用户名: 密码: 验证码:
山羊产羔性状候选基因的筛选及其多基因聚合效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产羔率低是制约优质高效养羊业发展的主要瓶颈,而从遗传本质上研究提高产羔率的育种方法是国内外养羊科技工作者努力寻求破解的技术难题。以分子标记为核心的多基因聚合育种技术能直接在DNA水平上对产羔性状的基因型进行选择,克服了常规育种耗时长,效果差的缺点,可快速提高育种效率。可见,寻找与产羔性状紧密连锁分子标记,研究目标基因的调控功能及表达水平,筛选调控产羔性状的功能基因,是实现现代分子育种技术与常规育种技术有机结合,集成创新多基因聚合育种技术体系的基础和前提。
     本研究以对动物繁殖性状有重要调控作用的KITLG、KIT、KISS1和NGF基因为研究对象,采用PCR-RFLP和DNA测序技术研究这4个基因在布尔山羊、西农萨能和关中奶山羊中的SNPs及其与产羔数的关联性;用实时定量PCR技术检测这4个基因在山羊10组织中的相对表达量;克隆山羊KITLG、KIT和NGF基因的CDS区,并进行生物信息学分析;用数量遗传学分析方法研究了KITLG、KIT和KISS1基因聚合效应对产羔数的影响,为集成创新山羊产羔性状的多基因聚合育种技术体系提供试验依据和理论依据。主要研究结果如下:
     1、KITLG基因的克隆、表达及其SNPs与产羔数的关联分析
     山羊KITLG基因CDS区全长825bp,编码274个氨基酸。其与牛、猪、人和鼠的氨基酸序列相似性分别为98%,95%,85%和81%;对KITLG的氨基酸序列分析发现,其二级结构包含141个α-螺旋,17个延伸链,8个β-转角和108个随机卷曲。KITLG基因在卵巢、乳腺和肾中的表达量较高。在KITLG基因中发现了6个SNPs,分别为g.4163G>A,g.16474G>T,g.17025C>A,g.17278A>G,g.17335T>C和g.17453C>T。其中g.4163G>A SNP位于内含子3,其它SNPs位于3'UTR。g.16474G>T和g.17025C>A位点以及g.17278A>G,g.17335T>C和g.17453C>T在3个山羊品种中呈现强连锁不平衡(r2>0.33)。g.16474G>T和g.17025C>A位点组合基因型与产羔数的关联分析结果表明,在西农萨能奶山羊中,GGCC组合基因型个体的第2胎和平均产羔数显著高于TTAA型个体(P<0.05),在关中奶山羊中,GGCC组合丛因型个体的第4胎和平均产羔数显著高于TTAA型个体(P<0.05);在布尔山羊中,GGCC组合基因型个体的第4胎产羔数显著高于TTAA型个体(P<0.05)。g.17278A>G,g.17335T>C和g.17453C>T位点组合基因型与产羔数的关联分析结果表明,在西农萨能奶山羊中,GGCCCC和GACTCC组合基因型个体的第1胎产羔数显著高于GACTCT型(P<0.05),GACTCC组合基因型个体的平均产羔数显著高于GACTCT型(P<0.05);在关中奶山羊中,GGCCCC组合基因型个体的第3胎和平均产羔数显著高于GACTCT型(P<0.05);在布尔山羊中,GGCCCC组合基因型个体的第4胎和平均产羔数显著高于GACTCT型(P<0.05)。以上结果表明,KITLG基因能够作为产羔数的候选基因用于山羊多基因聚合育种。
     2、KIT基因的克隆、表达及其SNPs与产羔数的关联分析
     山羊KIT基因CDS区全长2925bp,编码974个氨基酸。其与绵羊、牛、猪和人的氨基酸序列相似性分别为99%,99%,94%和90%。对KIT的氨基酸序列分析发现,其二级结构包含246个α-螺旋,223个延伸链,47个p-转角和458个随机卷曲。KIT基因在肾、卵巢、乳腺和子宫中的表达量较高。在KIT基因中发现了2个SNPs,其中g.88430T>A SNP位于外显子7,该突变导致第409个氨基酸由酪氨酸→天冬酰胺,g.120466G>A SNP位于3'UTR。在g.88430T>A位点,对于布尔山羊、西农萨能和关中奶山羊,TT基因型个体的平均产羔数显著高于AA基因型个体(P<0.05);在g.120466G>A位点,对于西农萨能奶山羊,AA基因型个体的第3胎产羔数显著高于GG基因型个体(P<0.05);在关中奶山羊中,AA基因型个体的第1胎产羔数显著高于GG基因型个体(P<0.05);在布尔山羊中,AA基因型个体的第4胎产羔数显著高于GG基因型个体(P<0.05)。结果表明,KIT基因能作为山羊产羔数的分子标记用于山羊育种。
     3、KISS1基因的表达及其SNPs与产羔数的关联分析
     KISS1基因在卵巢和肌肉中的表达量较高。在KISS1基因中发现了6个SNPs分别为g.384G>A,g.2124T>A,g.2270C>T,g.2489T>C,g.2510G>A和g.2540C>T,其中g.384G>A SNP位于5'UTR,其它SNPs位于内含子1。在3个山羊品种中,g.2124T>A和g.2270C>T位点以及g.2510G>A和g.2540C>T位点呈现强的连锁不平衡(r2>0.33)。在g.384G>A位点,对于西农萨能奶山羊,AA基因型个体的第2胎和平均产羔数显著高于GG基因型个体(P<0.05);对于关中奶山羊,AA基因型个体的第3胎产羔数显著高于GA和GG基因型个体(P<0.05)。g.2124T>A和g.2270C>T组合基因型与产羔数的关联分析结果表明,在西农萨能奶山羊中,C5(TTTC)和C6(TTTT)组合基因型个体的第4胎和平均产羔数显著高于C1(AACC)型个体(P<0.05);在关中奶山羊中,C6(TTTT)组合基因型个体的第2胎和平均产羔数显著高于C1(AACC)型个体(P<0.05);在布尔山羊中,C3(TATC)和C6(TTTT)组合基因型个体的平均产羔数显著高于C1(AACC)型个体(P<0.05)。g.2510G>A和g.2540C>T组合基因型与产羔数的关联分析结果表明,在西农萨能奶山羊中,C1(AACT)组合基因型个体第3胎产羔数显著高于C2(AATT)和C5(GATT)型个体(P<0.05)。在关中奶山羊中,C1(AACT)组合基因型个体第3胎产羔数显著高于C6(GGCC)和C7(GGCT)型个体(P<0.05)。在布尔山羊中,C3(AATT)组合基因型个体平均产羔数显著高于C1(AACC)、C4(GACT)和C6(GGCC)型个体(P<0.05)。以上结果表明,KISS1基因能够作为产羔数的候选基因用于山羊育种。
     4、NGF基因的克隆、表达及其SNP与产羔数的关联分析
     山羊NGF基因CDS区全长726bp,编码241个氨基酸。其与牛、猪、犬、人和鼠的氨基酸序列相似性分别为99%,95%,92%,92%和83%,对NGF的氨基酸序列分析发现,其二级结构包含44个α-螺旋,50个延伸链,15个β-转角和132个随机卷曲。NGF基因在卵巢、子宫和肺中的表达量较高。在NGF基因中发现了1个SNP(g.705A>G),位于外显子1。在g.705A>G位点,对于3个山羊品种,GG基因型个体的第2胎和平均产羔数显著高于AA基因型个体(P<0.05)。在西农萨能和关中奶山羊中,GG基因型个体的第3和4胎产羔数显著高于AA基因型个体(P<0.05)。NGF基因的g.705A>G位点可作为山羊产羔数的分子标记用于山羊育种。
     5、KITLG、KIT和KISS1基因聚合对山羊产羔数的效应分析
     在西农萨能奶山羊中,C1(GGCCTTTTTT)组合基因型个体的第1胎和平均产羔数显著高于C5(GTCATTAACC)和C22(GTCATATACC)型个体(P<0.05);C1(GGCCTTTTTT)、 C2(GTCATTTTTT)和C3(TTAATTTTTT)组合基因型个体的第3胎产羔数显著高于C11(GTCAAATTTT)、C15(GTCAAAAACC)和C17(TTAAAAAACC)型个体(P<0.05)。在关中奶山羊中,在关中奶山羊中,C16(GGCCTATTTT)组合基因型个体的第2胎和平均产羔数显著高于C4(GTCATTAACC)和C5(GGCCTTTATC)型个体(P<0.05);C5(GGCCTTTATC)组合基因型个体第4胎产羔数显著低于C6(TTAATATATC)、 C9(TTAATTTATC)和C16(GGCCTATTTT)型个体(P<0.05)。在布尔山羊中C1(GGCCTTTTTT)、C3(TTAATTTTTT)和C6(GGCCTTTATC)组合基因型个体的平均产羔数显著高刁C5(GTCATTAACC)和C8(GTCATTTATC)型个体(P<0.05)。统计分析结果表明,在西农萨能奶山羊中,C1(GGCCTTTTTT)为最佳组合基因型;在关中奶山羊中,C16(GGCCTATTTT)为最佳组合基因型,在布尔山羊中,C1(GGCCTTTTTT)为最佳组合基因型,其它优良组合基因型为C3(TTAATTTTTT)和C6(GGCCTTTATC)。
The low kidding rate is a major bottleneck restricting the development of high quality and efficient goat husbandry, and researching on the breeding methods of improving kidding rate from genetic nature is technical problems that goat breeding technology workers at home and abroad seek to overcome them. Polygene pyramiding breeding technology centering on molecular marker-assisted selection could select genotypes of litter size traits in DNA level. It overcomes the disadvantages of conventional breeding time-consuming and poor quality and rapidly improves breeding efficiency. So looking for molecular markers tightly linked with litter size traits, and researching on the regulation function and expression levels of target genes, and screening functional genes regulating litter size traits are the foundation and prerequisite for achieving organic combination of modern molecular breeding technology with conventional breeding technology and integrating innovation polygene pyramiding breeding technology system.
