用户名: 密码: 验证码:
IVF周期中最佳获卵数及双阴性T细胞在URSA中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分体外受精-胚胎移植周期中获卵数与妊娠结局之间的关系研究
     目的:已有的研究表明体外受精-胚胎移植(in vitro fertilization-embryo transfer, IVF-ET)治疗周期中获卵数和IVF结局相关,但首次IVF周期获卵数和鲜胚及累积活产率之间的关系尚不清楚。本研究首次探讨获卵数对首次IVF周期活产率的影响。
     方法:回顾性分析2007年4月~2011年12月于安徽省立医院生殖中心行IVF-ET助孕治疗的不孕症患者2455例。患者年龄为18-34岁;所有患者月经周期正常;均以标准黄体期长方案促排卵行第一次IVF周期助孕;未进行种植前遗传学诊断或筛查;非供卵、部分供卵、接受供卵或解冻卵IVF周期;非自然周期或还有剩余冷冻胚胎冻存IVF周期。超促排卵、体外授精-胚胎移植、黄体支持、胚胎冻融及冻胚移植等按照我中心常规进行。单因素分析确定对活产率有影响的预测因子。按获卵数将患者分为5组:A组(<5个),B组(6~10个),C组(11~15个),D组(≥16个)。比较各组受精率、可移植胚胎数、每起始周期鲜胚活产率、全胚冷冻率、每移植周期鲜胚活产率、每起始周期累积活产率、流产率及中重度卵巢过度刺激综合症(ovarian hyperstimulation syndrome, OHSS)发生率。多变量Logistic回归排除了其他对活产率有影响的预测因子后分析获卵数对鲜胚活产率及累积活产率的影响。
     结果:2455个周期中1333个周期获得活产,活产率54.30%。获得活产的患者较未活产患者年轻(P=0.001)。获得活产的患者每日促性腺激素(gonadotropin, Gn)用量及Gn总用量小于未活产患者(P<0.001,P<0.05);但是,获得活产患者的Gn使用天数明显长于未活产患者(P<0.001)。二者之间不孕年限、受精方式、不孕类型、助孕指征差异无显著性。获得活产患者获卵数、受精率、可移植胚胎数明显高于未活产患者(P<0.001,);相反,获得活产患者平均移植鲜胚数量明显少于未活产患者(P<0.05)。
     各获卵数组之间的比较显示,年龄和获卵数呈负相关(P<0.001)。随获卵数的增加,受精率下降(P<0.001),但可移植胚胎数却增加(P<0.001)。343个周期未移植新鲜胚胎,原因为:未获卵(9周期[0.37%]),受精障碍(26周期[1.06%]),无可移植胚胎(17周期[0.69%]),因OHSS或其他原因行全胚冷冻(290周期[11.81%])。随获卵数的增加,OHSS倾向取消鲜胚移植行全胚冷冻的患者增加(P<0.01)。每起始周期新鲜胚胎移植后活产率B、C两组显著高于A、D两组(P<0.01),D组鲜胚活产率下降可能与OHSS倾向取消鲜胚移植行全胚冷冻的患者增多有关。而每移植周期的鲜胚活产率和每起始周期的累积活产率随获卵数的增加而增加(P<0.01,0.005),分别从A组的38.69%和35.00%上升至D组49.07%和67.10%。同样,中重度OHSS的发生率随获卵数的增加而增加(P<0.01),各组流产率相比差异无显著性(P>0.05)。
     多变量Logistic回归分析以A组作为参照组,结果表明,对于每起始周期新鲜胚胎活产率,当排除年龄、超促排卵天数、Gn用药总量、受精率的影响后,修正ORs从B组的1.823(1.395-2.381)升高至C组的2.142(1.609-2.851)。但是D组修正ORs下降,为1.918(1.376-2.672)。超促排卵天数、Gn用药总量、受精率与每起始周期鲜胚活产率相关,但是年龄与每起始周期鲜胚活产率相关性不显著。对于每起始周期累积活产率,当排除年龄、超促排卵天数、Gn用药总量、受精率的影响后,修正ORs在B组和D组分别为2.232(1.708-2.918)、5.805(4.125-8.170),随获卵数增加而上升。超促排卵天数和受精率与累积活产率相关。
     结论:首次IVF周期中获卵数和鲜胚及累积活产率之间有很强的相关性。对年轻患者来说,卵巢高反应并不降低每起始周期IVF累积活产率,但是在IVF新鲜胚胎移植周期,卵巢高反应意味着因OHSS倾向取消鲜胚移植行全胚冷冻的患者增加。在首次IVF周期中,获得最佳活产率的获卵数是6-15个。
     第二部分TCRαβ+CD3+CD4-CD8-双阴性调节性T细胞在不明原因复发性流产中的作用及其机制研究
     目的:探讨TCRαβ+CD3+CD4-CD8-双阴性调节性T细胞(double negative regulatory T cells, DN Treg)在正常妊娠和不明原因复发性流产(unexplained recurrent spontaneous abortion, URSA)患者外周血和母胎界面的含量和功能的变化,了解DN Treg细胞在URSA中的可能作用。同时检测URSA患者主动免疫治疗前后外周血DN Treg细胞水平变化,探讨主动免疫治疗的可能机制。研究结果有助于阐明DN Treg细胞在诱导母胎免疫耐受及URSA中的作用,以期为URSA的治疗寻找新靶点。
     方法:①采集正常非孕妇女、正常早孕妇女、URSA患者以及接受主动免疫治疗前后的URSA患者外周血,用密度梯度离心法分离外周血单个核细胞,分别检测各组DN Treg细胞含量的变化。②采集URSA患者或正常早孕行人工流产妇女蜕膜组织,分别检测各组中DN Treg细胞含量。③提取外周血单个核细胞、蜕膜局部白细胞,分离纯化DN Treg细胞。用抗CD3/CD28包被磁珠体外诱发活化DN Treg细胞。④采集各研究对象的外周血,分离淋巴细胞并制成悬液,CFSE染色后加或不加自体活化后的DN Treg细胞,同时加入抗CD3/CD28磁珠,共刺激培养5天后,上流式细胞仪检测,CELL Quest软件获取并分析,计算出增殖细胞的比例(CD4+或CD8+T细胞中CFSE dim细胞的比例)。
     结果:正常早孕妇女蜕膜组织中DN Treg细胞占CD3+T细胞的比例均明显高于外周血,分别为5.26%±3.58%和1.56±1.07%,差异有显著性(P<0.01)。同样,URSA患者蜕膜组织中DN Treg细胞比例也明显高于外周血,分别为1.82%±0.85%和0.92%±0.68%(P<0.01)。正常妊娠和正常非孕妇女外周血DNTreg细胞比例分别为:1.56%±1.07%和1.21%±0.63%,差异无统计学意义(P=0.217);而URSA患者外周血中DN Treg细胞的比例显著低于正常妊娠妇女外周血,分别为0.92%±0.68%和1.56%±1.07%(P=0.009)。同样,URSA患者蜕膜组织DN Treg细胞也含量明显低于正常妊娠妇女蜕膜组织,差异有统计学意义(P=0.011)。体外功能测定显示:URSA患者的外周血和蜕膜组织中的DN Treg细胞可明显抑制自体CD4+和CD8-T细胞的增殖。同样,正常早孕者蜕膜组织DN Treg细胞也可抑制自体CD4+和CD8+T细胞的增殖。二组之间蜕膜组织DN Treg细胞的抑制能力无明显差异。接受免疫治疗共有54名患者,治疗后至今已分娩17例,目前妊娠已达21-35周有8例,12-20周7例,15例患者妊娠后再次流产,7例患者未孕。将妊娠>12周及分娩定为治疗成功计算,治疗成功率为59.2%。主动免疫治疗后,URSA患者外周血DN Treg细胞比例较治疗前上升,但差异无显著性(P=0.151)。但32例妊娠成功者主动免疫治疗后外周血DNTreg细胞比例较治疗前显著升高(P<0.05),而15例妊娠失败者主动免疫治疗前后外周血DN Treg细胞比例无明显变化。
     结论:蜕膜是人DN Treg细胞在体内富集的部位之一。人DN Treg细胞在母胎免疫耐受中发挥重要的作用,外周血和蜕膜组织中]DN Treg细胞含量的减低可能与不明原因复发性流产的发生相关。过提高URSA患者外周血中DN Treg细胞含量,可能是主动免疫治疗发挥作用的机制之一。
Part Ⅰ:The optimum number of oocytes in IVF treatment
     Objective:It has been reported that there is a strong association between oocyte number and in vitro fertilization-embryo transfer (IVF-ET) outcome.However, the association between the number of eggs retrieved and the live birth rate (LBR) both per fresh cycle and cumulatively per stimulation cycle are not known yet. The purpose of this study is to explore the relationship between oocyte number and LBR following first IVF treatment cycles.
