用户名: 密码: 验证码:
多自由度非线性系统的霍普分岔与鞍结分岔控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性微分动力系统的分岔控制与混沌控制研究近年来引起了科技工作者的浓厚兴趣,混沌控制的研究成果较多,而分岔控制的研究成果相对来说要少些。分岔是非线性系统特有的现象,在力学、物理、化学、医学、生物学、经济学等领域都普遍存在。分岔控制是分岔研究的重要内容。分岔控制指的是设计一个控制器去改变非线性系统的分岔特性,典型的分岔控制包括:延迟分岔的出现,设计合适的参数使之产生新的分岔,改变分岔点的参数值,稳定分岔解,控制极限环的多重性、幅值和频率,优化系统在分岔点附近的动力学行为,缩小不稳定解的区域等等。在工程问题中,分岔控制的目的就是避免系统因分岔现象产生有害的动力学行为,使系统得到监控。在分岔研究中,霍普分岔是一类重要的动态分岔,鞍结分岔是一类基本的静态分岔。目前对多自由度系统的霍普分岔与鞍结分岔的研究内容还不丰富。
     论文运用数理理论对非线性动力系统的分岔和混沌的基础理论和控制进行了较为系统和深入的研究,为应用于工程实际奠定了理论基础。论文的主要创新性工作有:
     1.将反馈控制方法应用于多自由度耦合非线性范德波系统,对系统的极限环幅值和霍普分岔进行控制,获得了系统的控制策略和方法。
     2.将反馈控制方法应用于多自由度复杂非线性系统的鞍结分岔控制,揭示了控制参数与鞍结分岔“跳跃”不稳定区间之间的联系。
     3.对多自由度非线性耦合范德波系统的稳定周期运动进行混沌反控制,成功使原系统的稳定周期运动能够产生一个对称的混沌吸引子,实现对高维非线性耦合范德波混沌控制。
     4.研究了类Chen系统的混沌现象,获得了该系统在空间存在的混沌吸引子,成功的将系统运动收敛到一个空间平衡点,实现了对该系统的混沌控制。
Control of bifurcation and chaos in nonlinear differential dynamic systems has recently caused great interests in researchers. Compared to chaos control, reports on the former were much less. Bifurcation is a specific phenomenon which generally existed in such fields as mechanics, physics, chemistry, medical, biology and economics. Bifurcation control plays a vital roll in bifurcation research, which means a controller should be recalled to change the characteristic of bifurcation. Typical bifurcation control includes: delay appearance point of bifurcation, generate a new bifurcation, change parameter of a bifurcation point, stabilize bifurcation solution, control the multiplicity/ amplitude/frequency of a limit cycle, optimize system behavior around bifurcation point, reduce instable zone and so on. In engineering, bifurcation control is to avoid harmful kinetics behavior and take supervisory to the system. Hopf bifurcation is an important dynamic bifurcation in bifurcation research and saddle-node bifurcation is one of three rudimentary static bifurcations. Reports on multiple-degree-of-freedom nonlinear systems were still minor at the present time.
     The paper did a systematic and profound research in control of bifurcation and chaos based on mathematical theory, thus, set a theoretical foundation for its application in engineering projects. Some innovative conclusions are drawn as follows:
     1. Applied feedback control method in coupled multiple-degree-of-freedom nonlinear van der Pol systems to control Hopf bifurcation and its amplitude, control strategy and method were achieved.
     2. Applied feedback control method to control the saddle-node bifurcation in complicated multiple-degree-of-freedom nonlinear systems, revealed the relationship of controlling parameter and the instable intervals.
     3. Proceed anti-chaos control in coupled multiple-degree-of-freedom nonlinear van der Pol systems, produced a symmetric chaotic attractor, thus, made anti-chaos control in high dimensional nonlinear coupled van der Pol system possible.
     4. Studied a three-dimensional system derived from the Chen system, obtained its chaotic attractor, applied feedback controller to perform chaos control of the system, and finally contract the system moving to a equilibrium point.