     In the study, KITLG, KIT, KISS1and NGF genes were selected as candidate genes because they played important roles in regulation of animal reproductive traits. This study investigated the polymorphisms of KITLG, KIT, KISSI and NGF genes in Xinong Saanen (SN), Guanzhong (GZ) and Boer (BG) goat breeds by DNA sequencing and PCR-RFLP and analyzed the association of single nucleotide polymorphisms (SNPs) with litter size. In addition, the study detected the relative expression levels of KITLG, KIT, KISS1and NGF genes in10tissues of goats by real time-PCR technology, and cloned the coding sequences (CDS) of KITLG, KIT and NGF genes, and analyzed the characteristics of nucleotide and amino acid sequences using bioinformatics. Finally, the research analyzed the pyramiding effect of KITLG, KIT and KISS1genes on litter size using the analysis method of quantitative genetics to provide the experimental and theoretical basis for integration innovation polygene pyramiding breeding technology system of goat litter size traits. The main results were as follows:
     1. Molecular cloning, tissue expression and association analysis of SNPs with litter size in KITLG gene
     Caprine KITLG gene coding sequence was825bp, encoding274amino acids. The amino acid sequence of caprine KITLG gene had high similarity with those of four species:Bos taurus (98%), Sus scrofa (95%), Homo sapiens (85%) and Mus musculus (81%). The result of caprine KITLG amino acid sequence analysis showed that the secondary structure contained141alpha helix,17extended chains,8β-turns and108random coils. Caprine KITLG mRNA was high expressed in ovary, breast and kidney. Six SNPs were detected in KITLG gene (g.4163G>A, g.16474G>T, g.17025C>A, g.17278A>G, g.17335T>C and g.17453C>T). The g.4163G>A SNP was in intron3, and other SNPs were in3'UTR. In three goat breeds, both g.16474G>T and g.17025C>A loci were closely linked (r2>0.33), in addition, the g.17278A>G, g.17335T>C and g.17453C>T loci also showed strong linkage disequilibrium (r2>0.33). Association analysis of combination genotypes in g.16474G>T and g.17025C>A loci was done in three goat breeds. In SN goats, the result showed that the individuals with GGCC combination genotype had higher litter size than those with TTAA in the second and average parity (P<0.05). In GZ goats, the individuals with GGCC combination genotype had higher litter size than those with TTAA in the fouth and average parity (P<0.05). In BG goats, the individuals with GGCC combination genotype had higher litter size than those with TTAA in the fourth parity (P<0.05). Association analysis of combination genotypes in g.17278A>G, g.17335T>C and g.17453C>T loci was done in three goat breeds. In SN goats, the result showed that the individuals with GGCCCC and GACTCC combination genotypes had higher litter size than those with GACTCT in the first parity (P<0.05), in addition, the individuals with GACTCC combination genotype had higher litter size than those with GACTCT in average parity (P<0.05). In GZ goats, the individuals with GGCCCC combination genotype had higher litter size than those with GACTCT in the third and average parity (P<0.05). In BG goats, the individuals with GGCCCC combination genotype had higher litter size than those with GACTCT in the fourth and average parity (P<0.05). These results suggest that KITLG gene could be used as molecular markers of litter size for polygene pyramiding breeding in goats
     2. Molecular cloning, tissue expression and association analysis of SNPs with litter size in KIT gene
     Caprine KIT gene coding sequence was2925bp, encoding974amino acids. The amino acid sequence of caprine KIT gene had high similarity with those of four species:Ovis aries (99%), Bos taurus (99%), Sus scrofa (94%) and Homo sapiens (90%). The result of caprine KIT amino acid sequence analysis showed that the secondary structure contained246alpha helix,223extended chains,47β-turns and458random coils. Caprine KIT mRNA was high expressed in kidney, ovary, breast and uterus. Two SNPs were detected in KIT gene (g.88430T>A and g.120466G>A). The g.88430T>A SNP was in exon7, which led to Tyr>Asn at position409amino acid of KIT. The g.120466G>A SNP was in3'UTR. At g.88430T>A locus for average parity, the individuals with TT genotype had higher litter size than those with AA genotype in BG, SN and GZ goat breeds (P<0.05). At g.120466G>A locus for the third parity, the individuals with AA genotype had higher litter size than those with GG genotype in SN goats (P<0.05). In GZ goats, the individuals with A A genotype had higher litter size than those with GG genotype at g.120466G>A locus for the first parity (P<0.05). In BG goats, the individuals with AA genotype had higher litter size than those with GG genotype at g.120466G>A locus for the fourth parity (P<0.05). These results suggest that KIT gene could be used as molecular markers of litter size for goat breeding.
     3. Tissue expression of KISS1gene and association analysis of SNPs with litter size
     Caprine KISS1mRNA was high expressed in ovary and muscle. Six SNPs were detected in KISS1gene (g.384G>A, g.2124T>A, g.2270C>T, g.2489T>C, g.2510G>A and g.2540C>T). The g.384G>A SNP was in5'UTR, and other SNPs were in intron1. In three goat breeds, both g.2124T>A and g.2270C>T loci were closely linked (r2>0.33), in addition, the g.2510G>A and g.2540C>T loci also showed strong linkage disequilibrium(r2>0.33). At g.384G>A locus for the second and average parity, the individuals with A A genotype had higher litter size than those with GG genotype in SN goats (P<0.05). In GZ goats, the individuals with AA genotype had higher litter size than those with GA and GG genotypes at g.384G>A locus for the third parity (P<0.05). Association analysis of combination genotypes in g.2124T>A and g.2270C>T loci was done in three goat breeds. In SN goats, the result showed that the individuals with C5(TTTC) and C6(TTTT) combination genotypes had higher litter size than those with C1(AACC) in the fourth and average parity(P<0.05). In GZ goats, the individuals with C6(TTTT) combination genotype had higher litter size than those with C1(AACC) in the second and average parity (P<0.05). In BG goats, the individuals with C3(TATC) and C6(TTTT) combination genotypes had higher litter size than those with C1(AACC) in average parity (P<0.05). Association analysis of combination genotypes in g.2510G>A and g.2540C>T loci was done in three goat breeds. In SN goats, the result showed that the individuals with C1(AACT) combination genotype had higher litter size than those with C2(AATT) and C5(GATT) in the third parity (P<0.05). In GZ goats, the individuals with C1(AACT) combination genotype had higher litter size than those with C6(GGCC) and C7(GGCT) in the third parity (P<0.05). In BG goats, the individuals with C3(AATT) combination genotype had higher litter size than those with C1(AACC), C4(GACT) and C6(GGCC) in average parity (P<0.05). These results suggest that KISSl gene could be used as a candidate gene for goat breeding.