     Method:A retrospective cohort study was performed. All patients aged18-34years with normal menstrual cycles and were stimulated with a long protocol at the Reproductive Medicine Center of Anhui Provincial Hospital, P.R. China from April2007to December2011were identified and reviewed. In our study, the patients' own oocytes were used, and fresh or frozen-thawed embryos were transferred without pre-implantation genetic screening for embryo aneuploidies. For the purpose of this study, cycles involving egg donation, egg sharing, egg cryopreservation and frozen egg thawing were excluded from the analysis. Patients who underwent natural cycles IVF/intra cytoplasmic sperm injection (ICSI) or who had not become pregnant but still had frozen embryos left were also excluded from our study. All patients were undergoing their first IVF cycle. Thus,2455patients with one complete treatment cycle were included in this study.
     Univariate analysis was conducted to identify confounding factors that predict live birth outcome. Patients were categorized into four groups according to the number of oocytes retrieved:A(0-5), B (6-10), C (10-15), D (≥16)oocytes. Important aspects of the treatment outcome including fertilization rate, embryo transferable, fresh cycle LBR per started cycle and per transfer cycle, cumulative LBR, abortion rate and moderate-severe ovarian hyperstimulation syndrome (OHSS) rate were analyzed. Logistic regression analyses were conducted to identify independent correlates between each possible confounding factor especially oocyte number and live birth outcome after adjusting for other confounders that were identified in our univariate analysis.
     Result:2455FVF/ICSI long protocol cycles from our unit were analyzed in this study, and1333cycles (54.30%) result in live births. Women who achieved live births were significantly younger (P=0.001) and required a smaller amount of daily and total gonadotropins (P<0.001, P<0.05). However, the duration of ovarian stimulation in live birth patients was significantly longer than their no live birth counterparts (P<0.001). There were no significant differences in the duration of infertility, insemination method, type of infertility, diagnosis of infertility between live birth and non-live birth cycles. The number of oocytes retrieved, fertilization rate and embryos transferable were significantly higher in live birth cycles (P<0.001). On the contrary, the average number of fresh embryos transferred in live birth patients was significantly fewer than non-live birth patients (P<0.05).
     When divided by oocyte number, there was a negative association between age and oocytes yield (P<0.001). The fertilization rate decreased when more oocytes were retrieved (P<0.001).However, the embryos transferable increased with oocytes number (P<0.001). In343cycles (13.97%), fresh embryo transfer was not done for the following reasons:no oocytes retrieved (9cycles [0.37%]), failed fertilization (26cycles [1.06%]), no embryo transferable (17cycles [0.69%]), and all embryos cryopreservation because of the OHSS or other reasons (290cycles [11.81%]).The whole embryo cryopreservation rate for avoiding moderate-severe OHSS increase with oocyte number (P<0.01). The fresh cycle live birth per started cycle increased with oocytes number up to group B-C (6-15oocytes group) and then decreased (P<0.01) because of the highly whole embryo cryopreservation rate for avoiding moderate-severe OHSS. The fresh cycle LBR per transfer cycle and cumulative LBR per started cycle increased with oocyte number, from38.69%and35.00%of group A to49.07%and67.10%of group D (P<0.01,0.005). Also, the incidence of moderate-severe OHSS increased with the oocyte number (P<0.01). There was no significant difference in the abortion rate among the patient groups (P>0.05).
     In the logistic regression analyses:the0-5oocyte category was used as a reference. After adjustment for age, duration of stimulation, total dose of gonadotrophins and fertilization rate, the adjusted ORs for fresh embryo live birth per started cycle increased from1.823(1.395-2.381) in the6-10oocyte category to2.142(1.609-2.851) in the11-15oocyte category. However, the adjusted ORs of fresh embryo live birth decreased in the≥6oocyte category, being1.918(1.376-2.672). The duration of stimulation, total dose of gonadotrophins and fertilization rate had a significant effect on fresh cycle LBR. But for age, the effect was not significant. For the cumulative live births per started cycle, when adjusted for age, the duration of stimulation, total dose of gonadotrophins and fertilization rate, the adjusted ORs for cumulative live birth were2.232(1.708-2.918) in the6-10oocyte category,3.323(2.492-4.432) in the11-15oocyte category and5.805(4.125-8.170) in≥16oocyte category. Thus, the odds of cumulative live birth appeared to significantly increase with the ovarian response. The duration of stimulation and fertilization rate also had a significant effect on the cumulative LBR.
     Conclusion:There is a strong relationship between the number of oocytes and fresh as well as cumulative LBR following first IVF treatment. For young women, high ovarian response did not compromise IVF outcome. We anticipate these studies may lead to the development of more efficacious ovarian stimulation therapies for IVF. However in the initial fresh IVF cycle, a high ovarian response was associated with a high rate of cycle cancellation due to the risk of OHSS. The optimal number of oocytes for achieving the best chance of live birth in the first IVF cycle, and even higher chances of live birth in cumulative cycles, is somewhere between6and15oocytes.
