用户名: 密码: 验证码:
近海软土水泥搅拌加固体强度提高机理及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深层水泥搅拌加固技术在节省加固时间、控制工后沉降等方面具有较为明显的优势。但由于水泥加固体的强度提高与增长特性明显受到地基土体性质与环境条件的影响,其理论研究更是远落后于工程实践,因此在近海工程中的应用尚不成熟。
     本文结合近海深层搅拌地基加固工程,通过室内试验、数值模拟、现场检测等手段,揭示在海水条件下海底软土水泥搅拌加固体强度提高机理,深入探讨最优配合比及影响加固效果的控制因素。开展的研究工作包括:(1)深入探讨了水泥加固体强度提高机理;(2)采用正交试验法设计了水泥土室内配合比试验,对取自港珠澳东人工岛位置和天津港南疆港的淤泥、淤泥质粘土和粉质粘土开展了水泥拌合体的一系列物理、化学试验研究工作;(3)系统整理和分析了试验数据,应用灰色理论研究了影响水泥土强度的最敏感因素;(4)应用数值模拟方法,结合港珠澳大桥岛隧工程中的深层水泥搅拌地基加固方案,对比分析加固前后及处于不同龄期深层水泥搅拌法的加固效果;(5)结合天津港南疆煤码头东引桥工程的实测数据,通过数值模拟揭示了水泥加固体对控制地面沉降及码头前沿侧向变形的有效性。
     研究表明,水泥搅拌加固法可以改变海相软土的物理化学性质,有效改善软土的结构性和损伤特性,宏观上表现为变形特性和强度特性的提高。室内配合比试验表明,与原位软土相比,水泥加固体的密度略有增加;随水灰比的增加,水泥土含水率增加而密度略有降低,水泥土的渗透性得到明显改善;水泥土的强度随土质不同而变化,粉上强度最高,淤泥、淤泥质土较低;水泥掺量对水泥土的强度影响最大。数值模拟分析表明,龄期为60d的加固土体已能提供良好的承载性能,采用深层搅拌加固技术加固海相软土可以有效控制竖直向和水平向变形,同时提高地基抗滑稳定性和承载能力。
Though deep cement mixing reinforcement technology has more obvious advantage in saving the reinforcing time and controlling the post-construction settlement, the strength of formation and growth of cement mixing reinforcement solids are affected by soil properties and environmental conditions, whose theoretical is far behind the engineering practice, therefore, the application in offshore engineering is not mature.
     Combining with deep cement mixing composite foundation reinforcement engineering, through indoor experiment, numerical simulation, field test and other methods to reveal the cement mixing reinforcement solids strength forming mechanism in the submarine soft soil and sea condition, in-depth study of optimum mix ratio and the main control factors of influence of reinforcement effect.。The research work includes:(1) studied the cement mixing reinforcement solids strength forming mechanism;(2) designed the cement-soil mixture ratio test by orthogonal test, a series of physical and chemical experiment had been carried out about the cement-soil mixture, the soil are silt, silt clay and silty clay which are taken from the Hong Kong-Zhuhai-Macao Bridge harbor east artificial island location and Tianjin Port Nanjiang port;(3) arranged and analyzed the experiment data, apply gray theory to study the most sensitive factors which affect the strength of cement soil;(4) applied numerical simulation method, combined with the tunnel engineering of deep mixing cement foundation reinforcement scheme of the Hong Kong-Zhuhai-Macao Bridge Island, used CDM method to compare and analyze the reinforcing effect before and after reinforcement at different ages;(5) combine the measured data of Tianjin Port Nanjiang Coal Terminal East approach bridge engineering, used the numerical simulation to reveal the validity of the CDM to control ground settlement and lateral deformation of the quay.