引文
[1]刘秉正.非线性动力学与混沌基础.长春:东北师范大学出版社. 1994
    [2]陈关荣,吕金虎. Lorenz系统族的动力学分析、控制与同步.北京:科学出版社,2003
    [3]曹建福,韩崇昭,方洋旺.非线性系统理论及应用.西安交通大学出版社. 2001
    [4]刘延柱,陈立群.非线性振动.北京:高等教育出版社,2001
    [5] Robert M. May. Simple mathematical models with very complicated dynamics. Nature, 1976, 261: 459-475
    [6]卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993
    [7] Rugh D, Nonlinear System Theory, The John Hopkins University Press, Beltimore, 1980
    [8]高为炳.非线性控制系统的发展.自动化学报. 1991, 17(5): 513-523
    [9]方洋旺.非线性控制系统的综合理论研究: [西安交通大学博士论文].西安:西安交通大学电信工程学院,1997
    [10]曹建福,韩崇昭.非线性控制系统的频谱理论及应用,控制与决策, 1998, 3: 193-199
    [11] A. H. Nayfeh, B. Balachandran. Applied Nonlinear Dynamics. New York: John Wiley and Sons, 1995
    [12] A. H. Nayfeh, D. T. Mook. Nonlinear Oscillations. New York: John Wiley and Sons, 1995
    [13] Zavodney L D, Nayfeh A H, Sanchez N E. Bifurcation and chaos in parametrically excited single-degree-of-freedom system. Nonlinear Dynamics, 1990, 1: 1~21
    [14] Nayfeh A H. Introduction to Perturbation Techniques. New York: Wiley-Interscience, 1979
    [15] Pei Yu and A.Y.T. Leung . The simplest normal form and its application to bifurcation control. Chaos, Solitons & Fractals, 2007, 33:845-863
    [16] Brocket R W, Volterra series and geometric control theory, Automatic, 1976, 12: 167-176
    [17] Billings S A, Gray J O & Owens D H, Nonlinear system design, Peter Peregrinus Ltd, 1984
    [18] Wiggins S. Global Bifurcations and Chaos. New York: Springer,1998
    [19]陆启韶.分岔与奇异性.上海科技教育出版社. 1995
    [20]杨忠华.非线性分歧:理论和计算.北京:科学出版社,2007
    [21]陈予恕.两自由度分段线性振动系统的一种解法.固体力学学报, 1982, (2): 77-86
    [22]陈予恕,金志胜.两自由度分段线性振动系统的亚谐解.应用数学和力学, 1986, 7(3): 206-213
    [23]毕勤胜,陈予恕. Duffing系统解的转迁集的解析表达式.力学学报, 1997, 29(5): 573-581
    [24]徐鉴,陈予恕.具有非线性阻尼和刚度参数激励的霍普分岔和混沌运动.非线性动力学学报,1995(增刊): 15-20
    [25]刘雯彦,陈忠汉,朱位秋.有界噪声激励下单摆-谐振子系统的混沌运动.力学学报, 2003, 35(5): 634-640
    [26]梅凤翔.广义Hamilton系统的Lie对称性与守恒量.物理学报, 2003, 52(5): 1048-1050
    [27]邓茂林,洪明潮,朱位秋.拟不可积Hamilton系统响应的随机最优控制.固体力学学报, 2004, 1: 5-10
    [28]唐驾时,尹小波.一类强非线性系统的分叉.力学学报,1996, 8(3): 23-29
    [29] Abed E H, Fu J H. Local feedback stabilization and bifurcation control : PartⅠ. Hopf bifurcation, Syst. Contr. Lett., 1986, 7: 11-17
    [30] Abed E H, Fu J H. Local feedback stabilization and bifurcation:Ⅱ. Stationary bifurcation, Syst. Contr. Lett., 1987 8: 467-473
    [31] Abed E H, Wang H O, Chen R C. Stabilization of period doubling bifurcations and implications for control of chaos, Physica D. 1994 70: 154-164
    [32] Chen G, Fang J Q, Hong Y, et al. Controlling Hopf bifurcations: The Continuous Case, ACTA Physica China. 1999, 8: 416-422
    [33] Chen G, Fang J Q, Hong Y, et al. Controlling Hopf bifurcations: The Discrete Case, Dis. Dyn. Nat. Soc., 2000
    [34] Chen G, Liu J, Yap K C. Controlling Hopf bifurcations, Proc. Int. Symp. Circ. Syst., (Monterey, CA), 1997,Ⅲ639-642
    [35] Chen G, Chaos, Bifurcation, and their control, in The Wiley Encyclopedia of Electrical and Electronics Engineering, ed, Webster J, (Wiley. NY), 1999 3: 194-218
    [36] Chen G. Controlling Chaos and Bifurcations in Engineering Systems, (CRC Press, Boca Raton, FL), 1999
    [37] Chen X, Gu G, Martin P, et al. Bifurcation control with output feedback and its applications to rotating stall control. Automatic, 1998, 34: 437-443
    [38] Gu G, Sparks A G, Banda S S, et al. Bifurcation based nonlinear feedback control for rotating stall in axial flow compressors. Int. J. Cont., 1997, 6: 1241-1257
    [39] Yabuno H. Bifurcation control of parametrically excited Duffing system by a combined linear-plus-nonlinear feedback control. Nonlinear Dynamics, 1997, 12: 263-274