     Part Ⅱ:Decidual and peripheral blood TCRαβ+CD3+CD4-CD8-double negative regulatory T cells in early pregnancy subjects and unexplained recurrent spontaneous abortion patients
     Objective:To investigate the proportional and function changes of TCRαβ+CD3+CD4-CD8-double negative regulatory T cells (DN Tregs) in peripheral blood and maternal-fetal interface in unexplained recurrent spontaneous abortion (URSA) and normal pregnant (NP) women, and explore the probably role of human DN Tregs in the occurance of URSA. Also, the proportional changes of these cells in peripheral blood after lymphocyte therapy in URSA patients were investigated to find the rationale for this treatment. The results of this study is to explore the probable role that DN Tregs may play in the induction of maternal-fetal immunological tolerance and to find a new treatment target for URSA.
     Method:Heparinized venous blood was obtained from non-pregnant healthy women and women in normal early pregnancy. Similarly, heparinized venous blood was also obtained from patients with unexplained recurrent spontaneous early abortion after diagnosis and before curettage and URSA patients received alloimmunization. treatment. Peripheral blood mononuclear cells (PBMCs) were separated from venous blood by Ficoll-Hypaque gradients. Decidual samples were obtained from patients with induced abortion, representing early pregnant deciduas, and from patients with spontaneous abortion, representing abortion samples. The decidual mononuclear cells (leukocytes) were purified by the Ficoll-Hypaque method after mechanical disruption and filtration through a32-μm nylon mesh. The proportion of DN Tregs in CD3+T cells of each group were determined by flow cytometry. DN Tregs were isolated from PBMC and decidual mononuclear cells via FACS separation. DN Tregs were activated by beads coated with anti-CD3and anti-CD28antibodies in vitro. Lymphocytes suspensions were isolated from venous blood of each patient.After stained with CFSE, lymphocytes were cocultured with anti-CD3/CD28-coated beads in the presence or absence of alloactivated DN Tregs for5days. Proliferation of cells was determined by flow cytometry. Data were analyzed with CELL Quest software and proliferation rates (the propotion of CFSEdim cells in CD4+or CD8+T cells) were calculated.
     Result:The propotion of TCR-αβ+CD3+CD4-CD8-DN Tregs in the CD3+cell population were compared between decidual lymphocytes and peripheral blood lymphocytes. The proportions of DN Tregs in decidua were significantly higher than that in peripheral blood both in URSA patients (1.82%±0.85%vs0.92%±0.68%, P <0.01) and normal early pregnant women (5.26%±3.58%vs1.56±1.07%, P<0.01). In peripheral blood lymphocytes, the proportion of DN Tregs did not differ significantly between normal early pregnant and non-pregnant women (1.56%±1.07%vs1.21%±0.63%, P=0.217). However, proportion of peripheral blood αβTCR+CD3+CD4-CD8-T (DN Treg) cells of URSA patients differ significantly from non-pregnant women (0.92%±0.68%vsl.56%±1.07%, P=0.009). Also, proportion of DN Tregs in deicidal were significantly lower in URSA patients than normal early pregnant women (1.82±0.85%vs5.26±3.58%, P=0.011). Result of in vitro suppression assays show that for URSA patients, DN Tregs in peripheral blood lymphocytes and decidua have a suppressive effect on allo-CD4+and allo-CD8+T cell proliferation. Also, DN Tregs in decidua of normal early pregnant women have a suppressive effect on allo-CD4+and allo-CD8+T cell proliferation. The suppression effect of DN Tregs in decidua between the two groups did not differ significantly.54URSA patients had received immunotherapy.32patients achieved a successful pregnancy with17patients already delieverd,8patients pregnant for21-35week,7patients pregnant for12~20week.7patients had not achieving pregnancy.15patients reaborted after pregnancy. The successful rate after this therapy is59.2%. After allogeneic lymphocyte therapy, the proportion of DN Tregs increase, but the difference was not significant (P=0.151). However, for32patients achieving a successful pregnancy, the percentage of DN Tregs in peripheral blood had been enhanced after allogeneic lymphocyte therapy (P<0.05). While for the15patients reaborted after lymphocyte therapy, the proportion of DN Tregs in peripheral blood did not differed significantly.
     Conclusion:Decidua may be one of the favorite tissue localization of DN Tregs in human in case of pregnancy. Human DN Tregs may play an important role in the induction of maternal-fetal immunological tolerance, the propotion decrease of DN Tregs in peripheral blood lymphocytes and decidua may be associated with the occurrance of URSA. Enhancement of the percentage of DN Tregs in peripheral blood may be one of the rationales for this treatment.
引文
1. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet 1978;2: 366.
    2. Macklon NS, Stouffer RL, Giudice LC, Fauser BC. The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev 2006; 27:170-207.
    3. Fauser BC, Devroey P, Macklon NS. Multiple birth resulting from ovarian stimulation for subfertility treatment. Lancet 2005; 365:1807-1816.
    4. London SN, Young D, Caldito G, Mailhes JB. Clomiphene citrate-induced perturbations during meiotic maturation and cytogenetic abnormalities in mouse oocytes in vivo and in vitro. Fertil Steril.2000;73:620-626.
    5. Blerkom JV, Davis P. Differential effects of repeated ovarian stimulation on cytoplasmic and spindle organization in meta-phase Ⅱ mouse oocytes matured in vivo and in vitro. Hum Reprod,2001; 16:757-764.
    6. Wu YT, Tang L, Cai J, Lu XE, Xu J, Zhu XM, Luo Q, Huang HF. High bone morphogenetic protein-15 level in follicular fluid is associated with high quality oocyte and subsequent embryonic development. Hum Reprod,2007,22:1526-1531.
    7. Meng QX, Gao HJ, Xu CM, Dong MY, Sheng X, Sheng JZ, Huang HF. Reduced expression and function of aquaporin-3 in mouse metaphase-Ⅱ oocytes induced by controlled ovarian hyperstimulation were associated with subsequent low fertilization rate. Cell Physiol Biochem,2008; 21:123-128.
    8. Winston RM, Hardy K. Are we ignoring potential dangers of in vitro fertilization and related treatments? Nat Cell Biol,2002,[4 Suppl]:s14-18.
    9. Nastri CO, Ferriani RA, Rocha IA, Martins WP. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet 2010; 27:121-128.
    10. Polinder S, Heijnen EM, Macklon NS, Habbema JD, Fauser BJ, Eijkemans MJ. Cost-effectiveness of a mild compared with a standard strategy for IVF:a randomized comparison using cumulative term live birth as the primary endpoint. Hum Reprod.2008; 23:316-323.
    11. Inge GB, Brinsden PR, Elder KT. Oocyte number per live birth in IVF:were Steptoe and Edwards less wasteful? Hum Reprod 2005; 20:588-592.
    12.庄广伦卵泡发育与超促排卵生殖医学杂志2007;16:226-227.
    13. Letterie G, Marshall L, Angle M. The relationship of clinical response, oocyte number, and success in oocyte donor cycles. J Assist Reprod Genet.2005; 22:115-117.
    14. Hamoda H, Sunkara S, Khalaf Y, Braude P, EI-Toukhy T. Outcome of fresh IVF/ICSI cycles in relation to the number of oocytes collected:A review of 4,701 treatment cycles. Hum Reprod 2010; 25:i47.