     Research shows that cement mixing method can change the marine soft soil physical and chemical properties, improve the soft soil structure and damage characteristics effectively which performed for the improvement of deformation and strength characteristics macroscopic. Indoor mixing ratio experiments show that the mixing solid density increases slightly compared with in situ soft soil; with the increase of water cement ratio, water content of cement soil increases however density decreases slightly, the permeability of cement soil improved significantly; cement soil strength varies with soil properties, silty soil is highest, silt, silt soil is relatively low, cement admixture affect the cement soil strength. Numerical simulation analysis shows that age of60d reinforced soil has been able to provide good bearing performance, using deep mixing technology in consolidation of marine soft soil can effectively control the vertical and horizontal deformation of foundation, while improving the anti sliding stability and bearing capacity.
引文
[1]S. Saitoh, etc. Hardening of Soil Improved by Deep Mixing Method[C], Proc.11th National Conference on Soil Mechanics and Foundation Engineering 1985.8.
    [2]Broms, B, B. and Boman, P. Lime Columns-An New Foundation Method[J], Journal of the Geotechnical Engineering Division, ASCE,1979.4:539-556.
    [3]Broms, B, and Boman, P. Lime Stabilized Columns[C], Proc.5, Asion Regional Conf. on Soil Mech. And Found. Eng, Vol.1,1975.
    [4]Miura, N., S. L. Shen, K. Koga, and R. Nakamura. Strengh changes of the clay in the vicinity of soil-cement column[J], J.Geotech. Eng., JSCE,40-43(596),1998 (Japanese).
    [5]Yoshio Suzusi. Deep Chemical Mixing Method Using Cement as Hardening Agent[C], Proceedings of the Symposium on Recent Developments in Ground Improvement Techniques,1982.
    [6]Yoshio Suzuki. Deep Mixing Chemical Method Using Cement as Hard Agent[[C], Symposium on Soil and Rock Improvement Techniques.Bangkok,1983.
    [7]Porbaha, A. State of the art in deep mixing technology [J], Part I:Basic concepts and overview of technology.Ground Improvement,2, No.2,1998.
    [8]Tatsuro Okumura. Deep mixing method as a chemical soil improvement[C]. Proceedings of the Sino-Japan joint symposium on improvement of weak ground,1989.
    [9]Okumara, T. Deep Mixing Method of Japanese[C], Proceedings of IS-Tokyo, The 2nd International Conference on Ground Improvement Geosystems, Tokyo,1996.
    [10]Pousette, K., Macsik, J., Jacobsson, A., Andersson, R., and Lahtinen, P., Peat soil samples stabilized in the laboratory-Experiences from manufacturing and testing[C]. Brendenberg, Holm, and Broms, eds. Balkema, Rotterdam.1999.
    [11]Puppala, A. J., Kadam, R., and Madhyannapu, R. Small strain shear moduli of chemically treated sulfate bearing cohesive soils[J], Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005.
    [12]Rajasekaran, G and Rao, S. N. Lime column technique for the improvement of soft marine clay[C], Proceedings of IS-Tokyo, The 2nd International Conference on Ground Improvement Geosystems, Tokyo,1996.
    [13]彭瑞.水泥深层搅拌技术的发展现状及展望[J],中国港湾建设,2009,160(2):77-82.
    [14]冶金部建筑研究总院、交通部水运规划设计院.深层软粘土水泥搅拌加固法的试验研究[R],1979.
    [15]李文斌.从水泥土强度增长机理分析看增强措施[J],甘肃水利水电技术,1994,(3):63-71.
    [16]Bell F G. Cement stabilization and clay soils, with examples[J], Environmental and Engineering Geoscience,1995,1(2):139-151.
    [17]Gotoh M. Study on soil properties affecting the strength of cement treated soils[C], Proc. Conference. Tokyo,1996,399-404.
    [18]王星华.粘土固化浆液固化过程的SEM研究[J],岩土工程学报,1999,21(1):34-40.
    [19]荀勇.有机质含量对水泥土强度的影响与对策[J],四川建筑科学研究,2000,26(3):58-60.
    [20]王文军.纳米矿粉水泥土固化机理及损伤特性研究[D],杭州:浙江大学,2004.