     4. Molecular cloning, tissue expression and association analysis of SNP with litter size in NGF gene
     Caprine NGF gene coding sequence was726bp, encoding241amino acids. The amino acid sequence of caprine NGF gene had high similarity with those of five species:Bos taurus (99%), Sus scrofa(95%) Canis lupus(92%), Homo sapiens (92%) and Mus musculus(83%). The result of caprine NGF amino acid sequence analysis showed that the secondary structure contained44alpha helix,50extended chains,15β-turns and132random coils. Caprine NGF mRNA was high expressed in ovary, uterus and lung. One SNP was detected in NGF gene (g.705A>G in exon1). At g.705A>G locus for the second and average parity, the individuals with GG genotype had higher litter size than those with AA genotype in three goat breeds (P<0.05). In SN and GZ goats, the individuals with GG genotype had higher litter size than those with AA genotype in the second and fourth parity (P<0.05). These results suggest that the g.705A>G locus of NGF gene could be used as a molecular marker of litter size for goat breeding.
     5. Polygene pyramiding effect of KITLG, KIT and KISS1genes on litter size in goats
     In SN goats, the individuals with C1(GGCCTTTTTT) combination genotype had higher litter size than those with C5(GTCATTAACC) and C22(GTCATATACC) in the first and average parity (P<0.05); the individuals with C1(GGCCTTTTTT), C2(GTCATTTTTT), C3(TTAATTTTTT) combination genotypes had higher litter size than those with C11(GTCAAATTTT), C15(GTCAAAAACC) and C17(TTAAAAAACC) in the third parity (P<0.05). In GZ goats, the individuals with C16(GGCCTATTTT) combination genotype had higher litter size than those with C4(GTCATTAACC) and C5(GGCCTTTATC) in the second and average parity (P<0.05); the individuals with C5(GGCCTTTATC) combination genotype had lower litter size than those with C6(TTAATATATC), C9(TTAATTTATC) and C16(GGCCTATTTT) in the fourth parity (P<0.05). In BG goats, the individuals with C1(GGCCTTTTTT), C3(TTAATTTTTT) and C6(GGCCTTTATC) combination genotypes had higher litter size than those with C5(GTCATTAACC) and C8(GTCATTTATC) in average parity (P<0.05). In SN goats, C1(GGCCTTTTTT) was the best combination genotype compared with other combination genotypes. In GZ goats, C16(GGCCTATTTT) was the best combination genotype. In BG goats, C1(GGCCTTTTTT) was the best combination genotype and other excellent combination genotypes included C3(TTAATTTTTT) and C6(GGCCTTTATC)
引文
陈克飞,黄路生,李宁,张勤,张建生,孙士铨,罗明,吴常信.2000.猪FSHβ及ESR合并基因型对猪产仔数性状的影响.科学通报,45(18):1963-1966
    陈杰,姜志华,刘红林,李齐贤,方美英,吴彦宁.1999.二花脸猪FSHβ亚基位点PCR-SSCP标记与产仔数关系初探.南京农业大学学报,22(2):55-58
    陈炳锦,程利南,王永卫,石林特,陈军玲,李路,孙晓溪.2009.NGF及其受体mRNA在PCOS患者颗粒细胞中的表达.中国妇幼保健,24:1692-1694
    储明星,程金华,过纬.2001.微卫星标记OarAE101和BM1329在五个绵羊品种中的初步研究.遗传学报,28(6):510-517
    储明星,周文然,孙少华,方丽,叶素成.2008.小尾寒羊BMP4基因多态性及其与高繁殖力关系.农业生物技术学报,16(2):237-241
    储明星,肖杰文,狄冉,李学伟,方丽,马月辉,李奎.2009.促性腺激素释放激素受体(GnRHR)基因多态性及其与济‘j‘青山羊高繁殖力关系.农业生物技术学报.17(2):218-223
    丁朝阳,陈斌,柳小春,贺长青.2009.猪INHA与GnRHR基因型互作效应对产仔数的影响.湖南农业大学学报(自然科学版),35(5):510-512.
    冯涛,储明星,张英杰.2008.KISS-1/GPR54基因及其在生殖中的作用.遗传,30(4):419-425
    甘晓红.2006.性发育相关基因调控区的多态性研究.[硕十学位论文].武汉:华中师范大学
    甘晓红,洪华珠,肖君华.2006.GPR54及其配体与青春期发育.国际内分泌代谢杂志,26(6):424-426
    葛红山,丁家桐,朱猛进,姜勋平.2003.姜曲海母猪FSHβ基因与一些经济性状关系的研究.扬州大学学报(农业与生命科学版),24(3):29-31
    何振瑞,金梅.2008.FSHR在不同羊品种中的研究进展.安徽农学通报,4(20):28-30
    胡志远,贺福初.1999.蛋白质组研究进展.生物化学与生物物理进展,3:202-204
    黄琳,张锐,宿兵.2008.PLOD3基因3’调控区的人类特异突变改变miR-124a对PLOD3的调控.动物学研究,29(4):363-367
    姜德相,董桂红,王达荣.2005.GnRH对提高母猪受胎率和产仔存活数作用的研究.中国畜牧兽医,32(6):28-29
    金明.2012.安徽省4个地方鸡保种群遗传多样性及3个产蛋性状基因聚合效应分析.[硕士学位论文].合肥:安徽农业大学
    雷雪芹,魏伍川,陈宏,许尚忠,徐廷生,袁志发.2004.6个牛品种在FSHR基因位点的遗传关系及其多态对双胎性状的标记.西北农林科技大学学报(自然科学版),32(7):1-6
    李凤娥,熊远著,邓昌彦,蒋思文,郑嵘.猪FSHβ位点对猪繁殖性状的影响.中国兽医学报,25(1):97-98
    李平华,李杰,杨竹青,张志燕,杨斌,陈从英.2012.母猪初情期全基因组关联分析和位置候选基因研究.中国农业科学,45(19):4075-4083
    李启业,马占海,阿增仁.2007.用GnRH类似物提高大通奶牛情期受胎率试验.青海畜牧兽医杂志,37(1):26-27
    梁琛,储明星,张建海,刘文忠,方丽,叶素成.2006FSHβ基因PCR-SSCP多态性及其与 济宁青山羊高繁殖力关系的研究.遗传,28(9):1071-1077
    刘俊.2006ESR、RYR1基因多态对猪产活仔数影响的研究及四个基因SNP位点的检测.[硕士学位论文].武汉:华中农业大学
    刘远.2010.基于基因聚合策略选育高产仔数大白猪新品系的研究.[硕士学位论文].武汉:华中农业大学
    刘忠慧,储明星,陈国宏,方丽,叶素成.2006.绵羊GnRHR基因部分序列PCR-SSCP分析.安徽农业大学学报,33(3):318-321
    刘轩,强巴央宗,王强,凌遥,辜雪冬,吴克亮,张浩.2010.藏猪繁殖性状多基因效应分析.遗传,32(5):480-485.