    [40] Kang W, Gu G, Sparks A, et al. Bifurcation test functions and surge control for axialflow compressors. Automatic. 1999, 35: 229-239
    [41] Gu G, Chen X, Sparks A G, et al. Bifurcation stabilization with local output feedback. SIAM. J. Contr. Optim, 1999, 37: 934-956
    [42] Wang H O, Abed E H. Bifurcation control of a chaotic system, Automatic. 1995, 31: 1213-1226
    [43] Abed. E H, Wang H O.“Feedback control of bifurcation and chaos in dynamical systems”. in Nonlinear Dynamics and Stochastic Mechanics, eds, Kliemann W & Sri Namachchivaya N, (CRC Press, Boca Raton, FL), 1995, 153-173
    [44] Abed E H, Wang H O, Tesi A.“Control of bifurcation and chaos”, in the Control Handbook. Eds, Levine W S, (CRC Press, Boca Raton, FL), 1995, 951-966
    [45] Chen D, Wang H O, Chen G. Anti-control of Hopf bifurcation through washout filters. Proc. 37th IEEE Conf. Decision and Control, (Tampa, FL), 1998. 16-18: 3040-3045
    [46] Wang H O, Chen D, Bushnell L G. Control of bifurcations and chaos in heart rhythms. Proc. 36th IEEE Conf. Decision Control, (San Diego, CA), 1997, 395-400
    [47] Wang H O, Chen D, Chen G. Bifurcation control of pathological heart rhythms, Proc. IEEE Conf. Contr. Appl., Italy, 1998, 858-862
    [48] Moiola J L, Chen G. Hopf bifurcation Analysis: A Frequency Domain Approach, (World Scientific, Singapore), 1996
    [49] Berns D W, Moiiola J L, Chen G. Feedback control of limit cycle amplitudes from a frequency domain approach, Automatica, 1998, 34: 1567-1573
    [50] Berns D W, Moiiola J L, Chen G. Predicting period-doubling bifurcations and multiple oscillations in nonlinear time-delayed feedback systems.”IEEE Trans. Circuits Syst.Ⅰ, 1998 45: 759-763
    [51] Moiola J L, Berns D W, Chen G. Feedback control of limit cycle amplitudes. Proc. IEEE Conf. Decision and Contr., (San Diego, CA), 1997:1479-1485
    [52] Moiola J L, Chen G. Controlling the multiplicity of limit cycles. Proc. IEEE Conf. Decision and Contr., 1998:3052-3057
    [53] Basso M, Evangelisti A, Genesio R, et al. On bifurcation control in time delay feedback systems. Int. J. Bifurcation and Chaos, 1998, 8: 713-721
    [54] Moiola J L, Desages A C, Romagnoli J A. Degenerate Hopf Bifurcations via feedback system theory—higher-order harmonic balance. Chem. Eng. Sci. 1991, 46: 1475-1490
    [55] Genesio R, Tesi A, Wang H O, et al. Control of period doubling bifurcations using harmonic balance. Proc. Conf. Decis. Contr., San Antonio, 1993, TX: 492-497
    [56] Mees A I & Chua L O, The Hopf bifurcation theorem and its applications to nonlinear oscillations in circuits and systems, IEEE Trans. Circuits Syst., 1979, 26: 235-254
    [57] Moiola J L, Colantonio M C, Donate P D. Analysis of static and dynamic bifurcation from a feedback systems perspective. Dyn. Stab. Syst. 1997, 12: 293-317
    [58] Moiola J L, Berns D W, Chen G. Controlling degenerate Hopf bifurcations. Latin American Appl. Res., 1999, 29: 213-220
    [59] Kang W, Bifurcation and normal form of nonlinear control systems. PartsⅠandⅡ. SIAM J. Contr. Optim, 1998, 36: 193-232
    [60] Chen G, Moiola J L, Wang H O. Bifurcation control: theories, methods, and applications. Int. J. of Bifurcation and Chaos, 2000, 10: 511-548
    [61] Chen G, Dong X. From Chaos to Order: Perspectives, Methodologies, and Application. Singapore: World Scientific Series on Nonlinear Science, 1998, Series A, 24
    [62] Chen G, Moiola J L. An overview of bifurcation, chaos and nonlinear dynamics in control systems. J. Franklin Institute, 1994, 331B: 819-858
    [63] Chen G. Chaos: Control and Anti-control, IEEE Circuits and Systems Society Newsletter. March 1998. 1-5