    [21]叶观宝,叶书麟.水泥土搅拌桩加固软基的试验研究[J].同济大学学报(自然科学版),1995,(3):270-275.
    [22]徐超,叶观宝等.水泥土搅拌桩法在连云港海相软土地基中的应用[J].岩土力学,2006,27(3):495-498.
    [23]黄新.许晟,宁建国.含铝固化剂固化软土的试验研究[J],岩石力学与工程学报,2007,26(1):156-161.
    [24]下凤池,燕晓等.橡胶水泥土强度特性与机理研究[J].四川大学学报(工程科学版),2010,42(2):270-275.
    [25]Leroueil S and Vaughan P R. The general and congruent effects of structure in natural soils and soft rocks[J], Geotechnique.1990,40(3):467-488
    [26]Gens A and Nova R. Conceptual bases for a constitutive model for bonded soils and weak rocks[C], Proc.1st. Int. Conf. Hard soils and soft Rocks.1993,485-494.
    [27]J T Huang and D W Airey. Properties of artificially cemented carbonate sand[J], Journal of Geotechnical Engineering, ASCE,1998,124(6):492-499.
    [28]黄鹤,张俐,扬晓强,等.水泥土材料力学性能的试验研究[J],太原理工大学学报,2000,31(6):705-709.
    [29]Kiyono Kasama, Hidetoshi Ochina and Noriyuki Yasufuku. On the stress-strain behavior of lightly cemtend clay based on an extended critical state concept. Soils and Foundations.2001,40(5):37-47.
    [30]杨志华.水泥搅拌桩复合地基震动性能时程分析[D],大连:大连理工大学,2006.
    [31]张春雷.淤泥固化土力学性质及固化机理研究[D],南京:河海大学,2003.
    [32]范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J],岩土力学,2005,26(8):1327-1334.
    [33]Matsuo, T., Nisibayashi, K. Hosoya, Y. Studies on soil improvement adjusted at low compressive strength in deep mixing method[C], Proceedings of IS-Tokyo, The 2nd Int Conf on Ground Improvement Geosystems, Tokyo,1996.
    [34]Nevzorov A L, Kozmin D D, Aksenov S E, et al. Experience with the installation of soil-cement piles during the reconstruction of a factory[J], Soil Mechanics and Foundation Engineering,2002,39(1): 31-34.
    [35]Motuzov Y Y, Ibragimov M N, Semkin V V. Stabilization of slimy ground(slity soils)for construction of port facilities[J], Soil Mechanics and Foundation Engineering,2003,40(1):27-33.
    [36]Masaaki Terashi. The state of practice in deep mixing methods[J], Geotechnical special publication, ASCE,2003, No.120.
    [37]Horpibulsuk S, Miura N, Bergado T. Undrained shear behaviour of cement admixed clay at high water content[J]. Journal of Geotechnical and Geoenviromental Engineering,2004, (10):1096-1105.
    [38]Lorenzo G, Bergado D T. Fundamental parameters of cement-admixed clay new approach[J], Journal of Geotechnical and Geoenviromental Engineering,2004, (10):1042-1050.
    [39]陆贻杰,周国钧.搅拌桩复合地基模型试验及三维有限元分析[J].岩土力学,1989,11(5):86-91.
    [40]Fahoum. K, Aggour. M. S, Amini. F, Dynamic Properties of cohesive soils treated with lime, Journal of Geotechnical and Geoenviromental Engineering, ASCE,1996,122(5):382-389.
    [41]缪林昌,刘松玉,严明良,等.水泥土的电阻率特性研究[J],工程勘察,2000,(5):32-34.
    [42]王年香,章为民.深层搅拌法加固码头软基离心模型试验研究[J],岩土工程学报,2001,23(5):634-638.
    [43]龚晓南.深基坑工程设计施工手册[M],北京:中国建筑工业出版社,1998.
    [44]陈仲颐,叶书麟.基础工程学[M],北京:中国建筑工业出版社,1990.
    [45]叶观宝,陈望春,杨晓明.水泥土早期强度的室内试验研究[J],岩土工程技术,2003,(6):346-348.
