轮铣齿机主动精度设计方法研究[D].天津:天津大学,2010.
    [36] Litvin FL, GutmanY. Methods of Synthesis and Analysis of HyPoid Gear Drives of ‘Formate’’and’Helixform’[J], ASME J. of Mech. Design,1981,103:83-113.
    [37] L1tvinFL,GutmanY.AMethod of Local Synthesis of Gears Grounded on the Connection Between thePrincipal and Geodetic Curvatures of Surfaces.[J] ASME J. of Meeh. Design,1981,103:114-125.
    [38] Litvin FL,ZhangY.Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral BevelGears[J].NASACR4342,Chicago:NASA Lewis Research Center,1991.
    [39]王小椿.点啮合曲面的三阶接触分析[J].西安交通大学学报,1983,17(3):1-13.
    [40]王小椿.线接触曲面的三阶接触分析[J].西安交通大学学报,1983,17(5):1-12.
    [41]王小椿,吴序堂.点接触齿面三阶接触分析的进一步探讨—V/H检验理论[J].西安交通大学学报,1987,21(2):1-13.
    [42]吴序堂,王小椿,李峰.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价[J].机械工程学报,1994,30(3):47-57.
    [43]李敦信,包润阁,王德友.锥齿轮加工简化计算[M].机械工业出版社,1978.
    [44] Zhu C D, Guan Q, Wang H. Twin symmetry roll axial rolling: new method of plastic forming profilesdemonstrated using manufacture of spiral bevel gears [J]. Ironmaking&steelmaking,2011,38(3):211-217.
    [45] Stadtfeld H J. Handbook of Bevel and Hypoid Gears: Calculation, Manufacturing, and Optimization
    [M]. NY: Rochester Institute of Technology,1993.
    [46]刘立民.奥利康制弧齿锥齿轮XN型齿的应用[J].现代零部件,2006,3:100-101.
    [47] Liu G L, Fan H W, Pinion tooth surface generation strategy of spiral bevel gears [J]. Chinese journalof mechanical engineering,2012,25(4):753-759.
    [48] Watanabe M, Maki M, Hirokawa S. A study on forging of spiral bevel gear [C]. Proceedings of theasme international design engineering technical conferences and computers and information inengineering conference,2008,7:799-806.
    [49]李强,宿宝龙,闫洪波,等.螺旋锥齿轮加工机床发展综述[J].机床与液压,2012,40(8):164-166.
    [50]卢佳,董苗苗.克林根贝尔格锥齿轮铣齿机工作原理的基础分析——AMK852实践[J].科技创新与应用,2012,3:56-57.
    [51]汪有刚.浅析克林根贝尔格制锥齿轮的加工及特点[J].民营科技,2013,1:20.
    [52]天津齿轮机床研究所,西安交通大学.格利森锥齿轮技术资料译文集第四册[M].机械工业出版社,1986.
    [53]遇立基.CIMT’99展出的数控齿轮加工机床[J].制造技术与机床,1999,12:6-7.
    [54]庄中..格里森弧齿锥齿轮磨齿技术的发展[J].汽车工艺与材料,2004,9:11-13.
    [55]蒋文兵.螺旋锥齿轮五轴联动数控加工的研究[D].郑州:郑州大学,2003.
    [56]刘小龙.螺旋锥齿轮切、磨齿技术的发展及面临的挑战[J].汽车齿轮,2010,4:42-50.
    [57] Alves J T, Guingand M, de Vaujany J P. Designing and manufacturing spiral bevel gears using5-axiscomputer numerical control (CNC) milling machines [J]. J. Mech. Des.,2013,135(2):1-6.
    [58] Zhou K H, Tang J Y. Envelope-approximation theory of manufacture technology for point-contacttooth surface on six-axis CNC hypoid [J]. Mechanism and machine theory,2011,46(6):806-819.
    [59] Harmann J.Stadtfeld.锥齿轮齿形加工的第二次革命——Hermann J.Stadtfeld先生在W&B杂志上介绍的锥齿轮加工技术最新发展的情况[J].世界制造技术与装备市场,2004,71-75.