    [64] Tesi A, Abed E H, Genesio R, et al. Harmonic balance analysis of period-doubling bifurcation with implications for control of nonlinear dynamics. Automatica, 1996, 32: 1255-1271
    [65] Alvarez J, Curiel L E. bifurcations and chaos in a linear control system with saturated input. Int. J. bifurcation and chaos, 1997, 7: 1811-1822
    [66] Brandt M E, Chen G. Feedback control of a quadratic map model of cardiac chaos. Int. J. Bifurcation and Chaos, 1996, 6: 715-723
    [67] Cui F, Chew C H, Xu J, et al. Bifurcation and chaos in the Duffing Oscillator with a PID controller. Nonlinear Dynamics, 1997, 12: 251-262
    [68] Lowenberg M H, Richardson T S. Derivation of non-linear control strategies via numerical continuation. Proc AIAA Atmospheric Flight Mechanics Conference, 1999, AIAA-99-4111:359-369
    [69] Moore F K, Greitzer E M. A theory of post-stall transients in axial compressors: Part I development of the equations. ASME J. Engr. Gas Turbines and Power,1986, 108: 68-76
    [70] Streit D A, Krousgrill C M, Bajaj A K, Combination parametric resonance leading to periodic ang chaotic response in two-degree-of-freedom systems with quadratic nonlinearities. J. Sound & Vib., 1988, 124: 470-480
    [71] Wang X F, Chen G. Chaotification via arbitrarily small feedback controls: theory, method, and application. Int. J. of Bifur. Chaos, 2000, 10: 549-570
    [72] Basso M, Evangelisti A, Genesio R, et al. On bifurcation control in time delay feedback systems. Int. J. Bifurcation and Chaos, 1998, 8: 713-721
    [73] Calandririni G, Paolini E, Moiola J L, et al. Controlling limit cycles and bifurcation, in Controlling Chaos and Bifurcatons in Engineering Systems. ed. Chen G, (CRC Press, Boca Raton, FL), 1999:200-227
    [74] Bleich M E, Socolar J E S. Stability of periodic orbits controlled by time-delayed feedback. Phys. Lett., 1996, A210: 87-94
    [75] Wang X F, Chen G, Yu X H. Anti-control of continuous-time systems by time-delay feedback. Chaos, 2000, 10: 771-779
    [76] Vieira M de S, Lichtenberg A J. Controlling chaos using nonlinear feedback with delay. Phy. Rev., 1996, E54: 1200-1207
    [77] Pyragas K. Control of chaos via extended delay feedback. Phys. Lett., 1995, A206: 323-330
    [78] Kittel A, Parisi J, Pyragas K. Delayed feedback control of chaos by self-adapted delay time. Phys. Lett., 1995, A198: 433-436
    [79] Chen G, Liu J, Nicholas B, et al. Bifurcation dynamics in discrete-time delayed\feedback control systems. Int. J. Bifurcation and Chao, 1999, 9: 287-293
    [80] Konishi K, Ishii M, Kokame H. Stabilizing unstable periodic points of one-dimensional nonlinear systems using delayed-feedback signals. Phys. Rev., 1996, E54: 3455-3460
    [81] Mareels I M Y, Bitmead R R. Nonlinear dynamics in adaptive control: Chaotic and periodic stabilization. Automatic, 1986, 22: 641-665
    [82] Mareels I M Y, Bitmead R R. Nonlinear dynamics in adaptive control: Chaotic and periodic stabilizationⅡ—analysis. Automatic, 1988, 24: 485-497
    [83] Praly L, Pomet J B. Periodic solutions in adaptive systems: The regular case. Proc. IFAC 10th Triennual World Congress, 1987, 10: 40-44
    [84] Pyragas K. Continuous control of chaos by self-controlling feedback. Phys. Lett., 1992, A170: 421-428
    [85] Pyragas K, Tamasevicius A. Experimental control of chaos by delayed self-controlling feedback. Phys. Lett., 1993, A180: 99-102
    [86] Ydstie B E, Golden G C. Bifurcation and complex dynamics in adaptive control systems. Proc. IEEE Conf. Decision Contr., Athens, 1986:2232-2236
    [87] Ydstie B E, Golden M P. Chaos and strange attractors in adaptive control systems. Proc. IFAC World Congress, 1987, 10: 127-132