    [46]周成,殷建华,房震.水泥土桩加固海洋土的渐进变形破坏试验与数值分析[J].岩土力学,2005,26(增):205-208.
    [47]沿岸技术研究中心,中交天津港湾工程研究院有限公司(译).海上工程深层搅拌加固工法技术指南.2009.
    [48]周继芳.橡胶水泥土桩复合地基与上部结构作用研究[D],沈阳:沈阳建筑大学,2011.
    [49]冶金部建筑研究总院、交通部水运规划设计院、第五冶金建设公司.深层搅拌法加固软粘土技术,1980.
    [50]王曼颖,舒宁.壁式深基础CDM结构设计方法的探讨.中国港湾建设[J].2002,4:9-11.
    [51]江立云.烟台港深层水泥拌和加固软土地基的配合比和水泥土的强度分析[J],港口工程,1996,6:28-35.
    [52]卞雷,林方.深层水泥搅拌法在淤泥质软弱地基加固中的应用[J],水道港口.2008,29(3):218-222.
    [53]凌天哗.水下深层水泥搅拌法在护岸软基加固中的应用[J],工程技术.2011,17:27-29.
    [54]中港一航局企业标准.QG/YHY23.01.1-01.27-2001.
    [55]张忠坤,殷宗泽,曹正康.复合地基临界桩长的研究[J],岩土工程学报,1999,21(2):184.
    [56]韩煊,李宁.复合地基中群桩相互作用机理的数值试验研究[J],土木工程学报,1999,32(4):75-80.
    [57]郭海燕,等.水泥搅拌桩加固地基地震放大效应的有限元分析[C],土动力学与地震工程研讨会论文,杭州,2001.
    [58]刘润,闫澎旺.水泥搅拌桩的工作机理及有限元分析[J].中国港湾建设,2001,8(4):20-23.
    [59]胡幼常,王金山.舒鄂南.粉喷桩复合地基有限元分析[J].土工基础,2002,16(3):67-69.
    [60]曾远,周瑞忠.高速公路复合地基非线性有限元分析[J].福州大学学报(自然科学版),2003,31(2):206-210.
    [61]吴晓荣.水泥土搅拌桩复合地基计算与分析[D],南京:河海大学,2006.
    [62]天津港湾工程研究所(译).深层水泥搅拌法加固海底土的特性[M].1994
    [63]张登良.加固土原理[M].北京:人民交通出版社,1990:81-93.
    [64]中华人民共和国建设部.JGJ79-2002 J220-2002.建筑地基处理技术规范.北京:中国建筑工业出版社,2002-9-27.
    [65]Siddique R, Naik T R. Properties of concrete containing scrap-tire rubber-an overview[J]. Waste Management,2004,24(6):563-569.
    [66]朱涵.新型弹性混凝土的研究综述[J].天津建设科技,2004,14(2):35-37.
    [67]刘春生,朱涵,李志国,等.橡胶细集料水泥砂浆基本性能研究[J].混凝土,2005(7):53-57.
    [68]邹允祥等,水泥土搅拌法处置高含盐量软土地基试验研究科研报告[R],连云港市高速公路建设指挥部,同济大学,2006.
    [69]李翔军.水泥搅拌桩复合地基技术研究与工程实践[D],天津:天津大学,2003.
    [70]Tatsuro Okumura. Deep Mixing method as chemical soil Improvement, Proceedings of the Sino-Japan joint symposium on improvement of weak groud.1989.
    [71]杨定国等.水浅谈泥搅拌桩复合地基岩土工程勘察评价[J],西部探矿工程,2011,8(4):20-23.
    [72]冶金部建筑研究总院、交通部水运规划设计院,水泥加固土室内试验研究[R],1980年
    [73]黄新,周国钧.水泥加固土硬化机理初探[J],岩土工程学报,1994,16(1):62-66.
    [74]叶观宝,叶书麟.地基加固新技术[M],北京机械工业出版社,2002.