    15. Meniru GI, Craft IL. Utilization of retrieved oocytes as an index of theefficiency of superovulation strategies for in-vitro fertilization treatment. Hum Reprod 1997; 12:2129-2132.
    16. Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A. Association between the number of eggs and live birth in IVF treatment:an analysis of 400 135 treatment cycles. Hum Reprod 2011;26:1768-1774.
    17. van der Gaast MH, Eijkemans MJ, van der Net JB, de Boer EJ, Burger CW, van Leeuwen FE, Fauser BC, Macklon NS. Optimum number of oocytes for a successful first IVF treatment cycle. Reprod Biomed Online 2006; 13:476-480.
    18. McAvey B, Zapantis A, Jindal SK, Lieman HJ, Polotsky AJ. How many eggs are needed to produce an assisted reproductive technology baby:is more always better? Fertil Steril 2011;96:332-335.
    19. Olivennes F, Hazout A, Lelaidier C, Freitas S, Fanchin R, de Ziegler D, Frydman R. Four indications for embryo transfer at the blastocyst stage. Hum Reprod 1994;9:2367-2373.
    20. Volpes A, Sammartano F, Coffaro F, Mistretta V, Scaglione P, Allegra A. Number of good quality embryos on day 3 is predictive for both pregnancy and implantation rates in in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril 2004;82:1330-1336.
    21. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome:towards a single blastocyst transfer. Fertil Steril 2000;73:1155-1158.
    22. Fiedler K, Ezcurra D. Predicting and preventing ovarian hyperstimulation syndrome (OHSS): the need for individualized not standardized treatment. Reprod Biol Endocrinol 2012;10:32.
    23. Tong XH, Wu LM, Jin RT, Luo LH, Luan HB, Liu YS. Fertilization rates are improved after IVF if the corona radiata is left intact in vitrified-warmed human oocytes. Hum Reprod 2012;27:3208-3214.
    24. Golan A, Weissman A. Symposium:Update on prediction and management of OHSS. A modern classification of OHSS. Reprod Biomed Online 2009; 19:28-32.
    25. Cai QF, Wan F, Huang R, Zhang H W. Factors predicting the cumulative outcome of I VF/ICSI treatment:a multivariable analysis of 2450 patients. Hum Reprod 2011;26:2532-2540.
    26. Min JK, Hughes E, Young D, Gysler M, Hemmings R, Cheung AP, Goodrow GJ, Senikas V, Wong BC, Sierra S, Carranza-Mamane B, Case A, Dwyer C, Graham J, Havelock J, Lee F, Liu K, Vause T. Joint Society of Obstetricians and Gynaecologists of Canada-Canadian Fertility and Andrology Society Clinical Practice Guidelines Committee. Elective single embryo transfer following in vitro fertilization. J Obstet Gynaecol Can.2010; 32:363-377.
    27.张顺吉,龚斐,林戈等.年龄及移植优质胚胎数对体外受精-胚胎移植患者多胎妊娠率的影响.中华妇产科杂志,2008,43:567-570.
    28. Joint SOGC-CFAS. Guidelines for the number of embryos to transfer following in vitro fertilization No.182, September 2006. Int J Gynaecol Obstet.2008; 102:203-216.
    29.印惠荣,钱晓乔,蔡令波等.单胚胎移植周期中胚胎质量及妊娠率分析.山东医药,2009,49:28-30.
    30. Ingerslev HJ, H(?)jgaard A, Hindkjaer J, Kesmodel U.A randomized study comparing IVF in the unstimulated cycle with IVF following clomiphene citrate. Hum Reprod 2001; 16:696-702.
    31. McKiernan SH, Bavister BD. Gonadotrophin stimulation of donor females decreases post-implantation viability of cultured one-cell hamster embryos. Hum Reprod, 1998.13:724-729.
    32. Van der Auwera I, D'Hooghe T. Superovulation of female mice delays embryonic and fetal development. Hum Reprod.2001; 16:1237-1243.
    33. Ertzeid G, Storeng R. Adverse effects of gonadotrophin treatment on Pre-and postimplantation development in mice. J Reprod Fertil.1992; 96:649-655.
    34. Shi W, Haaf T. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev.2002; 63:329-334.
    35. Winston RM, Hardy K. Are we ignoring potential dangers of in-vitro fertilization and related treatments? Nat Cell Biol,2002; 4 Suppl:sl4-8.
    36. Chang AS, Moley KH, Wangler M, Feinberg AP, Debaun MR. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology:a case series of 19 patients. Fertil Steril.2005; 83:349-354.
    37. Kaneko T, Saito H, Takahashi T, Ohta N, Saito T, Hiroi M. Effects of controlled ovarian hyperstimulation on oocyte quality in terms of the incidence of apoptotic granulose cells. J Assist Reprod Genet.2000; 17:580-585.
    38. Rizk B, Smitz J. Ovarian hyperstimulation syndrome after superovulation for IVF and related procedures. Hum Reprd.1992; 7:320-327.
    39. Rossing MA, Tang MT, Flagg EW, Weiss LK, Wicklund KG. A case-control study of ovarian cancer in relation to infertility and the use of ovulation inducing drugs. Am J Epidemiol. 2004; 160:1070-1078.
    40. Stolwijk AM, Zielhuis GA, Sauer MV, Hamilton CJ, Paulson RJ. The impact of the woman's age on the success of standard and donor in vitro fertilization. Fertil Steril.1997; 67:702-710.
    41. Ottosen LD, Kesmodel U, Hindkjaer J, Ingerslev HJ. Pregnancy prediction models and eSET criteria for IVF patients-do we need more information? J Assist Reprod Genet.2007; 24:29-36.
    42. Ebbesen SM, Zachariae R, Mehlsen MY, Thomsen D, Hojgaard A,Ottosen L, Petersen T, Ingerslev HJ. Stressful life events are associated with a poor in vitro fertilization (IVF) outcome:a prospective study. Hum Reprod 2009; 24:2173-2182.
    43. Sharma V, Allgar V, Rajkhowa M. Factors influencing the cumulative conception rate and discontinuation of in vitro fertilization treatment for infertility. Fertil Steril.2002; 78:40-46.
    44. Sabatini L, Zosmer A, Hennessy EM, Tozer A, Al-Shawaf T. Relevance of basal serum FSH to IVF outcome varies with patient age. Reprod Biomed Online 2008; 17:10-19.
    45. Wang YA, Healy D, Black D, Sullivan EA. Age-specific success rate for women undertaking their first assisted reproduction technology treatment using their own oocytes in Australia, 2002-2005. Hum Reprod.2008; 23:1633-1638.
    46.滕依丽,林文琴,赵军招等.年龄及基础卵泡刺激素与卵巢反应性及IVF-ET治疗结局的相关研究.实用医学杂志2011;27:4091-4093.
    47.谢妍, 林德伟, 熊露等.女性年龄和获卵数对PESA-ICSI治疗结果的影响.暨南大学学报(医学版)2011;32:629-631.