    柳淑芳,闫艳春,杜立新.2002.莱芜黑猪FSHβ亚基基因的多态性分析.山东农业大学学报(自然科学版),33(4):403-408
    倪青山,王正志,李冬冬.2004.一种基于预测搜索的基因芯片优化方法.生物信息学,3:28-30
    马永和,李纯锦,孙永峰,周虚.2010.神经生长因子(NGF)在母牛性腺及性腺外生殖器官中的表达研究.中国畜牧兽医,37(4):153-157
    毛春春,孙伟,刘东花,徐苹,雷初朝.2012.德保矮马与哈萨克马KIT基因多态性分析.家畜生态学报,33:20-22
    欧阳曙光,贺福初.1999.生物信息学:生物实验数据和计算技术结合的新领域.科学通报,44(14):1457-1468
    宋美玲,马向明,王建民.2006.波尔山羊FSHR 5'端序列的SNP多态性及超排效果分析.家畜生态学报,27(4):25-28
    史洪才,高志英,牛志刚,白杰,冯利君,李红波,贾斌,张扬.2011.新疆多浪羊FecB突变检测及与产羔数的关系.农业生物技术学报,19(2):330-334
    束婧婷,吉文林,包文斌,陈国宏,张学余,季从亮.2007.鸡ADSL基因和GARS-AIRS-GART基因对鸡肉肌苷酸(IMP)含量的影响.畜牧兽医学报,38(8):786-791
    束婧婷.2008.鸡肌苷酸相关候选基因遗传效应及表达规律研究.[博十学位论文].扬州:扬州大学
    孙洁,储明星,陈宏权,方丽,马月辉,李全.2008GnRHR基因多态性及其与小尾寒羊高繁殖力关系.农业生物技术学报.16(2):230-236
    孙伟,常洪,金银,干鹏,钱建共,吴文忠,陈玲,王伟.2009.湖羊产羔性状的微卫星标记与可能生产力的关联性分析.畜牧兽医学报,40(1):7-14
    孙兆贵,顾正,王健.2009KiSS-1/GPR54系统的生殖内分泌功能研究进展.生殖与避孕,29:374-382
    王军,孙蕾,吕文发,娄玉杰.2011KISS1/GPR54系统在不同发情周期母羊下丘脑中的表达规律.西北农林科技大学学报(自然科学版),39(12):50-59
    王凭青,鲁浪,储明星,狄冉,张宝云,方丽,马月辉,李奎.2009.孕酮受体基因多态性及其与济宁青山羊产羔数关系.中国农业科学,42(5):1768-1775
    王雪松,汤军.2006.新的生殖激素调控系统KISS-1/GPR54国外医学计划生育/生殖健康分册,25(4):197-199
    吴井生,张跟喜,戴国俊,叶兰,王金玉.2012aFSHR基因第1外显子多态性及其与小梅山猪产仔数的关系.畜牧兽医学报,43(3):509-515
    吴井生,张跟喜,戴国俊,叶兰,王金玉.2012bGPR54基因多态性与小梅山猪产仔数的 关联分析.中国畜牧杂志,48(3):1-5
    徐明,郑新民,李世文,丁协刚,周克文,汪聪.2010.单侧隐睾大鼠对侧睾基因表达变化及意义丸组织中SCF/c-kit基因表达变化及意义.中华小儿外科杂志,31:859-862
    闫艳,储明星,狄冉,方丽,王凭青.2009.山羊促性腺激素释放激素1基因外显子克隆及序列分析.中国畜牧兽医,36(10):75-79
    严杰,乔杰.2008.干细胞因子及其受体在卵泡早期发育中的作用.生殖与避孕,28(1):739-744
    叶丹,潘建伟,廖鸣娟,张志和,朱睦元.2003.促性腺激素释放激素的结构及其生物学功能.生物化学与生物物理进展,30(1):197-201
    袁志发,周静芋.2000.试验设计与分析.北京:高等教育出版社
    张慧,王守志,李辉.2010.畜禽全基因组选择.东北农业大学学报,41(3):145-149
    张莉,李庆章,关洪斌.2002a.山羊卵泡刺激素α亚基cDNA的分子克隆与序列分析.中国生物化学与分子生物学报,18(6):693-697
    张莉,李庆章,关洪斌.2002b.山羊卵刺激素β亚基cDNA的分子克隆与序列分析.生物技术通讯,13(6):432-442.
    张育军,胡敏兰,张子军,丁建平,任春环,杨玉敏,阮崇美.2010.山羊GnRHR基因部分序列多态性及其与产羔数的关联性分析.中国草食动物,30(4):13-16
    朱广琴,王利心,孙瑞萍,梁昭义,董彬,宋宇轩,王建刚,曹斌云.2008.6个微卫星基因座与西农萨能奶山羊产羔数相关性的研究.中国农业大学学报,13(3):63-69
    朱杰.2005.生物信息学的研究现状及其发展问题的探讨.生物信息学.3:186-188
    朱晓玲,李成娇,侯晓峰,石德顺,刘庆友,周虚.2011.神经生长因子NGF及其受体TrkA在雌性水牛生殖器官的表达定位.吉林农业大学学报,33(3):315-318
    赵要风,李宁,冯继东.1996.猪FSHβ亚基基因5'端调控区的PCR克隆测序及变异分析.自然科学进展—国家重点实验室通讯,6(3):351-356
    赵屹,谷瑞升,杜生明.2012.生物信息学研究现状及发展趋势.医学信息学杂志,33:1-6
    左通,成佳兴.2010.Kit和KitL在卵泡发育过程中的作用.黑龙江动物繁殖,18(2):4-7
    Adams MM, Flagg RA, Gore AC.1999. Perinatal changes in cypothalamic N-methyl-D-aspartate receptors and their relationship to gonadotropin-releasing hormone neurons. Endocrinology,140 (5): 2288-2296
    Alam M, Pravica V, Fryer AA, Hawkins CP, Hutchinson IV.2005. Novel polymorphism in the promoter region of the human nerve growth-factor gene. Int J Immunogenet,32:379-382
    Althammer S, Pages A, Eyras E.2012. Predictive models of gene regulation from high-throughput epigenomics data. Comp Funct Genomics,2012:284786
    Allen LA, Achermann JC, Pakarinen P, Kotlar TJ, Huhtaniemi IT, Jameson JL, Cheetham TD, Ball SG (2003) A novel loss of function mutation in exon 10 of the FSH receptor gene causing hypergonadotrophic hypogonadism:clinical and molecular characteristics. Hum Reprod,18:251-256
    Amand KB, Terrance EM.2002. Evolutionary analysis by whole genome comparisons. Journal of Bacteriology,8:2260-2272
    Antelli A, Baldazzi L, Balsamo A, Pirazzoli P, Nicoletti A, Gennari M and Cicognani A.2006. Two novel GnRHR gene mutations in two siblings with hypogonadotropic hypogonadism. European Journal of Endocrinology,155(2):201-205
    Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S.2002. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science,297(5585):1301-1310
    Ardlie K. G, Kruglyak L, Seielstad M.2002. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet,3(4):299-309
    Baldi P, Brunak S.2001. Bioinformatics:The Machine Learning Approach. Cambridge, Mass:MIT Press Berry D. Report on the potential of genomic selection in Irish dairy cattle. Genomic selection in Ireland [EB/OL]. (2007-02) http//www.icbf.com/publications/files/Genomic selection in Irish dairy cattle.pdf.