    [88] Ydstie B E, Golden M P. Chaotic dynamics in adaptive systems. Proc. IFAC Workshop on Robust Adaptive Control, Newcastle, 1998, 14-19
    [89] Dibernardo M. An Adaptive Approach to the Control and Synchronization of Continuous- Time Chaotic Systems. Int. J. of Bifurcations and Chaos, 1996, 6: 557-568
    [90] Wang H O &, Abed E H. Robust control of period doubling bifurcations and implications for control of chaos. Proc. 33rd IEEE Conf. Decision and Control, Orlando, 1994: 3287-3292
    [91] Senjyu T & Uzeato K. stability analysis and suppression control of rotor oscillation for stepping motors by Lyapunov direct method. IEEE Trans. Power Electron., 1995, 10:333-339
    [92] Littleboy D M, Smith P R. Using bifurcation methods to aid nonlinear dynamic inversion control law design. J. Guidance Contr. Dyn., 1998, 21: 632-638
    [93] Iida S K, Ogawara K, Furusawa S. A study on bifurcation control using pattern recognition of thermal convection. JSME. Int. J. Series B—Fluid and Thermal Eng., 1996, 39: 762-767
    [94] Hill D J, Hiskens I A, Yang Y. Robust, adaptive or nonlinear control for modern power systems. Proc. 32nd IEEE Conf. Decision and Control. (San Antonio, TX), 1993
    [95] Abed E H. Bifurcation-theoretic issues in the control of voltage collapse. in Proc. IMA Workshop on Systems and Control Theory for Power Systems, eds. Chow J H, Kokotovic P V & Thommas R J, (Springer, NY), 1995: 1-21
    [96]朱位秋.国内非线性动力学近期研究进展与展望.见:中国力学学会学术大会’2005论文摘要集(上),杭州
    [97] Chen Y S, Xu J. Global bifurcations and chaos in van der Pol-Duffing-Mathieu system with three well potential oscillator. Acta Mechanica Sinica, 1995, 11(4): 357-372
    [98] J. Xu, K. W. Chung. Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D. 2003, 180: 17~39
    [99]韩茂安,顾圣士.非线性系统的理论和方法.北京:科学出版社,2001
    [100] Kang W, Krener A J. Extended quadratic controller normal form and dynamic feedback linearization of nonlinear systems. SIAM J. Contr. Optim., 1992, 30: 1319-1337
    [101] Ge Z M, Hsu M Y. Chaos excited synchronizations of integral and fractional order generalized van der Pol systems. Chaos, Solitons & Fractals, 2008, 33(3): 592-604
    [102] Chen J H,Chen W C. Chaotic dynamics of the fractionally damped van der Pol equation. Chaos, Solitons & Fractals, 2008, 35(1): 188-198
    [103] Kale Oyedeji. An analysis of a nonlinear elastic force van der Pol oscillator equation. Journal of Sound and Vibration, 2005, 281: 417-422
    [104]张伟,陈予恕.广义van der Pol非线性振子的多吸引子共存的跳跃现象.非线性动力学学报,1997, 4(2): 122-126
    [105] H. G. Enjieu Kadji, R. Yamapi. General synchronization dynamics of coupled van der Pol– Duffing oscillators. Physica A, 2006, 370(2): 316-328
    [106] Kevin Rompala, Richard Rand, Howard Howland. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(5): 794-803
    [107] Jin Zhou, Xuhua Cheng, Lan Xiang, et al. Impulsive control and synchronization of chaotic consisting of van der Pol oscillators coupled to linear oscillators. Chaos, Solition & Fractals, 2007, 33(2): 607-616
    [108] R.Violette, E. de Langre, J.Szydlowski. Compuataion of vortex-induced vibrations oflong structures using a wake oscillator model: Comparison with DNS and experiments. Computers & Structures, 2007,85(11-14): 1134 ~ 1141
    [109] Cristina Stan, C.P. Cristescu, M. Agop. Golden mean relevance for chaos inhibition in a system of two coupled modified van der Pol oscillators. Chaos, Solitons & Fractals, 2007,31(4): 1035 ~ 1040
    [110] Angela M. dos Santos, S.R.Sergio R. Lopes, R. L. Ricardo L. Viana. Rhythm synchronization and chaotic modulation of coupled van der Pol oscillators in a model for the heartbeat. Physica A, 2004, 338(3-4):335-355