    48.刘寒艳,刘见桥,李莉等.年龄及移植胚胎数目对妊娠结局的影响广东医学2013;34:247-249.
    49. Broekmans FJ, Knauff EA, te Velde ER, Macklon NS, Fauser BC. Female reproductive ageing:current knowledge and future trends. Trends Endocrinol Metab.2007;18:58-65.
    50. Ulug U, Ben-Shlomo I, Turan E, Erden HF, Akman MA, Bahceci M.Conception rates following assisted reproduction in poor responder patients:a retrospective study in 300 consecutive cycles. Reprod Biomed Online.2003; 6:439-443.
    51. Bancsi LF, Huijs AM, den Ouden CT, Broekmans FJ, Looman CW, Blankenstein MA, te Velde ER. Basal follicle-stimulating hormone levels are of limited value in predicting ongoing pregnancy rates after in vitro fertilization. Fertil Steril.2000; 73:552-557.
    52. Hunault CC, Eijkemans MJ, Pieters MH, te Velde ER, Habbema JD, Fauser BC, Macklon NS. A prediction model for selecting patients undergoing in vitro fertilization for elective single-embryo transfer. Ferti Steril.2002; 77:725-732.
    53. Strandell A, Bergh C, Lundin K. Selection of patients suitable for one-embryo transfer may reduce the rate of multiple births by half without impairment of overall birth rates. Hum Reprod.2000; 15:2520-2525.
    54.郭新宇,张金玉,林德伟等.109个体外受精胚胎移植周期行部分ICSI受精结局分析南方医科大学学报2010;30:1920-1922.
    55. Martin JR, Mahutte NG, Arici A, Sakkas D. Impact of duration and dose of gonadotrophins on IVF outcomes. Reprod Biomed Online.2006; 13:645-650.
    56. Wei Z, Cheng X, Li H, Cao Y, Cong L, Zhou P, Li J. Effects of prolonging administration gonadotropin on unexpectedly poor ovarian responders undergoing in vitro fertilization. Reprod Biol Endocrinol.2010; 8:26.
    57. Chuang M, Zapantis A, Taylor M, Jindal SK, Neal-Perry GS, Lieman HJ, Polotsky AJ. Prolonged gonadotropin stimulation is associated with decreased ART success. J Assist Reprod Genet.2010; 27:711-717.
    58. First NL, Leibfried-Rutledge ML, Sirard MA. Cytoplasmic control of oocyte maturation and species differences in the development of maturational competence. Prog. Clin. Biol. Res. 1988.267:1-46.
    59. Hunter AG, Moor RM.Stage dependent effects of inhibiting ribonucleic acids and protein synthesis on meiotic maturation of bovine oocytes in vitro. J. Dairy Sci.1987; 70:1646-1651.
    60. Vigneron C, Perreau C, Dalbies-Tran R, Joly C, Humblot P, Uzbekova S, Mermillod P. Protein synthesis and phosphorylation patterns of bovine oocytes matured in vivo. Mol. Reprod.Dev.1991; 29:271-275.
    61. Farin CE, Yang L. Inhibition of germinal vesicle breakdown by 5,6-dichlorobenzimidazole riboside in bovine oocytes matured in vitro. Theriogenology 1992;37:208.
    62. Sirard MA, Florman HM, Leibfried-Rutledge ML, Barnes FL, Sims ML, First NL. Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol. Reprod.1989; 40:1257-1263.
    63. Levesque JT, Sirard MA. Effects of different kinases and phosphatases on nuclear and cytoplasmic maturation of bovine oocytes. Mol. Reprod. Dev.1995; 42:114-121.
    64. Kruip TA., Cran DG, van Beneden TH, Dieleman SJ. Structural changes in bovine oocytes during final maturation in vivo. Gamete Res.1983; 8:29-47.
    65. Hyttel P, Xu KP, Smith S, Greve T. Ultrastructure of in-vitro oocyte maturation in cattle. J Reprod Fertil.1986; 78:615-625.
    66. Nogueira D, Ron-El R, Friedler S, Schachter M, Raziel A, Cortvrindt R, Smitz J. Meiotic arrest in vitro by phosphodiesterase 3-inhibitor enhances maturation capacity of human ooeytes and allows subsequent embryonic development. Biol Reprod.2006; 74:177-184.
    67. Blondin P, Coenen K, Guilbault LA, Sirard MA. Superovulation can reduce the developmental competence of bovine embryos. Theriogenology 1996; 46:1191-1203.
    68. Krisher RL. The effect of oocyte quality on development. J Anim Sci.2004; 82:E14-23.
    69.葛明晓, 张金玉, 关婷等.标准长方案超促排卵周期卵巢反应性与I V F-E T临床结局的关系.广东医学2010;31:867-869.
    70.钟依平,周灿权,庄广伦,等,血清雌二醇水平和获卵数对体外受精-胚胎移植治疗结局的影响中国实用妇科与产科杂志2002;18:187-190.
    71.邓彬,张清学,李予等,获卵数对长方案IVF-ET妊娠结局的影响中国妇幼保健2010; 25:3305-3308.
    72. Valbuena D, Martin J, de Pablo JL, Remohi J, Pellicer A, Simon C. Increasing levels of estradiol are deleterious to embryonic implantation because they directly affect the embryo. Fertil Steril.2001; 76:962-968.
    73. Pena JE, Chang PL, Chan LK, Zeitoun K, Thornton MH 2nd, Sauer MV. Supraphysiological estradiol levels do not affect oocyte and embryo quality in oocyte donation cycles. Hum Reprod.2002; 17:83-87.
    74. Mitwally MF, Bhakoo HS, Crickard K, Sullivan MW, Batt RE, Yeh J. Estradiol production during controlled ovarian hyperstimulation correlates with treatment outcome in women undergoing in vitro fertilization-embryo transfer. Fertil Steril.2006; 86:588-596.
    75. Joo BS, Park SH, An BM, Kim KS, Moon SE, Moon HS. Serum estradiol levels during controlled ovarian hyperstimulation influence the pregnancy outcome of in vitro fertilization in a concentration-dependent manner. Fertil Steril.2010; 93:442-446.
    76. Blondin P, Coenen K, Guilbault LA, Sirard MA. Superovulation can reduce the developmental competence of bovine embryos. Theriogenology.1996; 46:1191-1203.
    77. Baart EB, Martini E, Eijkemans MJ, Van Opstal D, Beckers NG, Verhoeff A, Macklon NS, Fauser BC. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo:a randomized controlled trial. Hum Reprod.2007; 22:980-988.
    78. Alrayyes S, Fakih H, Khan I. Effect of age and cycle responsiveness in patients undergoing intracytoplasmic sperm injection. Fertil Steril.1997; 68:123-127.
    79. Silber SJ, Nagy Z, Devroey P, Camus M, Van Steirteghem AC. The effect of female age and ovarian reserve on pregnancy rate in male infertility:treatment of azoospermia with sperm retrieval and intracytoplasmic sperm injection. Hum Reprod.1997; 12:2693-2700.