    Bansal A, van den Boom D, Kammerer S, Honisch C, Adam G, Cantor CR, Kleyn P, Braun A. 2002. Association testing by DNA pooling:an effective initial screen. Proceedings of the National Academy of Sciences,99:16871-16874
    Bex F J, Corbin A.1981. LHRH agonist termination of pregnancy in hypophysectomized rats extrapituitary site of action. Endocrinology,108(2):273-275
    Bjorling DE, Beckman M, Clayton MK, Wang ZY.2002. Modulation of nerve growth factor in peripheral organs by estrogen and progesterone. Neuroscience,110(1):155-167
    Brailoiu GC, Dun SL, Ohsawa M, Yin D, Yang J, Chang JK, Brailoiu E, Dun NJ.2005. KISS-1 expression and metastin-like immunoreactivity in the rat brain. J Comp Neurol,481(3):314-329
    Botstein D, White RL, Skolnick M, Davis RW.1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet,32:314-331
    Bouligand J, Ghervan C, Trabado S, Brailly-Tabard S, Guiochon-Mantel A, Young J.2010. Genetics defects in GNRH1:a paradigm of hypothalamic congenital gonadotropin deficiency. Brain Research,1364:3-9
    Bo-Abbas Y, Acierno J S Jr, Shagoury J K, Crowley W F Jr, Seminara S B.2003. Autosomal recessive idiopathic hypogonadotropic hypogonadism:genetic analysis excludes mutations in the gonadotropin-releasing hormone (GNRH) and GNRH receptor genes. Journal of Clinical Endocrinology and Metabolism,88(6):2730-2737
    Basrur PK, King WA.2005. Genetics then and now:breeding the best and biotechnology. Rev Sci Tech,24(1):31-49
    Campion C E, Turzillo A M, Clay C M.1996. The gene encoding the ovine gonadotropin-releasing hormone (GnRH) receptor:cloning and initial characterization. Gene,170(2): 277-280
    Cao G.L, Chu MX, Fang L, Di R, Feng T, Li N.2010. Analysis on DNA sequence of KiSS-1 gene and its association with litter size in goats. Molecular Biology Reports,37:3921-3929
    Cao GL, Chu MX, Fang L, Feng T, Di R, Li N.2011. Analysis on DNA sequence of GPR54 gene and its association with litter size in goats. Molecular Biology Reports,38:3839-3848
    Capon F, Allen MH, Ameen M, Burden AD, Tillman D, Barker JN, Trembath RC.2004. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum Mol Genet,13(20):2361-2368
    Carrier A, Rosier MF, Guillemot F, Goguel AF, Pulcini F, Bernheim A, Auffray C, Devignes MD. 1996. Integrated physical, genetic, and genic map covering 3 Mb around the human NGF gene (NGFB) at Ip13. Genomics,31:80-89
    Caraty A, Smith JT, Lomet D, Ben Said S, Morrissey A, Cognie J, Doughton B, Baril G, Briant C, Clarke IJ.2007. Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology,148(11):5258-5267
    Carlsson IB, Laitinen MP, Scott JE, Louhio H, Velentzis L, Tuuri T, Aaltonen J, Ritvos O, Winston RM, Hovatta O.2006. Kit ligand and c-Kit are expressed during early human ovarian follicular development and their interaction is required for the survival of follicles in long-term culture. Reproduction,131(4):641-649
    Carolsfeld J, Powell J F, Park M.2000. Primary structure and function of three gonadotropin-releasing hormones, including anovel form, from and ancient teleost, herring. Endocrinology,141(2):505-512
    Castellano JM, Gaytan M, Roa J, Vigo E, Navarro VM, Bellido C, Dieguez C, Aguilar E, Sanchez-Criado JE, Pellicer A, Pinilla L, Gaytan F, Tena-Sempere M.2006. Expression of KiSS-1 in rat ovary:putative local regulator of ovulation? Endocrinology,147(10):4852-4862
    Cerrato F, Seminara SB.2007. Human genetics of GPR54. Rev Endocr Metab Disord,8:47-55
    Chu MX, Guo XH, Feng CJ, Li Y, Huang DW, Feng T, Cao GL, Fang L, Di R, Tang QQ, Ma YH, Li K.2012a. Polymorphism of 5'regulatory region of ovine FSHR gene and its association with litter size in Small Tail Han sheep. Mol Biol Rep,39:3721-3725
    Chu M, Xiao C, Feng T, Fu Y, Cao G, Fang L, Di R, Tang Q, Huang D, Ma Y, Li K, Li N.2012b. Polymorphisms of KiSS-1 and GPR54 genes and their relationships with litter size in sheep. Mol Biol Rep,39:3291-3297
    Chu Q, Zhang Y, Sun D-X, Yu Y, Wang YC, Zhang Y.2010. Identification of the complex vertebral malformation gene in Chinese Holstein and its association with dairy performance traits. Yichuan,32:732-736.
    Cho JH.2008. Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating frombovine early antral follicles. Mol Reprod Dev,75(12):1736-1743.
    Clarke IJ, Smith JT, Morrissey A, Doughton B, Cameron A, Caraty A.2007. Kisspeptin stimulates ovulation in seasonally acylic ewes. In:Proc 89th Annual Meeting of the Endocrine Society. Toronto, Ontario, Canada
    Combarnous Y, Chabot V, Chopineau-Galmiche M, Galet C, Guillou F, Laurent-Cadoret V, Lecompte F, Locatelli A, Magallon T, Marichatou H, Martinat N, Maurel MC, Pourchet C, Reiter E, Richard F, Roy F, Troispoux C.1998. Structure-function relationships of FSH and its receptors. Human Reproduction,13:16-17
    Costa E M, Bedecarrats G Y, Mendonca B B, Arnhold I J, Kaiser U B, Latronico A C.2001. Two novel mutations in the gonadotropin-releasing hormone receptor gene in Brazilian patients with hypogonadotropic hypogonadism and normal olfaction. Journal of Clinical Endocrinology and Metabolism,86(6):2680-2686
    Coutts SM.2008. Activin signals via SMAD2/3 between germ and somatic cells in the human fetal ovary and regulates kit ligand expression. Dev Biol,314(1):189-199
    Dall'Olio S, Fontanesi L, Tognazzi L, Russo V.2010. Genetic structure of candidate genes for litter size in Italian Large White pigs. Vet Res Commun,34:S203-S206
    de Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, Milgrom E.1997. A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. The New England Journal of Medicine,337(22):1597-1602
    de Roux N, Young J, Brailly-Tabard S, Misrahi M, Milgrom E, Schaison G.1999. The same molecular defects of the gonadotropin-releasing hormone receptor determine a variable degree of hypogonadism in affected kindred. Journal of Clinical Endocrinology and Metabolism,84(2): 567-572
    Dissen GA, Newman Hirshfield A, Malamed S, Ojeda SR.1995. Expression of neurotrophins and their receptors in the mammalian ovary is developmentally regulated:changes at the time of folliculogenesis. Endocrinology,136:4681-4692
    Dissen GA, Parrott JA, Skinner MK, Hill DF, Costa ME, Ojeda SR.2000. Direct effects of nerve growth factor on thecal cells from antral ovarian follicles. Endocrinology,141(12):4736-4750
    Dissen GA, Romero C, Hirshfield AN, Ojeda SR.2001. Nerve growth factor is required for early follicular development in the mammalian ovary. Endocrinology,142(5):2078-2086
    Dubreuil P, Rottapel R, Reith AD, Forrester L, Bernstein A.1990. The mouse W/c-kit locus. Annals of New York Academy of Sciences,599:58-65
    Dunn I C, Miao Y W, Morris A, Romanov M N, Wilson P W, Waddington D.2004. A study of association between genetic markers in candidate genes and reproductive traits in one generation of a commercial broiler breeder hen population. Heredity,92(2):128-134
    Elduque C, Laurent P, Hayes H, Rodellar C, Leveziel H, Zaragoza P.1997. Assignment of the beta-nerve growth factor (NGFB) to bovine chromosome 3 band q23 by in situ hybridization. Cytogenetics and Cell Genetics,77:306-307
    Feng T, Zhao YZ, Chu MX, Zhang YJ, Fang L, Di R, Cao GL, Li N.2009. Association between sexual precocity and alleles of KISS-1 and GPR54 genes in goats. Anim Biotechnol,20(3):172-176
    Flanagan C A, Chen C C, Coetsee M, Mamputha S, Whitlock KE, Bredenkamp N, Grosenick L, Fernald RD,Illing N.2007. Expression, structure, function and evolution of gonadotropin-releasing hormone (GnRH) receptors GnRH-R1SHS and GnRH-R2PEY in the teleost. Endocrinology,148(10): 5060-5071
    Funato T, Satoh J, Sasaki T.1998. Quantitative PCR system. Rinsho Byori,46(5):399-405
    Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monsma FJ, Gustafson EL.2003. The KISS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun,312(4):1357-1363
    Galan JJ, De Felici M, Buch B, Rivero MC, Segura A, Royo JL, Cruz N, Real LM, Ruiz A.2006. Association of genetic markers within the KIT and KITLG genes with human male infertility. Hum Reprod,21(12):3185-3192
    Gentry JJ, Carter BD.2004. Neurotrophin Receptor Signaling. In:Encyclopedia of Biological Chemistry (eds. by Editors-in-Chief:William JL & Lane MD), pp.41-5. Elsevier, New York.