    [111] H. K. Leung. Synchronization dynamics of coupled van der Pol systems. Physica A, 2003, 321(1-2): 248-255
    [112] Fotios Giannakopoulos, Andreas Zapp. Stability and Hopf bifurcation in differential equations with one delay. Nonlinear Dyn. Syst. Theory, 2001, 2(1): 145-158
    [113] Fotios Giannakopoulos, O. Oster. Bifurcation properties of a planar system modeling neural activity. J. Diff. Eq.Dyn. Syst., 1997,5(3-4): 229-242
    [114]李伟,徐伟,赵俊锋等.耦合Duffing- van der Pol系统的随机稳定性及控制.物理学报,2005,54(12):5559-5565
    [115]黄克累,陆启韶,甘春标.耦合van der Pol–Duffing振子的强共振分叉解.应用数学和力学, 1999, 20(1): 63-69
    [116]马少娟,徐伟,雷佑铭.随机Duffing–van der Pol系统响应的Chebyshev多项式逼近.动力学与控制学报, 2004, 2(3): 80-84
    [117]李爽,徐伟,李瑞红. Duffing–van der Pol系统的随机分岔.力学学报, 2006, 38(3):429-432
    [118]佘龙华,柳贵东,施晓红.磁悬浮系统的Hopf分岔自适应控制研究.动力学与控制学报, 2006,4(1):
    [119]吴云华,袁晓风,刘世泽.一类三维生态动力系统的Hopf分支.数学物理学报, 1998, 18(1): 70-77
    [120]李瑞红,徐伟,李爽.一类新混沌系统的线性状态反馈控制.物理学报, 2006, 55(2): 598-604
    [121]刘凌、苏燕辰、刘崇新。一个新混沌系统及其电路仿真实验.物理学报.2006,55(8):3933-05
    [122] Marc Chaperon. Birth control in generalized Hopf bifurcations. Comptes Rendus Mathematique, 2007, 345( 8): 453-458
    [123] Richard Rand, Anael Verdugo. Hopf bifurcation formula for first order differential-delay equations. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(6): 859-864
    [124] Junli Liu, Tailei Zhang. Bifurcation analysis of an SIS epidemic model with nonlinear birth rate. Chaos, Solitons & Fractals, Available online, 2007
    [125] J G Zhang, J N Yu, Y D Chu, et al. Bifurcation and chaos of a non-autonomous rotational machine systems.Simulation Modelling Practice and Theory,Available online,2007
    [126] Jorge Sotomayor, Luis Fernando Mello, Danilo Braun Santos, et al. Bifurcation analysis of a model for biological control. Mathematical and Computer Modelling, Available online,2007
    [127] Xiaobing Zhou, Yue Wu, Yi Li, Xun Yao. Stability and Hopf bifurcation analysis on a two-neuron network with discrete and distributed delays. Chaos, Solitons & Fractals, Available online, 2007
    [128] Chuangxia Huang, Lihong Huang, Jianfeng Feng, et al. Hopf bifurcation analysis for a two-neuron network with four delays. Chaos, Solitons & Fractals, 2007, 34(3): 795-812
    [129] Pablo Aguirre, Eduardo González-Olivares, Eduardo Sáez. Two limit cycles in a Leslie–Gower predator–prey model with additive Allee effect. Nonlinear Analysis: Real World Applications, Available online, 2008
    [130] Xiaohua Ding, Wenxue Li. Local Hopf bifurcation and global existence of periodic solutions in a kind of physiological system. Nonlinear Analysis: Real World Applications, 2007, 8(5): 1459-1471
    [131] Radouane Yafia. Hopf bifurcation analysis and numerical simulations in an ODE model of the immune system with positive immune response. Nonlinear Analysis: Real World Applications, 2007, 8(5): 1359-1369
    [132] JoséM.R. Sanjurjo. Global topological properties of the Hopf bifurcation. Journal of Differential Equations, 2007, 243(2): 238-255
    [133] Norimichi Hirano, Slawomir Rybicki. Existence of limit cycles for coupled van der Pol equations. Mathematical Economics, 2003(1337): 10-18
    [134]唐云.对称性分岔理论基础.北京:科学出版社,1998
    [135] R. Lopez-Ruiz, Y. Pomeau. Transition between two oscillation modes. Phys. Rev. E , 1997, 55:3820-R3823
    [136] Ricardo Lopez-Ruiz. Symmetry induced oscillations in four-dimensional models deriving from the van der Pol equation. Chaos, Solitons & Fractals, 2004, 21:55-61
    [137] W. E. Collins, R. E. Mickens. Symmetry properties of van der Pol type differential equations and implications. Journal of Sound and Vibration, 2007, 136(2): 352-354