    [75]汤怡新,刘汉龙,朱伟.水泥固化工程特性研究[J],岩土工程学报,2000,22(5):549-554.
    [76]徐余.高速公路岩质边坡综合治理新材料新技术研究[D],天津:天津大学,2006.
    [77]张土乔.水泥土的应力应变关系及搅拌桩破坏特性研究[D],杭州:浙江大学.1992.
    [78]李宁,张平,闫建文.灌浆的数值仿真分析模型探讨[J].岩石力学与工程学报,2002,21(3)326-330.
    [79]李学斌,余小领,运用Excel进行正交表的构建[J].,河南科技学院学报(自然科学版),2008,36(4):110-113.
    [80]施富清,史如琴.正交试验法与模拟计算[J].,合肥工业大学学报,2001,8(24):777-781.
    [81]徐仲安,王天保,正交试验设计法简介[J],科技情报开发与经济.2002,12(5):148-150.
    [82]建筑地基处理规范(JGJ79-2002)[S],北京:中国建筑工业出版社,2003.
    [83]朱向阳.水泥土搅拌桩处理连云港软土地基的试验研究[D],南京:河海大学,2007.
    [84]黄飞.软土地基水泥深层搅拌加固土的物理力学特性[J],山西建筑.2007,33(3).
    [85]缪林昌,经绯.江苏海相灵敏软土特征研究[J],岩土力学,2006,27(8):1283-1286..
    [86]岳吉双,王振江,刘蜜.模袋固化土室内配比试验[J],水运工程,2011,450(2):36-39.
    [87]曾攀.有限元分析及应用[M],北京:清华大学出版社,2004.
    [88]王勖成,绍敏,有限元法基本原理和数值方法[M],北京:清华大学出版社,1995.
    [89]何满潮,黄润秋,王金安,姚磊华,王树仁,工程地质数值法[M],北京:科学出版社,2006.
    [90]钱家欢,殷宗泽,土工原理与计算[M],北京:中国水利水电出版社,1996.
    [91]苟勇.含工业废料的水泥系固化剂加固软土试验研究[J],岩土工程学报,2000,22(2):210-213.
    [92]费康,张建伟,ABAQUS在岩土工程中的应用[M],北京:中国水利水电出版社,2010.
    [93]陈卫忠,吴国军,嘉善坡,ABAQUS在隧道及地下工程中的应用[M],北京:中国水利水电出版社,2009.
    [94]港口工程荷载规范(JTJ215-98)[S],北京:人民交通出版社,1998.
    [95]夏志皋,塑性力学[M],上海,同济大学出版社,2002.
    [96]石亦平,周玉蓉,ABAQUS有限元分析与实例[M],北京,机械工业出版社,2006.
    [97]庄茁,ABAQUS非线性有限元分析与实例[M],北京:科学出版社,2005.
    [98]刘爱民,苗中海.天津港南疆煤码头引桥边坡陆上水泥搅拌法施工[A].高桩码头十年[C].天津:中港第一航务工程局,2003.
    [99]安国利,周英,等.壁式CDM结构在码头接岸工程中的应用[J].中国港湾建设,2007,(4):29-32.
    [100]叶国良,陈允进.天津港南疆煤码头CDM加固工程现场监测报告[R],天津港湾工程研究所,2000.
    [101]郝玉龙等.深厚软土水泥搅拌桩复合地基沉降分析及控制[J].岩土工程学报,2001,5,23(3):345-349.
    [102]何广讷.复合地基沉降计算实用法的分析[J].地基处理,1998,2,9(2):3-9.
    [103]曹金凤,石亦平.ABAQUS有限元分析常见问题解答[M],北京,机械工业出版社,2009.
    [104]张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2006.
    [105]蒋希雁.水泥搅拌桩复合地基加固机理研究[D],天津:天津大学,2004.
    [106]江祖铭,王崇礼.公路桥涵设计手册——墩台与基础[M].北京:人民交通出版社,1994.
    [107]杨进良.土力学(第四版)[M].北京:中国水利水电出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700