    Gharib S D, Roy A, Wierman M E, Chin W W.1989. Isolation and characterization of the gene encoding the beta-subunit of rat follicle-stimulating hormone. DNA,8(5):339-349
    Gilchrist RB, Lane M, Thompson JG.2008. Oocyte-secreted factors:regulators of cumulus cell function and oocyte quality. Hum Reprod Update,14(2):159-177
    Gierke P, Zhao C, Brackmann M, Linke B, Heinemann U, Braunewell K.H.2004. Expression analysis of members of the neuronal calcium sensor protein family:combining bioinformatics and Western blot analysis. Biochem Biophys Res Commun,323(1):38-43
    Gore AC, Roberts JL, Gibson MJ.1999. Mechanisms for the regulation of gonadotropin-releasing hormone gene expression in the developing mouse. Endocrinology,140(5): 2280-2287
    Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA.2004. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology,145(9):4073-4077
    Gottsch ML, Clifton DK, Steiner RA.2006. Kisspepeptin-GPR54 signaling in the neuroendocrine reproductive axis. Mol Cell Endocrinol,254-255:91-96
    Greene LA, Kaplan DR.1995. Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol,5(5):579-587
    Greenwood TA, Kelsoe JR.2003. Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics,82(5):511-520
    Grigorova M, Punab M, Ausmees K, Laan M.2008. FSHB promoter polymorphism within evolutionary conserved element is associated with serum FSH level in men. Human Reproduction, 23(9):2160-2166
    Gromoll J, Elisabeth P, Niesecorag E.1996a. The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene. Genomics,35:308-311
    Gromoll J, Simoni M, Nieschlag E.1996b. An activating mutation of the follicle-stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man. J Clin Endocrinol Metab,81(4):1367-1370
    Han S, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE.2005. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. Journal of Neuroscience,25(49):11349-11356
    He Q, Peng J, Yan F, Lin L, Lu Y, Zheng H, Chen H, Chen J.2012. Intron retention and 3'-UTR analysis of Arabidopsis Dicer-like 2 transcripts. Mol Biol Rep,39:3271-3280
    He Y, Chu Q, Ma P, Wang Y, Zhang Q, Sun D, Zhang Y, Yu Y, Zhang Y.2011. Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. Journal of Dairy Research,25:1-8
    He JN, Zhang BY, Chu MX, Wang PQ, Feng T, Cao GL, Di R, Fang L, Huang DW, Tang QQ, Li N.2012. Polymorphism of insulin-like growth factor 1 gene and its association with litter size in Small Tail Han sheep. Molecular Biology Reports,39:9801-9807
    Heather MD, Donald KC, Robert AS.2006. Kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology,147(3):1154-1158
    Heid CA, Stevens J, Livak KJ, Williams PM.1996. Real time quantitative PCR. Genome Res,6: 986-994
    Hermann BP, Heckert LL.2007. Transcriptional regulation of the FSH receptor:New perspectives. Molecular and Cellular Endocrinology,260-262:100-108.
    Hou JX, An XP, Wang JG, Song YX, Cui YH, Wang YF, Chen QJ. Cao BY.2011. New genetic polymorphisms of KiSS-1 gene and their association with litter size in goats. Small Ruminant Research,96:106-110
    Hui ES, Udofa EA, Soto J, Vanderhoof VH, Zachman K, Tong ZB, Nelson LM.2006. Investigation of the human stem cell factor KIT ligand gene, KITLG, in women with 46,XX spontaneous premature ovarian failure. Fertil Steril,85(5):1502-1507
    Hutt KJ, McLaughlin EA, Holland MK.2006a. Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod,12(2):61-69
    Hutt KJ, McLaughlin EA, Holland MK.2006b. KIT/KIT ligand in mammalian oogenesis and folliculogenesis:roles in rabbit and murine ovarian follicle activation and oocyte growth. Biology of Reproduction,75(3):421-433
    Ikemoto T, Enomoto M, Park MK.2004. Identification and characterization of a reptilian GnRH receptor from the leopard gecko. Molecular and Cellular Endocrinology,214(1-2):137-147
    Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA.2004. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KISS-1 mRNA in the male rat. Neuroendocrinology,80(4):264-272
    Ishwar SP.2005. GnRH and gpcr:laser-captured single cell gene profiling. Fish Physiol Biochem. 31:153-156
    Javanmard A, Azadzadeh N, Esmailizadeh AK.2011. Mutations in bone morphogenetic protein 15 and growth differentiation factor 9 genes are associated with increased litter size in fat-tailed sheep breeds. Veterinary Research Communications,35:157-167
    Jeong K H, Chin W W, Kaiser U B.2004. Essential role of the homeodomain for pituitary homeobox 1 activation of mouse gonadotropin-releasing hormone receptor gene expression through interactions with c-Jun and DNA. Molecular and Cellular Biology,24(14):6127-6139
    Jiang Z H, Gibson J P, Archibald A L, Haley C S.2001. The porcine gonadotropin-releasing hormone receptor gene (GNRHR):Genomic organization, polymorphisms, and association with the number of corpora lutea. Genome,44(1):7-12
    Jin X, Han CS, Zhang, XS.2005a. Signal transduction of stem cell factor in promoting early follicle development. Mol Cell Endocrinol,229(1-2):3-10
    Jin X, Han CS, Zhang XS, Yu FQ, Guo SH, Hu ZY, Liu YX.2005b. Stem cell factor modulates the expression of steroidogenesis related proteins and FSHR during ovarian follicular development. Front Biosci,10(10):1573-1580
    John GB, Shidler MJ, Besmer P, Castrillon DH.2009. Kit Signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation. Dev Biol,331(2):292-299
    Joyce IM, Clark AT, Pendola FL, Eppig JJ.2000. Comparison of recombinant growth differentiation factor-9 and oocyte regulation of KIT ligand messenger ribonucleic acid expression in mouse ovarian follicles. Biol Reprod,63:1669-1675
    Juan R, Manuel TS.2007. KISS-1 system and reproduction:comparative aspects and roles in the control of female gonadotropic axis in mammals. Gen Comp Endocrinol,539(1-3):132-140
    Kanai-Azuma M, Kanai Y, Matsuda H, Kurohmaru M, Tachi C, Yazaki K, Hayashi Y.1997. Nerve growth factor promotes giant-cell transformation of mouse trophoblast cells in vitro. Biochem Biophys Res Commun,231(2):309-315
    Kang L, Zhang N, Zhang Y, Yan H, Tang H, Yang C, Wang H, Jiang Y.2012. Molecular characterization and identification of a novel polymorphism of 200 bp indel associated with age at first egg of the promoter region in chicken follicle-stimulating hormone receptor (FSHR) gene. Mol Biol Rep,39:2967-2973
    Ke X., Collins A, Ye S.2001. PIRA PCR designer for restriction analysis of single nucleotide polymorphisms. Bioinformatics,17:838-839.
    Kim KE, Gordon DF, Maurer RA.1988. Nucleotide sequence of the bovine gene for follicle-stimulating hormone beta-subunit. DNA,7(4):227-233.
    Kim J H, Kim H J, Noh H S, Roh G S, Kang S S, Cho G J, Park S K, Lee B J, Choi W S.2003. Suppression by ethanol of male reproductive activity. Brain Research,989(1):91-98
    Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM. 2007. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science,315(5811): 525-528
    Kissel H, Timokhina I, Hardy MP, Rothschild G, Tajima Y, Soares V, Angeles M, Whitlow SR, Manova K, Besmer P.2000. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J.19(6): 1312-1326
    Kondrashov A.1999. Comparative genomics and evolutionary biology. Curr Opin Genet Dev, 9(6):624-629
    Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. 2001. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem,276(37):34631-34636
    Lan XY, Shu JH, Chen H, Pan CY, Lei CZ, Wang X, Liu SQ, Zhang YB.2009. A PstI polymorphism at 3'UTR of goat POU1F1 gene and its effect on cashmere production. Mol Biol Rep, 36(6):1371-1374.
    Lan XY, Pan CY, Chen H, Zhang CL, Li JY, Zhao M, Lei CZ, Zhang AL, Zhang L.2007. An Alul PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin Res,73:8-12
    Lee JH, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR.1996. KISS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst,88(23): 1731-1737
    Lents CA, Heidorn NL, Barb CR, Ford JJ.2008. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts. Reproduction, 135(6):879-887
    Li G, An X, Hou J, Li L, Han D, Yang M, Wang Y, Zhu G, Wang J, Song Y, Cao BY.2011. Study on polymerization effect of polyembryony genes by SSCP marker and family trees in Chinese goats. Mol Biol Rep,38(2):739-744
    Li G, Wu H P, Fu M Z, Zhou Z Q.2011. Novel single nucleotide polymorphisms of GnRHR gene and their association with litter size in goats. Archiv Tierzucht,54(6):618-624
    Li Z, Guo WJ, Lan XY, Wang J, Li MX, Huang YZ, Zhang B, Lei CZ, Chen H.2011. Weaver gene 3' UTR novel mutations:Associations with production traits and milk composition in dairy goat. African Journal of Biotechnology,10(73):16691-16696
    Lin C L, Ponsuksili S, Tholen E, Jennen D G, Schellander K, Wimmers K.2006. Candidate gene markers for sperm quality and fertility of boar. Animal Reproduction Science,92(3-4):349-363
    Liu K, Rajareddy S, Liu L, Jagarlamudi K, Boman K, Selstam G, Reddy P.2006. Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway:new roles for an old timer. Dev Biol,299(1):1-11.