    80. Yih MC, Spandorfer SD, Rosenwaks Z. Egg production predicts a doubling of in vitro fertilization pregnancy rates even within defined age and ovarian reserve categories. Fertil Steril.2005;83:24-29.
    81. Kok JD, Looman CW,Weima SM, Te Velde ER. A high number of oocytes obtained after ovarian hyperstimulation for in vitro fertilization or intracytoplasmic sperm injection is not associated with decreased pregnancy outcome. Fertil Steril.2006; 85:918-924.
    82.陈小琴,李予,张清学等.卵巢高反应对体外受精-胚胎移植的影响.中国妇产科临床杂志2008;9:343-358.
    83. Kok JD, Looman CW,Weima SM, Te Velde ER. A high number of oocytes obtained after ovarian hyperstimulation for in vitro fertilization or intracytoplasmic sperm injection is not associated with decreased pregnancy outcome. Fertil Steril.2006; 85:918-924.
    84. Fatemi HM, Doody K, Griesinger G, Witjes H, Mannaerts B. High ovarian response does not jeopardize ongoing pregnancy rates and increases cumulative pregnancy rates in a GnRH-antagonist protocol. Hum Reprod.2013; 28:442-452.
    85. Kyrou D, Popovic-Todorovic B, Fatemi HM, Bourgain C, Haentjens P, Van Landuyt L, Devroey P, Does the estradiol level on the day of human chorionic gonadotrophin administration have an impact on pregnancy rates in patients treated with rec-FSH/GnRH antagonist? Hum Reprod.2009; 24:2902-2909.
    86. Hauzman E, Fedorcsak P, Klinga K, Papp Z, Rabe T, Strowitzki T, Urbancsek J. Use of serum inhibin A and human chorionic gonadotrophin measurements to predict the outcome of in vitro fertilization pregnancies. Fertil Steril.2004; 81:66-72.
    87. Gerris J, De ND, Mangelschots K, Van RE, Van de Meerssche M, Valkenburg M. Prevention of twin pregnancy after in vitro fertilization or intracytoplasmic sperm injection based on strict embryo criteria:a prospective randomized clinical trial. Hum Reprod.1999; 14:2581-2587.
    88. Martikainen H, Tiitinen A, Tomas C, Tapanainen J, Orava M, Tuomivaara L, Vilska S, Hyden-Granskog C, Hovatta O. One versus two embryo transfer after IVF and ICSI:a randomized study. Hum Reprod.2001; 16:1900-1903.
    89. Thurin A, Hausken J, Hillensjo T, Jablonowska B, Pinborg A, Strandell A, Bergh C. Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N Engl J Med. 2004; 351:2392-2402.
    90. Lukassen HG, Braat DD, Wetzels AM, Zielhuis GA, Adang EM, Scheenjes E, Kremer JA. Two cycles with single-embryo transfer versus one cycle with double-embryo transfer:a randomized controlled trial. Hum Reprod.2005; 20:702-708.
    91. Van Montfoort AP, Fiddelers AA, Janssen JM, Derhaag JG, Dirksen CD, Dunselman GA, Land JA, Geraedts JP, Evers JL, Dumoulin JC. In unselected patients, elective single-embryo transfer prevents all multiples, but results in significantly lower pregnancy rates compared with double-embryo transfer:a randomized controlled trial. Hum Reprod.2006; 21:338-343.
    92. Toner JP. Age= egg quality, FSH level= egg quantity. Fertil Steril.2003; 79:491.
    93. Abdalla H, Thum MY. An elevated basal FSH reflects a quantitative rather than qualitative decline of the ovarian reserve. Hum Reprod.2004; 19:893-898.
    94. Vlahos NF, Gregoriou O. Prevention and management of ovarian hyperstimulation syndrome. Ann N Y Acad Sci.2006; 1092:247-264.
    95. Grossman LC, Michalakis KG, Browne H, Payson MD, Segars JH. The pathophysiology of ovarian hyperstimulation syndrome:an unrecognized compartment syndrome. Fertil Steril. 2010; 94:1392-1398.
    96. Nastri CO, Ferriani RA, Rocha IA, Martins WP. Ovarian hyperstimulation syndrome: pathophysiology and prevention. J Assist Reprod Genet.2010; 27:121-128.
    97. Tarlatzis BC, Kolibianakis EM. GnRH agonists vs antagonists. Best Pract Res Clin Obstet Gynaecol.2007; 21:57-65.
    98. Melo M, Busso CE, Bellver J, Alama P, Garrido N, Meseguer M, Pellicer A, Remohi J. GnRH agonist versus recombinant HCG in an oocyte donation programme:a randomised, prospective, controlled, assessor-blind study. Reprod Biomed Online.2009; 19:486-492.
    99. Devroey P, Polyzos NP, Blockeel C. An OHSS-Free Clinic by segmentation of IVF treatment. Hum Reprod.2011; 26:2593-2597.
    100. Brown JB. Pituitary control of ovarian function-concepts derived form gonadotrophin therapy. Aust N Z J Obstet Gynaecol.1978; 18:47-55.
    101.Fauser BC. Step-down follicle-stimulating hormone regimens in polcystic ovary syndrome. In:Filicori M, Flamigni C, eds. Ovulation induction:basic science and clinical advances. Amsterdam:Elsevier Science,1994;153-162.
    102. Hillier SG. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod.1994; 9:188-191.
    1. Regan L and Rai R. Epidemiology and the medical cause of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol.2000; 14:839-854.
    2. Medawar PB:Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol.1953; 44:320-338
    3. Nakamura O. Children's immunology, what can we learn from animal studies (1):Decidual cells induce specific immune system of feto-maternal interface. J Toxicol Sci.2009;34 Suppl 2:SP331-339.
    4. King A, Gardner L, Sharkey A, Loke YW. Expression of CD3 epsilon, CD3 zeta, and RAG-1/RAG-2 in decidual CD56+NK cells.Cell Immunol.1998; 183:99-105.
    5. Esadeg S, He H, Pijnenborg R, Van Leuven F, Croy BA. Alpha-2 macroglobulin controls trophoblast positioning in mouse implantation sites. Placenta.2003;24:912-21.
    6. Ashkar AA, Di Santo JP, Croy BA.Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med.2000; 192:259-70.
    7. Ashkar AA, Croy BA. Interferon-gamma contributes to the normalcy of murine pregnancy.Biol Reprod.1999;61:493-502.
    8. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship:is successful pregnancy a TH2 phenomenon? Immunol Today 1993; 14:353-356.
    9. Szpakowski A, Malinowski A, Glowacka E, Wilczyn ski JR, Kolasa D, Dyn'ski M, Tcho' rzewski H, Zeman K, Szpakowski M. The influence of paternal lymphocyte immunization on the balance of Th1/Th2 type reactivity in women with unexplained recurrent spontaneous abortion. Ginekol Pol 2000; 71:586-592. Polish
    10. Liu YS, Zhao SY, Ji JJ, Zhai ZM, Tong XH, Luo LH, Luan HB. The measurement of proportion and function of regulatory T cells in unexplained recurrent spontaneous abortion. Zhonghua Fu Chan Ke Za Zhi.2007; 42:176-179. Chinese
    11. Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle:implications for human reproduction. J Immunol.2007; 178:2572-2578.