    [138] Miguel A. F. Sanjuan. Symmetry-restoring crises, period-adding and chaotic transitions in the cubic van der Pol Oscillator. Journal of Sound and Vibration, 1996, 193(4): 863-875
    [139] Li Ma, Dezhong Chen. Radial symmetry and monotonicity for an integral equation. Journal of Mathematical Analysis and Applications, 2008, 342(2): 943-949
    [140] M. Belhaq, M. Houssni, E. Freire, et al. Analytical prediction of the two first-doublingsin a three dimensional system. Int. J. of Bifurcations and Chaos, 2000, 10(6): 1497-1508
    [141]张伟.非线性振动、分岔及混沌.天津:天津大学出版社,1992
    [142] D. D. Hassard, N. D. Kazarnoff, Y-H Wan. Theory and application of Hopf bifurcation. Cambridge University Press, 1981
    [143]陈予恕.非线性振动系统的分岔与混沌理论,北京:高等教育出版社, 1993
    [144] Canizares C A, Alvarado F L. Point of collapse and continuation method for large AC/DC systems. IEEE Trans, on Power System, 1993 8(1): 1-8
    [145] Ajjarapu V, Christy C. The continuation power flow: a tool for steady stage voltage stability analysis. IEEE Trans, on Power System, 1992, 7(7); 416-423
    [146] Brain R. Hunt, Todd R. Young. Critical saddle-node bifurcations and Morse-Smale maps. Physica D, 2004, 197: 1-17
    [147] Jin Lu, Chih-Wen Liu, James S. Thorp. New methods for computing a saddle-node bifurcation point for voltage stability analysis. IEEE Tran. On Power Systems, 1995, 10(2): 978-989
    [148]李华强,刘亚梅, N. Yorino.鞍结分岔与极限诱导分岔的电压稳定性评估.中国电机工程学报, 2005, 25(24): 56-60
    [149]刘彩霞,周艳平.分岔理论在电力系统电压稳定中的应用.云南水力发电, 2007, 23(3): 87-90
    [150]化存才,刘延柱,陆启韶.具有鞍结分岔的二次系统的同宿和时变分岔.上海交通大学学报, 2002, 36(3): 391-394
    [151] Fotios Giannakopoulos, Andreas Zapp. Bifurcation in a planar system of differential delay equations modeling neural activity. Physica D, 2001, 159: 215-232
    [152] Bálint Nagy. Comparison of the bifurcation curves of a two-variable and a three-variable circadian rhythm model. Applied Mathematical Modelling, 2008, 32(8): 1587-1598
    [153] Josep Sardanyés. Error threshold ghosts in a simple hypercycle with error prone self-replication. Chaos, Solitons & Fractals, 2007, 35(2): 313-319
    [154] Henk Broer, Carles Simó, Renato Vitolo. Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance‘bubble’. Physica D: Nonlinear Phenomena, Available online, 2008
    [155] Peter Ashwin, Oleksandr Burylko, Yuri Maistrenko. Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Physica D: Nonlinear Phenomena, 2008,237(4): 454-466
    [156] Sohrab Behnia, Amin Jafari, Wiria Soltanpoor,et al. Nonlinear transitions of a spherical cavitation bubble. Chaos, Solitons & Fractals, Available online, 2008
    [157] Peter ?rhem, Clas Blomberg. Ion channel density and threshold dynamics of repetitivefiring in a cortical neuron model. Biosystems, 2007, 89(1-3): 117-125
    [158] Stefanie Widder, Josef Schicho, Peter Schuster. Dynamic patterns of gene regulation I: Simple two-gene systems. Journal of Theoretical Biology, 2007, 246(3,7): 395-419
    [159] Helena E. Nusse, James A. Yorke. Bifurcations of basins of attraction from the view point of prime ends. Topology and its Applications, 2007, 154(13): 2567-2579
    [160] Rafa? Jurczakowski, Marek Orlik. Experimental and theoretical impedance studies of oscillations and bistability in the Ni(II)–SCN? electroreduction at the streaming mercury electrode. Journal of Electroanalytical Chemistry, 2007, 605(1): 41-52
    [161] Béla G. Lakatos, Tsvetan J. Sapundzhiev, John Garside. Stability and dynamics of isothermal CMSMPR crystallizers. Chemical Engineering Science, 2007, 62(16): 4348-4364
    [162] Jawaid I. Inayat-Hussain. Bifurcations in the response of a flexible rotor in squeeze-film dampers with retainer springs. Chaos, Solitons & Fractals, Available online , 2007