    Liu L, Rajareddy S, Reddy P, Jagarlamudi K, Du C, Shen Y, Guo Y, Boman K, Lundin E, Ottander U, Selstam G, Liu K.2007. Phosphorylation and inactivation of glycogen synthase kinase-3 by soluble kit ligand in mouse oocytes during early follicular development. J Mol Endocrinol,38 (1-2):137-146
    Lii A, Hu X, Chen H, Dong Y, Zhang Y, Wang X.2011. Novel SNPs of the bovine PRLR gene associated with milk production traits. Biochem Genet,49:177-189
    Luan X, Zhou Y, Wang W, Yu H, Li P, Gan X, Wei D, Xiao J.2007. Association study of the polymorphisms in the KISS1 gene with central precocious puberty in Chinese girls. Eur J Endocrinol, 157:113-118
    Marsters P, Kendall NR, Campbell BK.2003. Temporal relationships between FSH receptor, type 1 insulin-like growth factor receptor, and aromatase expression during FSH-induced differentiation of bovine granulosa cells maintained inserum-free culture. Molecular and Cellular Endocrinology,203(1-2):117-127.
    Manuel TS.2006. GPR54 and kisspeptin in reproduction. Human Reproduction Update,12(5): 631-639
    Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T.2004. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun,320(2):383-388
    Mattioli M, Barboni B, Gioia L, Lucidi P.1999. Nerve growth factor production in sheep antral follicles. Domest Anim Endocrinol,17(4):361-371
    Mayerhofer A, Garfield RE.1995. Immunocytochemical analysis of the expression of gap junction protein connexin 43 in the rat ovary. Mol Reprod Dev,41:331-338
    Meduri G., Bachelot A., Cocca M.P., Vasseur C., Rodien P., Kuttenn F., Touraine P, Misrahi M. 2008. Molecular pathology of the FSH receptor:New insights into FSH physiology. Molecular and Cellular Endocrinology,282:130-142
    Meduri G, Touraine P, Beau I, Lahuna O, Desroches A, Vacher-Lavenu MC, Kuttenn F, Misrahi M, (2003) Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor:clinical, histological, and molecular studies. J Clin Endocrinol Metab,88:3491-3498
    Melamed P, Savulescu D, Lim S, Wijeweera A, Luo Z, Luo M, Pnueli L.2012. Gonadotrophin-Releasing Hormone Signalling Downstream of Calmodulin. Journal of Neuroendocrinology,24(12):1463-1475
    Meuwissen TH, Hayes BJ, Goddard ME.2001. Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics,157:1819-1829
    Messager S.2005. Kisspeptin and its receptor:New gatekeepers of puberty. Journal of Neuroendocrinology,17(10):687-688
    Miyoshi T, Otsuka F, Nakamura E, Inagaki K, Ogura-Ochi K, Tsukamoto N, Takeda M, Makino H.2012. Regulatory role of kit ligand-c-kit interaction and oocyte factors in steroidogenesis by rat granulosa cells. Molecular and Cellular Endocrinology,358:18-26
    Moniruzzaman M, Miyano T.2007. KIT-KIT ligand in the growth of porcine oocytes in primordial follicles. J Reprod Dev,53(6):1273-1281.
    Montgomery G W, McNatty K P, Dvais G H.1992. Physiology and molecular genetics of mutations that increase ovulation rate in sheep. Endoncrine Reviews,13:309-328
    Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, Steplewski K, Shabon U, Miller JE, Middleton SE, Darker JG, Larminie CG, Wilson S, Bergsma DJ, Emson P, Faull R, Philpott KL, Harrison DC.2001. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem,276(31): 28969-28975
    Murani E, Ponsuksili S, Seyfert HM, Shi XM, Wimmers K.2009. Dual effect of a single nucleotide polymorphism in the first intron of the porcine Secreted phosphoprotein 1 gene: allele-specific binding of C/EBP beta and activation of aberrant splicing. BMC Mol Biol,10(1):96
    Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, Maixner W, Diatchenko L.2006. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science,314(5807):1930-1933
    Nakayama Y, Wondisford FE, Lash RW, Bale AE, Weintraub BD, Cutler GB Jr, Radovick S. 1990. Analysis of gonadotropin-releasing hormone gene structure in families with familial central precocious puberty and idiopathic hypogonadotropic hypogonadism. Journal of Endocrinology and Metabolism,70(5):1233-1238
    Nei M, Li W H.1979. Mathematic model for studying genetic variation in terms of rest riction endonucleaes. P Natl Acad Sci USA,76:5269-5273
    Okubo K, Nagahama Y.2008. Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. Acta Physiol,193(1):3-15
    Okumura N., Matsumoto T., Hamasima N, Awata T.2008. Single nucleotide polymorphisms of the KIT and KITLG genes in pigs. Animal Science Journal,79:303-313
    Otsuka F, Shimasaki S.2002. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand:its role in regulating granulosa cell mitosis. Proc Natl Acad Sci USA,99(12):8060-8065
    Parhar IS, Ogawa S, Sakuma Y.2004. Laser-captured single digoxigenin-labeled neurons of gonadotropin-releasing hormone types reveal a novel G protein-coupled receptor (Gpr54) during maturation in cichlid fish. Endocrinology,145(8):3613-3618
    Pearl CA, Jablonka-Shariff A, Boime I.2010. Rerouting of a Follicle-Stimulating Hormone Analog to the Regulated Secretory Pathway. Endocrinology,151:388-393
    Phillips C L, Lin L W, Wu J C, Guzman K, Milsted A, Miller W L.1988.17 beta-estradiol and progesterone inhibit transcription of the genes encoding the subunits of ovine follicle-stimulating hormone. Mol Endocrinol,2(7):641-649
    Pierce J G, Parsons T F.1981. Glycoprotein hormones:structure and function. Annu Rev Biochem,50:465-495.
    Plant TM, Ramaswamy S, DiPietro MJ.2006. Repetitive activation of hypothalamic G protein-coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology,147(2): 1007-1013
    Rafter JA, Abell ML, Braselton JP.2002. Multiple comparison methods for means. Siam Review, 44:259-278
    Reddy P, Shen L, Ren C, Boman K, Lundin E, Ottander U, Lindgren P, Liu YX, Sun QY, Liu K. 2005. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol,281(2):160-170
    Ren L, Medan MS, Weng Q, Jin W, Li C, Watanabe G, Taya K.2005. Immunolocalization of nerve growth factor (NGF) and its receptors (TrkA and p75LNGFR) in the reproductive organs of Shiba goats. J Reprod Dev,51(3):399-404
    Reynaud K, Cortvrindt R, Smitz J, Bernex F, Panthier JJ, Driancourt MA.2001. Alterations in ovarian function of mice with reduced amounts of KIT receptor. Reproduction,121(2):229-237
    Roa J, Vigo E, Castellano JM, Navarro VM, Fernandez-Fernandez R, Casanueva FF, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M.2006. Hypothalamic expression of KiSS-1 system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female Rat. Endocrinology,147(6):2864-7288
    Roa J, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M,2008. New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front Neuroendocrinol,29:48-69
    Rudert F, Ge L, Hag LL.2000. Functional genomics with protein-protein interactions. Biotechnol Annul Rev, (5):45-86
    Rusinov V, Baev V, Minkov IN, Tabler M.2005. MicroInspector:A web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res,33:W696-700.