    [60] SIGMA∑POOL集团.SIGMA∑POOL齿轮技术集团——国际齿轮界的强强联合[J].机电国际市场,2000,6:36-37.
    [61] Fan Q, DaFoe R S, Swanger J W. New developments in computerized design and manufacturing ofspiral bevel and hypoid gears [C]. International conference on mechanical transmissions,2006,1-2:128-133.
    [62]樊奇,让·德福.格里森专家制造系统(GEMS)――开创弧齿锥齿轮及双曲面齿轮数字化制造新纪元[J].世界制造技术与装备市场,2005(4):87~93.
    [63]西门子数控系统概述[J].制造技术与机床,2005,(2):100~102.
    [64]陈兴强,何华.FANUC160MC在弧齿锥齿轮铣齿机中的应用[J].机械工人(冷加工),2001(10):38~39.
    [65]乐美豪.中国齿轮制造业50年[J].机电国际市场,2000,5:5-8.
    [66]吴训成,毛世民,吴序堂.点接触齿面在控制误差敏感性条件下的二阶参数设计[J].西安交通大学学报,1999,33(11):86-89.
    [67]毛世民,吴序堂.新型万能曲线齿锥齿轮加工机床的运动学[J].制造技术与机床,1997,6:22-24.
    [68]刘鹄然,刘厚根,李国顺.在螺旋锥齿轮数控铣齿机上实现刀倾法加工小轮[J].现代机械.1998,4:54-57.
    [69]林经德,刘鹄然.摆线齿螺旋锥齿轮铣齿机工作原理的新认识[J].机械研究与应用,1998,11(2):17-18.
    [70]恩宝贵.中国机床工业到了向世界制造技术高峰冲锋的时候[J].制造技术与机床,2012,6:13-18.
    [71]马云.CCMT2012制齿装备精品荟萃[J].世界制造技术与装备市场,2012,6:82-87.
    [72]天津精诚机电制造有限公司,YH603B数控弧齿锥齿轮铣齿机[R].http://www.tj-jcmt.com/Product/ProductDetail.aspx?ProductID=4,2004.
    [73]我国大型数控弧齿锥齿轮铣齿机研制成功[J].机械工程师,2005:9.
    [74]李先广.机床制造业绿色制造运行模式及其特征主线研究[D].重庆:重庆大学,2012.
    [75]秦荣荣,崔可维..机械原理[M].长春:吉林科学技术出版社,2000.
    [76]张宝珠.齿轮加工速查手册[M].北京:机械工业出版社,2010.
    [77]朱孝录.齿轮传动设计手册第二版[M].北京:化学工业出版社,2010.
    [78] Wang B C, Yang Z J, et al. Accurate modeling of spiral bevel gears based on dual parameters[J]. Adv.Inf. Sci. Serv. Sci.,2012,4(17):293-300.
    [79] Wang B C, Yang Z J, et al.Parametric modeling of the tooth-surface of spiral bevel gears withspherical involute [J]. Applied Mechanics and Materials,2013,v246-247, p772-776.
    [80] Yang Z J,Wang B C, et al.Research of new machining method of skew bevel gears based ongeneration line[J]. International Journal of Online Engineering,,2013, v9, n SPL.ISSUE4, p20-24.
    [81] Yang Z J,Analysis and manufacture of skew bevel gears with spherical involute[J].AppliedMechanics and Materials,2013, v273, p255-259.
    [82]张志涌.精通Matlab R2011a[M]北京航空航天大学出版社,2011.
    [83]陈杰.Matlab宝典[M].电子工业出版社,2006.
    [84]董振海.精通Matlab7编程与数据库应用[M].电子工业出版社,2007.
    [85]刘保柱,苏彦华,张宏林.MATLAB7.0从入门到精通[M].北京:人民邮电出版社,2010.
    [86]于润伟,朱晓慧. MATLAB基础及应用(第2版)[M].北京:机械工业出版社,2008.