    [163] T. Modise, S. Kauchali, D. Hildebrandt, D. Glasser. Experimental Measurement of the Saddle Node Region in a Distillation Column Profile Map by Using a Batch Apparatus. Chemical Engineering Research and Design, 2007, 85(1): 24-30
    [164] Lixia Duan, Qishao Lu. Codimension-two bifurcation analysis on firing activities in Chay neuron model. Chaos, Solitons & Fractals, 2006, 30(5): 1172-1179
    [165] J. Srividhya, M.S. Gopinathan. A simple time delay model for eukaryotic cell cycle. Journal of Theoretical Biology, 2006, 241(3): 617-627
    [166] Abraham C.-L. Chian, Erico L. Rempel, Colin Rogers. Complex economic dynamics: Chaotic saddle, crisis and intermittency. Chaos, Solitons & Fractals, 2006, 29(5): 1194-1218
    [167] Armengol Gasull, Víctor Ma?osa, Jordi Villadelprat. On the period of the limit cycles appearing in one-parameter bifurcations. Journal of Differential Equations, 2005, 213(2): 255-288
    [168] Ming-Chia Li. Stability of a saddle node bifurcation under numerical approximations. Computers & Mathematics with Applications, 2005, 49(11-12): 1849-1852
    [169] F.M. Echavarren, E. Lobato, L. Rouco. A corrective load shedding scheme to mitigate voltage collapse. International Journal of Electrical Power & Energy Systems, 2006, 28(1): 58-64
    [170] G. Bertotti, A. Magni, R. Bonin, et al. Bifurcation analysis of magnetization dynamics driven by spin transfer. Journal of Magnetism and Magnetic Materials, 2005, 291-291(1): 522-525
    [171]张瑜芳.常微分方程中的分岔(歧)现象及其数值模拟:[静宜大学硕士论文].台中:静宜大学应用数学系,2004
    [172]陆君安,陈士华.混沌动力学初步.武汉:武汉水利电力大学出版社, 1998
    [173]方锦清.非线性系统中混沌的控制与同步及其应用前景(一).物理学进展,1996,16:1-74
    [174]方锦清.非线性系统中混沌的控制与同步及其应用前景(二).物理学进展,1996,16:137-201
    [175]王震,毛鹏伟.一类三维混沌系统的分叉及稳定性分析.动力学与控制学报. 2008. 6(1): 16-21
    [176] Zhou T, Tang Y, Chen G. Complex dynamical behaviors of the chaotic Chen's system. Int. J. of Bifurcations and Chaos, 2003, 13(9): 2561-2574
    [177] Lu J, Chen G, Zhang S. A new chaotic attractor coined. Int. J. of Bifurcations and Chaos, 2002, 12(3): 659-661
    [178]王琳,倪樵,刘攀,等.一种新的类Lorenz系统的混沌行为与形成机制,动力学与控制学报, 2005, 3(4): 1-6
    [179] Leonov GA. Bound for attrator and the existence of monoclinic orbits in the Lorenz system. Journal of applied methematics and mechanics, 2001, 65(1): 19-32
    [180] Yan-Dong Chu, Jian-Gang Zhang, Xian-Feng Li, et al. Chaos and chaos synchronization for a non-autonomous rotational machine systems. Nonlinear Analysis: Real World Applications, 2008, 9(4): 1378-1393
    [181] Dibakar Ghosh, A. Roy Chowdhury, Papri Saha. Bifurcation continuation, chaos and chaos control in nonlinear Bloch system. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(8): 1461-1471
    [182] S.L.T. de Souza, M. Wiercigroch, I.L. Caldas, et al. Suppressing grazing chaos in impacting system by structural nonlinearity. Chaos, Solitons & Fractals, 2008, 38(3): 864-869
    [183] Guoyuan Qi, Guanrong Chen, Micha?l Antonie van Wyk, et al. A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos, Solitons & Fractals, 2008, 38(3): 705-72
    [184] Antonio Tineo. May Leonard systems. Nonlinear Analysis: Real World Applications, 2008, 9(4): 1612-1618
    [185] Gh. Tigan. Analysis of a dynamical system derived from the Lorenz system. Scientific Bulletin of the Politehnica University of Timisoara, 2005, 50(64): 61-72
    [186] Gh. Tigan. Bifurcation and stability in a system derived from the Lorenz system, Proceeding of the 3-rd International colloquium, Mathematics in engineering and Numerical Physics, 2004: 265-272
    [187]符文彬.非线性动力系统的分岔控制研究:[湖南大学博士论文].长沙:湖南大学工程力学系,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700