    Schneider F, Tomek W, Grundker C.2006. Gonadotropin-releasing hormone (GnRH) and its natural analogues:A review. Theriogenology,66:691-709
    Schaeffer L R.2006. Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet,123:218-223
    Sedlmeyer IL, Pearce CL, Trueman JA, Butler JL, Bersaglieri T, Read AP, Clayton PE, Kolonel LN, Henderson BE, Hirschhorn JN, Palmert MR.2005. Determination of sequence variation and haplotype structure for the gonadotropin-releasing hormone (GnRH) and GnRH receptor genes: investigation of role in pubertal timing. J Clin Endocrinol Metab,90(2):1091-1099
    Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Aciemo JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O'Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH.2003. The GPR54 gene as a regulator of puberty. N Engl J Med,349(17):1614-1627
    Servin B, Martin OC, M6zard M, Hospital F.2004. Toward a theory of marker-assisted gene pyramiding. Genetics,168(1):513-523
    Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM.2005. Increased hypothalamic GPR54 signaling:a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA,102(6):2129-2134
    Shi Z.2004. Studies on expression and regulation of nerve growth factor and inhibin/activin in reproductive organs of the female golden hamster. Tokyo:Tokyo university of agricuture and technology
    Shi YY, He L.2006. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res,16(10):851-851
    Silva JR, van den Hurk R, van Tol HT, Roelen BA, Figueiredo JR.2006. The Kit ligand/c-Kit receptor system in goat ovaries:gene expression and protein localization. Zygote,14(4):317-328
    Silveira LG, Noel SD, Silveira-Neto AP, Abreu AP, Brito VN, Santos MG, Bianco SD, Kuohung W, Xu S, Gryngarten M, Escobar ME, Arnhold IJ, Mendonca BB, Kaiser UB, Latronico AC.2010. Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab,95(5):2276-2280
    Simoni M, Gromoll J, Nieschlag E.1997. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocrine Reviews,18(6): 739-773
    Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA.2006a. KISS-1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci, 26(25):6687-6694
    Smith JT, Clifton DK, Steiner RA.2006b. Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction,131(4):623-630
    Smith JT, Clarke IJ.2007a. Kisspeptin expression in the brain:catalyst for the initiation of puberty. Rev Endocr Metab Disord,8(1):1-9
    Smith JT, Clay CM, Caraty A, Clarke IJ.2007b. KISS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology,148(3): 1150-1157
    Smith JT, Pereira A, Roa A, Morgan KRM, Clarke IJ.2007c. Evidence that pituitary gonadotropes are not major targets of kisspeptin. In:Proc 89th Annual Meeting of the Endocrine Society. Toronto, Ontario, Canada
    Spotter A, Distl O.2006. Genetic approaches to the improvement of fertility traits in the pig. Vet J,172(2):234-247
    Sun LP, Du QZ, Song YP, Yu JN, Wang SJ, Sang L, Song LW, Yue YM, Lian YZ, Zhang SL, Hua GH, Zhang SJ, Yang LG.2012. Polymorphisms in luteinizing hormone receptor and hypothalamic gonadotropin-releasing hormone genes and their effects on sperm quality traits in Chinese Holstein bulls. Mol Biol Rep,39(6):7117-7123
    Taieb J, Grynberg M, Pierre A, Arouche N, Massart P, Belville C, Hesters L, Frydman R, Catteau-Jonard S, Fanchin R, Picard JY, Josso N, Rey RA, di Clemente N.2011. FSH and its second messenger cAMP stimulate the transcription of human anti-mullerian hormone in cultured granulosa cells. Molecular Endocrinology,25:645-655
    Tamaya T.2002. Normosmic idiopathic hypogonadotropic hypogonadism with GnRH receptor mutation. Nippon Rinsho Japanese Journal of Clinical Medicine,60(2):319-324
    Tena-Sempere M.2006. GPR54 and kisspeptin in reproduction. Human Reproduction Update, 12(5):631-639
    Thomas FH, Ethier JF, Shimasaki S, Vanderhyden BC.2005. Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology,146(2):941-949
    Thomas FH, Vanderhyden BC.2006. Oocyte-granulose cell interactions during mouse follicular development:regulation of kit ligand expression and its role in oocyte growth. Reproductive Biology and Endocrinology,4:1-8.
    Thomas FH, Ismail RS, Jiang JY, Vanderhyden BC.2008. Kit ligand 2 promotes murine oocyte growth in vitro. Biol Reprod,8(1):167-175
    Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR. 2004. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol,16(10):850-858
    Urfer SR.2009 Inbreeding and fertility in Irish Wolfhounds in Sweden:1976 to 2007. Acta Veterinaria Scandinavica,51:1-12
    Vignal A, Milan D, SanCristobal M, Eggen A.2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol,34(3):275-305
    Vidal C, Cachia A, Xuereb-Anastasi A.2009. Effects of a synonymous variant in exon 9 of the CD44 gene on pre-mRNA splicing in a family with osteoporosis. Bone,45:736-742
    Wang J, Roy SK.2004. Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster:modulation by follicle-stimulating hormone. Biol Reprod,70(3):577-585
    Welsh J. McClelland M.1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res,18(24):7213-7218
    Weng Q, Shi Z, Watanabe G, Taya K.2009. Immunolocalization of NGF and its receptors trkA and p75 in the oviducts of golden hamsters during the estrous cycle. Exp Anim.58(5):543-546
    Whittaker JG, Thompson R, Denham MC.2000. Marker-assisted selection using ridge regression. Genetical Research,75:249-252
    Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,18(22):6531-6535
    Williams DE, De Vries P, Namen AE, Widmer MB, Lyman SD.1992.The Steel factor. Developmental Biology,151:368-376
    Wolczynski S, Laudanski P, Jarzabek K, Mittre H, Lagarde J P, Kottler M L.2003. A case of complete hypogonadotropic hypogonadism with a mutation in the gonadotropin-releasing hormone receptor gene. Fertility and Sterility,79(2):442-444
    Xu HP, Zeng H, Luo CL, Zhang DX, Wang Q, Sun L, Yang LS, Zhou M, Nie QH, Zhang XQ. 2011. Genetic effects of polymorphisms in candidate genes and the QTL region on chicken age at first egg. BMC Genet,12:33
    Yadav RD, Singh SB, Rai M, Singh SN, Singh BN, Maurya ML, Singh A.1990. Gene pyramiding and horizontal resistance to diara stress in mustards. Journal National Academy Science Letters,13(9):325-327
    Yang WC, Li SJ, Xie YH, Tang KQ, Hua GH, Zhang CY, Yang LG. 2011. Two novel SNPs of the type I gonadotropin releasing hormone receptor gene and their associations with superovulation traits in Chinese Holstein cows. Livest Sci,136(2-3):164-168
    Yang W, Tang K, Zhang C, Xu D, Wen Q, Yang L.2011. Polymorphism of the GnRHR gene and its association with litter size in Boer goats. South African Journal of Animal Science,41(4):399-402
    Ye Y, Kawamura K, Sasaki M, Kawamura N, Groenen P, Gelpke MD, Rauch R, Hsueh AJ, Tanaka T.2009. Kit ligand promotes first polar body extrusion of mouse preovulatory oocytes. Reproductive Biology and Endocrinology,3:1-10
    Yoshida H, Takakura N, Kataoka H, Kunisada T, Okamura H, Nishikawa SI.1997. Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev Biol,184(1): 122-137
    ZamaAM, Hudson FP, Bedell MA.2005. Analysis of Hypomorphi KitlSl Mutants Suggests Different Requirements for KITL in Proliferation and Migration of Mouse Primordial Germ Cells. Biol Reprod,73:639-647
    Zhang CY, Wu CJ, Zeng WB, Huang KK, Li X, Feng JH, Wang D, Hu GH, Xu DQ, Wen QY, Yang LG.2011. Polymorphism in exon 3 of follicle stimulating hormone beta (FSHB) subunit gene and its association with litter traits and superovulation in the goat. Small Ruminant Research,96: 53-57
    Zhang S, Chen H, Zhao X, Cao J, Tong J, Lu J, Wu W, Shen H, Wei Q, Lu D.2013. REV3L 3' UTR 460 T>C polymorphism in microRNA target sites contributes to lung cancer susceptibility. Oncogene,32:242-250
    Zhao Y, Chen T, Zhou YX, Li, Xiao JH.2010. An association study between the genetic polymorphisms within GnRHI, LHβ and FSHβ genes and central precocious puberty in Chinese girls. Neuroscience Letters,486:188-192
    Zhao HB, Zheng HQ, Li XL, Zhou RY, Li LH.2011. Characterization, single nucleotide polymorphism (SNP) identification and variation of goat c-Kit gene in different populations. Journal of Medicinal Plants Research,5:3922-3928
    Zu YK, Ban JB, Xia ZX, Wang JN, Cai YX, Ping W, Sun W.2013. Genetic variation in a miR-335 binding site in BIRC5 alters susceptibility to lung cancer in Chinese Han populations. Biochemical and Biophysical Research Communications,430:529-534

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700