    12. Yang H, Qiu L, Chen G, Ye Z, Lu C, Lin Q. Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil Steril.2008; 89:656-661.
    13. Liu YS, Wu L, Tong XH, Wu LM, He GP, Zhou GX, Luo LH, Luan HB. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am J Reprod Immunol.2011; 65:503-511.
    14. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science.2003; 299:1057-1061.
    15. Zhang ZX, Yang L, Young KJ, DuTemple B, Zhang L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med. 2000;6:782-789.
    16. Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M, Kunz-Schughart L, Schmidt CA, Andreesen R, Mackensen A. Isolation and characterization of human antigen-specific TCR alpha betalCD4-CD8- double-negative regulatory T cells. Blood.2005; 105:2828-2835.
    17. Chen W, Zhou D, Torrealba JR, Waddell TK, Grant D, Zhang L. Donor lymphocyte infusion induces long-term donor-specific cardiac xenograft survival through activation of recipient double-negative regulatory T cells. J. Immunol.2005; 175:3409-3416.
    18. Young KJ, Yang L, Phillips MJ, Zhang L. Donor-lymphocyte infusion induces transplantation tolerance by activating systemic and graft-infiltrating double-negative regulatory T cells. Blood.2002; 100:3408-3414.
    19. Voelkl S, Gary R, Mackensen A. Characterization of the immunoregulatory function of human TCR-αβ+CD4-CD8- double-negative T cells. Eur J Immunol.2011; 41:739-748.
    20. Ford MS, Chen W, Wong S, Li C, Vanama R, Elford AR, Asa SL, Ohashi PS, Zhang L. Peptide-activated double-negative T cells can prevent autoimmune type-1 diabetes development. Eur J Immunol.2007; 37:2234-2241.
    21. Chen W, Ford MS, Young KJ, Cybulsky MI, Zhang L. Role of double-negative regulatory T cells in long-term cardiac xenograft survival. J Immunol.2003; 170:1846-1853.
    22. Zhang D, Yang W, Degauque N, Tian Y, Mikita A, Zheng XX. New differentiation pathway for double-negative regulatory T cells that regulates the magnitude of immune responses. Blood.2007; 109:4071-4079.
    23. Hillhouse EE, Beauchamp C, Chabot-Roy G, Dugas V, Lesage S.Interleukin-10 limits the expansion of immunoregulatory CD4-CD8- T cells in autoimmune-prone non-obese diabetic mice. Immunol Cell Biol.2010; 88:771-780.
    24. Zhang ZX, Ma Y, Wang H, Arp J, Jiang J, Huang X, He KM, Garcia B, Madrenas J, Zhong R.Double-negative T cells, activated by xenoantigen, lyse autologous B and T cells using a perforin/granzyme-dependent, Fas-Fas ligand-independent pathway. J Immunol.2006; 177:6920-6929.
    25. He KM, Ma Y, Wang S, Min WP, Zhong R, Jevnikar A, Zhang ZX.Donor double-negative Treg promote allogeneic mixed chimerism and tolerance. Eur J Immunol.2007; 37:3455-3466.
    26. Ford MS, Young KJ, Zhang Z, Ohashi PS, Zhang L. The immune regulatory function of lymphoproliferative double negative T cells in vitro and in vivo. J Exp Med.2002; 196: 261-267.
    27. Chen W, Ford MS, Young KJ, Zhang L. Infusion of in vitro generated DN T regulatory cells induces permanent cardiac allograft survival in mice. Transplant Proc.2003; 35:2479-2480.
    28. Young KJ, DuTemple B, Phillips MJ, Zhang L. Inhibition of graft-versus-host disease by double-negative regulatory T cells. J Immunol.2003; 171:134-141.
    29. Young KJ, Kay LS, Phillips MJ, Zhang L.Antitumor activity mediated by double-negative T cells. Cancer Res.2003; 63:8014-8021.
    30. Kolb HJ.Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood. 2008; 112:4371-4383.
    31. Ye H, Chang Y, Zhao X, Huang X. Characterization of CD3+CD4-CD8-(double negative) T cells reconstitution in patients following hematopoietic stem-cell transplantation Transpl Immunol.2011; 25:180-186.
    32. Duncan B, Nazarov-Stoica C, Surls J, Kehl M, Bona C, Casares S, Brumeanu TD. Double negative (CD3+4-8-) TCR alphabeta splenic cells from young NOD mice provide long-lasting protection against type 1 diabetes. PLoS One.2010; 5:e11427.
    33. Daya S, Gunby J. The effectiveness of allogeneic leukocyte immunization in unexplained primary recurrent spontaneous abortion. Recurrent Miscarriage Immunotherapy Trialists Group. Am J Reprod Immunol 1994; 32:294-302.
    34. Clark DA:Shall we properly re-examine the status of allogeneic lymphocyte immunotherapy for recurrent pregnancy failure? Am J Reprod Immunol 2004; 51:7-15.
    35. Szpakowski A, Malinowski A, Zeman K, Wilczynski J, Kolasa D, Nowak M, Wladzinski J, Kaminski T, Szpakowski M. The influence of paternal lymphocytes immunization on percentage of peripheral blood CD16+/CD56+ cells in women with primary recurrent spontaneous abortion. Ginekol Pol.2001; 72:1063-1068. Polish.
    36. Szpakowski A, Malinowski A, Cieslak J, Nowak M, Wilczynski JR, Banasik M, Szpakowski M, Tchorzewski H. Influence of paternal lymphocyte immunization on the selected subpopulations of peripheral blood lymphocytes in women with recurrent spontaneous abortions of unknown etiology. Ginekol Pol.2003; 74:288-296. Polish.
    37. Qiu L, Lin Q, HongY. Study on changes of serum T helper cell type 1 and 2 cytokines after active immunotherapy in women with unexplained habitual abortion. Zhonghua Fu Chan Ke Za Zhi 2001;36:408-410. Chinese.
    38. Yang H, Qiu L, Di W, Zhao A, Chen G, Hu K, Lin Q. Proportional change of CD4+CD25+ regulatory T cells after lymphocyte therapy in unexplained recurrent spontaneous abortion patients. Fertil Steril.2009; 92:301-305.
    39. Sakaguchi S. Naturally arising CD4 regulatory T cells for immunologic serf-tolerance and negative control of immune responses. Annu Rev Immunol,2004; 22:531-562.
    40. Sakaguchi S, Powrie F. Emerging challenges in regulatory T cell function and biology. Science.2007; 317:627-629.
    41. Dai Z, Li Q, Wang Y, Gao G, Diggs LS, Tellides G, Lakkis FG. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest.2004; 113:310-317.