    [87]吴序堂.齿轮啮合原理[M]西安交通大学出版社,2009.
    [88]曾韬.美国格里森编制原理[J].制造技术与机床.979,4:17~26,6.
    [89]张学成,呼咏,杨兆军.基于齿面发生线的弧齿锥齿轮切齿运动分析[J].北京工业大学学报,2010,36(11):1441-1446.
    [90]杨兆军,彭福华,张学成.球面渐开线齿形弧齿锥齿轮切齿法与机床:中国,200810051354.3[P].2009-03-05.
    [91]洪肇斌,杨兆军,张学成,等.基于齿面发生线的弧齿锥齿轮铣削加工仿真分析[J].吉林大学学报(工学版),2013,43(2):334-339.
    [92] Yang Z J, Hong Z B, Wang B C, et al. New tooth profile design of spiral bevel gears with sphericalinvolute [J]. Intl. J. Adv. Comput. Technolog.,2012,4(19):462-469.
    [93] Hong Z B, Yang Z J, Zhang X C, et al. New modeling method of spiral bevel gears with sphericalinvolute based on CATIA [C]. Proc. SPIE Int. Soc. Opt. Eng.,2011,7997:79970Y.
    [94]李栎楠.产形线切齿法加工准双曲面齿轮研究[D].长春:吉林大学,2011.
    [95]王晓霞.金属切削原理与刀具[D].北京:航空工业出版社,2000,45~50.
    [96]宋增平.刀具制造工艺[M].北京:机械工业出版社,1987,40~42.
    [97]杨洁淑.刀具刃磨技术[M].北京:中国农业机械出版社,1983.29.
    [98]张卫青,张明德,郭晓东,等.全数控锥齿轮铣齿机运动控制方法及切齿实验研究[J].中国机械工程,2009,20(22):2733-2737.
    [99]刘凯,陆永华,赵东标.参数曲线自适应加减速控制方法在弧齿锥齿轮数控加工中的应用[J].机械工程学报,2009,45(12):198-204.
    [100]刘凯,赵东标.弧齿锥齿轮数控加工主动控制方法研究[J].机械科学与技术,2007,26(8):973-976.
    [101]刘凯,赵东标.弧齿锥齿轮数控加工和齿面接触点求解算法研究[J].小型微型计算机系统,2008,29(3):572-576.
    [102]刘凯,赵东标,黄沛建.弧齿锥齿轮数控展成运动轨迹规划方法[J].华南理工大学学报(自然科学版),2007,35(8):32-37.
    [103] Artoni A, Gabiccini M, Kolivand M. Ease-off based compensation of tooth surface deviations forspiral bevel and hypoid gears: Only the pinion needs corrections [J]. Mechanism and machine theory,2013,61:84-101.
    [104] Alves J T, Guingand M, de Vaujany J P. Set of functions for the calculation of bendingdisplacements for spiral bevel gear teeth [J]. Mechanism and machine theory,2010,45(2):349-363.
    [105] Cao X M, Fang Z D, Xu H. Design of pinion machine tool-settings for spiral bevel gears bycontrolling contact path and transmission errors [J]. Chinese journal of aeronautics,2008,21(2):179-186.
    [106] Chen S H, Yan H Z, Ming X Z. Error modeling and analysis of spiral bevel gear grinder based onmulti-body system theory [J]. Joumal of central south university of technology,2008,15(5):706-711.
    [107]杨胜群.Vericut数控加工仿真技术[M].清华大学出版社,2010.
    [108]李云龙,曹岩.数控机床加工仿真系统VERICUT[M].西安:西安交通大学出版社,2005.
    [109]徐彦伟,张连洪,刘德全,等.弧齿锥齿轮成形三维虚拟仿真研究[J].中国机械工程,2008,19(22):2703-2707.
    [110]张艳,桂贵生.基于VERICUT的数控加工仿真及优化[J].现代制造技术与装备,2008,4:75-77..
    [111]朱正祥.基于VERICUT数控铣齿机加工仿真的研究与应用[J].机床与液压,2008,36(9):118-120.
    [112]刘光磊,樊红卫.航空弧齿锥齿轮磨削齿面的主动优化设计[J].西北工业大学学报,2011,29(3):394-399.
    [113]刘光磊,樊红卫,谷霁红,等.弧齿锥齿轮传动误差曲线优化的半变性法[J].航空动力学报,2010,25(8):1888-1893.
    [114] Fan Q. Optimization of face cone element for spiral bevel and hypoid gears [J]. Journal ofmechanical design,2011,133(9):1-7.
    [115] Jia J S, Cao X M. Generation and TCA of Straight Bevel Gear Drive with Modified Geometry [J].Applied mechanics and materials,2011,86:403-406.
    [116] Gosselin C, Masseth J, Liang W. Cutter interchangeability for spiral-bevel and hypoid gearmanufacturing [C]. Chicago: ASME/AGMA2003International Power Transmission and GearingConference,2003.
    [117] Liu K, Zhao D B. Algorithms of generation motion and direct interpolation for spiral bevel gear ncmachining [J]. Transactions of nanjing university of aeronautics&astronautics,2007,24(3):257-264.
    [118]王裕清,武良臣,等.弧齿锥齿轮接触区理论与切削过程仿真[M].北京:煤炭工业出版社,2004.
    [119]王裕清,王小林,梁剑.弧齿锥齿轮实体造型数学模型及其实现[J].中国机械工程,2007,18(14):1660-1663.
    [120]王裕清,祝运攀.弧齿锥齿轮接触斑点图像采集及预处理[J].河南理工大学学报(自然科学版),2009,28(2):194-198.
    [121] Ma N, Xu W J, Wang X Y, et al. Prediction method for surface finishing of spiral bevel gear toothbased on least square support vector machine [J]. Journal of central south university of technology,2011,18(3):685-689.
    [122] Simon V V. Advanced manufacture of spiral bevel gears on cnc hypoid generating machine [J].Journal of mechanical design,2010,132(3):1-8.
    [123] Simon V V. Machine-tool settings to reduce the sensitivity of spiral bevel gears to tooth errors andmisalignments [J]. Journal of mechanical design,2008,130(8):1-10.
    [124] Simon V. Load distribution in spiral bevel gears [J]. Journal of mechanical design,2007,129(2):201-209.
    [125]刘展.ABAQUS6.6基础教程与实例详解[M].中国水利水电出版社,2008.
    [126]庄茁.ABAQUS有限元软件6.4版入门指南[M].北京:清华大学出版社,2004.
    [127]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [128]赵腾伦.ABAQUS ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2006.
    [129]曹雪梅,张华,方宗德.航空弧齿锥齿轮承载传动误差的分析与设计[J].航空动力学报,2009,24(11):2618-2624.
    [130]曹雪梅,方宗德,许浩.弧齿锥齿轮的齿面主动设计及试验验证[J].机械工程学报,2008,44(7):209-214.
    [131]曹雪梅,方宗德,张金良,等.弧齿锥齿轮的齿面主动设计[J].机械工程学报,2007,43(8):155-158.
    [132] Simon V. Computer simulation of tooth contact analysis of mismatched spiral bevel gears [J].Mechanism and machine theory,2007,42(3):365-381.
    [133] Simon V. Head-cutter for optimal tooth modi. cations in spiral bevel gears [J]. Mechanism andmachine theory,2009,44(7):1420-1435.
    [134] Shih Y P. A novel ease-off flank modification methodology for spiral bevel and hypoid gears [J].Mechanism and machine theory,2010,45(8):1108-1124.
    [135] Safavi S M, Mirian S S, Abedinzadeh R. Use of PLC module to control a rotary table to cut spiralbevel gear with three-axis CNC milling [J]. International journal of advanced manufacturingtechnology,2010,49(9-12):1069-1077.
    [136]师汉民,黄其柏.机械振动系统—分析·建模·测试·对策(上册)[M].华中科技大学出版社,2008.