    42. Hodak E, David M, Maron L, Aviram A, Kaganovsky E, Feinmesser M. CD4/CD8 double-negative epidermotropic cutaneous T-cell lymphoma:an immunohistochemical variant of mycosis fungoides. J Am Acad Dermatol.2006; 55:276-284.
    43. Baecher-Allan C and Anderson DE. Regulatory cells and human cancer. Semin. Cancer Biol. 2006; 16:98-105.
    44. Chatila TA. Role of regulatory T cells in human diseases. J Allergy Clin Immunol.2005 Nov;116:949-59; quiz 960
    45. Sakaguchi S. Regulatory T cells:key controllers of immunologic self-tolerance. Cell 2000; 101:455-458.
    46. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet.2001; 27:20-21.
    47. Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz HM. Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type Ⅱ. J Exp Med.2004; 199:1285-1291.
    48. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol.1995; 155:1151-1164.
    49. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet.2001; 27:18-20.
    50. Kang SM, Tang Q, Bluestone JA. CD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant.2007; 7:1457-63.
    51. Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dalla-Favera R, Suciu-Foca N. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol.2002; 3:237-243.
    52. Faria AM, Weiner HL. Oral tolerance and TGF-beta-producing cells. Inflamm Allergy Drug Targets.2006; 5:179-90.
    53. Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997; 389:737-742.
    54. Thomson CW, Lee BP, Zhang L. Double-negative regulatory T cells:non-conventional regulators. Immunol Res.2006;35:163-178.
    55. Hayday A, Tigelaar R. Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol.2003; 3:233-242.
    56. Zhang C, Zhang J, Tian Z. The regulatory effect of natural killer cells:do "NK-reg cells" exist? Cell Mol Immunol.2006; 3:241-254.
    57. Huehn J, Hamann A. Homing to suppress:address codes for Treg migration. [J] Trends Immunol,2005,26:623-626
    58. Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature;2007;445:766-770
    59. Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol;2007;8:277-284
    60. Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology.2004; 112:38-43.
    61. Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod.2004; 10:347-353.
    62. Ma Y, He KM, Garcia B, Min W, Jevnikar A, Zhang ZX.Adoptive transfer of double negative T regulatory cells induces B-cell death in vivo and alters rejection pattern of rat-to-mouse heart transplantation. Xenotransplantation.2008; 15:56-63.
    63. Lee BP, Chen W, Shi H, Der SD, Forster R, Zhang L. CXCR5/CXCL13 interaction is important for double-negative regulatory T cell homing to cardiac allografts. J Immunol. 2006; 176:5276-83.
    64. McIver Z, Serio B, Dunbar A, O'Keefe CL, Powers J, Wlodarski M, Jin T, Sobecks R, Bolwell B, Maciejewski JP. Double-negative regulatory T cells induce allotolerance when expanded after allogeneic haematopoietic stem cell transplantation. Br J Haematol.2008; 41:170-178.
    65. Masuda T, Ohteki T, Abo T, Seki S, Nose S, Nagura H, Kumagai K. Expansion of the population of double negative CD4-8- T alpha beta-cells in the liver is a common feature of autoimmune mice. J Immunol.1991;147:2907-2912.
    66. Ascon DB, Ascon M, Satpute S, Lopez-Briones S, Racusen L, Colvin RB, Soloski MJ, Rabb H.Normal mouse kidneys contain activated and CD3+CD4-CD8- double-nega-tive T lymphocytes with a distinct TCR repertoire. J Leukoc Biol 2008; 84:1400-1409.
    67. Ascon DB, Lopez-Briones S, Liu M, Ascon M, Savransky V, Colvin RB, Soloski MJ, Rabb H. Phenotypic and functional characterization of kidney-infiltrating lymphocytes in renal ischemia reperfusion injury. J Immunol 2006; 177:3380-3387.
    68. Johansson M, Lycke N. A unique population of extrathymically derived alpha beta TCR+CD4-CD8- T cells with regulatory functions dominates the mouse female genital tract.J Immunol.2003;170:1659-1666.
    69. Taylor C, Faulk WP.Prevention of recurrent abortion with leucocyte transfusions. Lancet. 1981;2(8237):68-70.
    70. Yang H, Qiu L, Di W, Zhao A, Chen G, Hu K, Lin Q. Proportional change of CD4+CD25+ regulatory T cells after lymphocyte therapy in unexplained recurrent spontaneous abortion patients. Fertil Steril.2009; 92:301-305.
    71. Porter TF, LaCoursiere Y, Scott JR. Immunotherapy for recurrent miscarriage. Cochrane Database Syst Rev 2006;19:CD000112.
    72. Ramhorst R, Agriello E, Zittermann S, Pando M, Larriba J, Irigoyen M, Cortelezzi M, Auge L, Lombardi E, Etchepareborda JJ, Contreras Ortiz C, Fainboim L. Is the paternal mononuclear cells' immunization a successful treatment for recurrent spontaneous abortion? Am J Reprod Immunol.2000; 44:129-135.
    73. Agrawal S, Kishore R, Halder A, Sharma A, Sharma RK, Das V, Shukla BR, Agarwal SS. Outcome of pregnancy in women with recurrent spontaneous abortion following immunotherapy with allogeneic lymphocytes. Hum Reprod 1995; 10:2280-2284.
    74. Pandey MK, Agrawal S. Induction of MLR-Bf and protection of fetal loss:a current double blind randomized trial of paternal lymphocyte immunization for women with recurrent spontaneous abortion. Int Immunopharmacol 2004; 4:289-298.
    75. Khonina NA, Broitman EV, Shevela EY, Pasman NM, Chernykh ER. Mixed lymphocyte reaction blocking factors (MLR-Bf) as potential biomarker for indication and efficacy of paternal lymphocyte immunization in recurrent spontaneous abortion. Arch Gynecol Obstet. 2013; 288:933-937.
    76. Kwak JY, Gilman-Sachs A, Moretti M, Beaman KD, Beer AE. Natural killer cell cytotoxicity and paternal lymphocyte immunization in women with recurrent spontaneous abortions. Am J Reprod Immunol.1998; 40:352-358.
    77. Hayakawa S, Karasaki-Suzuki M, Itoh T, Ishii M, Kanaeda T, Nagai N, Takahashi-Yamamoto N, Tochigi M, Chishima F, Fujii TK, Oyama J, Kitanaka S, Satoh K. Effects of paternal lymphocyte immunization on peripheral Th1/Th2 balance and TCR V beta and V gamma repertoire usage of patients with recurrent spontaneous abortions. Am J Reprod Immunol.2000; 43:107-115.
    78. Zenclussen AC, Gerlof K, Zenclussen ML, Sollwedel A, Bertoja AZ, Ritter T, Kotsch K, Leber J, Volk HD.Abnormal T-cell reactivity against paternal antigens in spontaneous abortion:adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol.2005; 166:811-822.
    79. Clark DA. Cell-surface CD200 may predict efficacy of paternal mononuclear leukocyte immunotherapy in treatment of human recurrent pregnancy loss. Am J Reprod Immunol. 2009; 61:75-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700