    [137]师汉民,黄其柏.机械振动系统—分析·建模·测试·对策(下册)[M].华中科技大学出版社,2008.
    [137]傅志方.振动模态分析与参数识别[M].北京:机械工业出版社,1990.
    [138]宋清华.高速铣削稳定性及加工精度研究[D].山东大学,2009.
    [139]段虎明.实验模态分析的前端信号精度研究及虚拟式模态分析仪的研制[D].上海交通大学,2006.
    [140]丁烨.铣削动力学-稳定性分析方法与应用[D].上海交通大学,2006.
    [141]张力.模态分析与实验[M].清华大学出版社,2011.
    [142]唐进元,卢延峰,周超.有误差的螺旋锥齿轮传动接触分析[J].机械工程学报,2008,44(7):16-23.
    [142] Altintas,Y. Manufacturing Automation: Principles of Mental Cutting and Machine ToolVibrations[M]. Cambridge,University Press,2000.
    [143]唐进元,蒲太平.基于有限元法的螺旋锥齿轮啮合刚度计算[J].机械工程学报,2011,47(11):23-29.
    [144]唐进元,黄云飞,周超,等.弧齿锥齿轮展成齿面的几何建模[J].计算机仿真,2009,26(2):293-297.
    [145]唐进元,卢延峰,周超.螺旋锥齿轮齿面接触分析改进算法研究[J].航空动力学报,2009,24(1):189-195.
    [146]周超,唐进元,曾韬,等.螺旋锥齿轮磨齿机砂轮位置误差与齿轮齿面误差的关系[J].机械工程学报,2008,44(2):94-101.
    [147] Shih Y P, Fong Z H. Flank correction for spiral bevel and hypoid gears on a six-axis CNC hypoidgenerator [J]. Journal of mechanical design,2008,130(6):1-11
    [148] Sheveleva G I, Volkov A E, Medvedev V I. Algorithms for analysis of meshing and contact of spiralbevel gears [J]. Mechanism and machine theory,2007,42(2):198-215.
    [149] Wang Y Z, Wu C H, Gong K, et al. Loaded tooth contact analysis of orthogonal face-gear drives [J].Proceedings of the institution of mechanical engineers part c-journal of mechanical engineeringscience,2012,226(C9):2309-2319.
    [150] Wang P Y, Fong Z H. Fourth-order kinematic synthesis for face-milling spiral bevel gears withmodified radial motion (MRM) correction [J].2006,128(2):457-467.
    [151]方宗德,曹雪梅,沈云波.弧线齿面齿轮的齿面设计与加工[J].航空动力学报,2010,25(1):224-227.
    [152] Wei B Y, Deng X Z, Fang Z D. Study on ultrasonic-assisted lapping of gears [J]. Internationaljournal of machine tools&manufacture,2007,47(12-13):2051-2056.
    [153] Wang P Y, Fan S C, Huang Z G. Spiral bevel gear dynamic contact and tooth impact analysis [J].Journal of mechanical design,2011,133(8):1-6.
    [154]王红利.从CIMT2007看齿轮加工机床的发展趋势[J].制造技术与机床,2007,3:40-44.
    [155] Zhang J H, Fang Z D, Cao X M, et al. The modified pitch cone design of the hypoid gear:Manufacture, stress analysis and experimental tests [J]. Mechanism and machine theory,2007,42(2):147-158.
    [156]张婧,王太勇,郑惠江,等.螺旋锥齿轮四轴联动数控两刀法加工[J].天津大学学报,2013,46(8):749-753.
    [157]曾韬.螺旋锥齿轮设计中的轮坯修正[J].航空标准化与质量.1981,5:51~56.
    [158]曾韬.格里森磨齿机展成凸轮分析[J].制造技术与机床.1978,5:6~11,5.
    [159] Zhao Y P, Wei W J, Dong X Z. Some problems on the2DOF theory of gearing [J]. Mechanism andmachine theory,2008,43(8):1024-1037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700