用户名: 密码: 验证码:
基于光电技术和图像处理技术的高温熔体非接触式测温系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有色金属火法熔炼过程中,熔体温度是关键的工艺控制参数。温度高低是否恰当直接关系到熔炼过程能否正常进行、熔炼产品质量是否合格、熔炼设备能否正常安全工作、熔炼过程能耗高低等重要问题,因此,熔体温度测量至关重要。本文在综述目前常用的接触式和非接触式高温检测技术的基础上,针对有色金属熔炼过程工艺复杂,环境恶劣,现有高温测量技术难以实现实时在线检测的情况,研究了将CCD图像传感技术、现代数字图像处理技术与比色高温测量技术相结合,利用工业CCD数字摄像头摄取高温熔体表面的热辐射图像,由此实现高温熔体表面温度场的检测方法。本文结合热辐射理论、CCD器件工作原理、光学系统成像原理和计算机多媒体技术,研究了这种测温系统的设计方法,分析了辐射式测温系统中的CCD摄像器件必须具备的性能,以及选择CCD摄像器件和视频采集卡时应考虑的主要因素。根据高温熔体的物理特性,提出了适用于高温熔体图像识别的目标分割算法。识别算法是先用双峰法和最大方差自动取阈值法分别确定待分割阈值,再根据高温熔体的灰度值一致性,选择较合适的分割阈值,使分割出的目标的灰度值的级别较少,同时使得R通道的高灰度值的数目最多。实验证明,本文提出的识别算法可从不同的热辐射图像中自动地识别出被测高温熔体,有较好的实用性。对用彩色数码相机拍摄的某冶炼厂熔炼炉中的高温熔体图像进行仿真计算的结果表明,该测温方法具有非接触式测温的优点,快速、方便、准确,能计算出高温熔体的表面温度场,有较高的实用价值。
In fire metallurgy process of nonferrous metal, the temperature of smelting metal is pivotal technologic control parameter. Whether the highness and the lowness of temperature is right relates directly to some important problems, such as whether the fusion process can progress normally, whether the quality of metallurgical product is eligible, whether the fusion metallurgy equipment can work safely, and how much the energy cost is in the process of the fusion, so the temperature measurement of smelting metal is very important. Based on the summarize of the commonly used contact and contactless temperature measurement techniques at present, and aiming at the complexity of the fire metallurgy process of nonferrous metal, the bad condition of the working environment, and the impossibility of using high temperature measurement techniques to do real time measurement on-line nowadays, the temperature measurement method combined with CCD image sensor technique, image processing technology and colorimetry technology
     is studied in this paper, by which the thermal radiation images of high temperature smelting metal is taken by using the industrial CCD digital camera and the superficial temperature field of high temperature smelting metal can be measured on-line. In this paper combined with thermal radiation theory, CCD working theory, optical system imaging theory and computer multimedia technology, the design method of this kind of temperature measurement system is studied, and the necessary capability of CCD image sensor in this thermal radiation measurement system and the main factors considered in selecting CCD image sensor parts and image collection "boards are analyzed as well. According to physical characters of high temperature smelting metal, a target segmenting arithmetic fitting for identifying the image of high temperature smelting metal is brought forward. The identifying arithmetic is that by using the double apex method and the automatic threshold-taking method of the max square error to confirm the pendin
    g segmentation threshold respectively at first, then according to the consistency of gray-level of
    
    
    high temperature smelting metal, the better and proper segmentation threshold is selected, so that the gray-level of segmented target is smaller and the amount of gray-level of R color is the most. The experimental results show that the identifying arithmetic, which has much practicability, can recognize the high temperature smelting metal automatically from the different heat radiation images. Some high temperature smelting metal photos shot by color digital camera taken from fusion furnaces of a certain copper metallurgy industry were computed in emulational way. The result shows that this kind of temperature measuring method has merits of contactless temperature measurement, which is fast, convenient and accurate, and the surface temperature field of high temperature smelting metal can be computed, which has high practical value.
引文
[1] Santoni Paul Antoine, Marcelli Thierry, Leoni Eric. Measurement of fluctuating temperatures in a continuous flame spreading across a fuel bed using a double thermocouple probe. Combustion and Flame, 2002, 131(1-2): 47~58
    [2] 俞小莉,严兆大,胡文豪,等.接触式光纤高温汁的研究与应用.燃烧科学与技术,1995,1(1):72~78
    [3] Yang Wenku, Yang Tao, Yang Yujing, etal. Study on the radiation temperature measurement instrument of the optical quartz fiber bundle. Scientific Instrument, 1999, 20(1): 103~105
    [4] 涂强,周玮,王魁汉.黑体光纤辐射测温及在线检测过程中准确度评价.自动化仪表,2001,22(6):3~5
    [5] Boerner M W, zur Horst-Meyer S, Murphy M C, etal. Ultrasonic measurements with micromembranes. Sensors and Actuators, A: Physical, 1995, 46(1-3): 62~65
    [6] 田丰,邵富群,王福利.声学法工业炉温度场检测技术综述.仪表技术与传感器,2002,(4):52~54
    [7] 曾庭华,马斌.锅炉炉膛温度场测量技术.广东电力,1999,12(12):48~50
    [8] Hwang J Y, Gil Y S, Kim J I., Choi M, etal. Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF. Aerosol Science, 2001, 32(5): 601~613
    [9] 李麦亮,赵永学,耿辉,等.CARS在发动机燃烧场温度和压力测量中的应用研究.宇航学报,2001,22(5):56-61
    [10] 赵建荣,陈立红,俞刚.OH在火焰中浓度分度图像及与温度关系的PLIF和CARS研究.分析测试学报,2000,19(6):1~4
    [11] Seitzman J M, Harson R K. Application of quantitative two line OH planar laser induce fluorescence for temporally resolved planar thermometry in reacting flows. Appl Opt, 1994, 33(18): 4000~4012
    [12] 关小伟,刘晶儒,黄梅生等.激光诱导预分离荧光法窄带及宽带测温实验研究.光学学报,2001,21(3):348~351
    [13] 李疏芬,赵波,陈振鹏.全息法测量火焰温度探讨.固体火箭技术,1998,21(1):70~74
    [14] Tieng Sheng Mao, Lai Wen Zen, Fujiwara Toshi. Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame. Engineering Optics, 1993, 6(1): 81~89
    [15] VanDerWege B A, O'Brien J, Hochgreb S. Quantitative shearographyin axisymmetdc gas temperature measurements. Optics and Lasers in Engineering, 1999, 31(1): 21~39
    [16] 郑兆平,曾汉生,丁翠娇,等.红外热成像测温技术及其应用.红外技术, 2003,25(1):96~98
    
    
    [17] Meca Meca, Francisco Javier Mazo. Quintas, etal. Infrared temperature measurement system using photoconductive. PbSe sensors without radiation chopping. Sensors and Actuators A: Physical, 2002, 100(2-3): 206~213
    [18] Yang Zhen-Zhong, Zhou Chong-Guang, Fang Zhuo-Yi, etal. Infrared radiation absorption CT diagnosis for temperature distribution of premixed plane flame. Hongwai Yu Haomibo Xuebao/Infrared and Millimeter Waves, 2002, 21(6): 413~417
    [19] Mazikowski Adam, Chrzanowski Krzysztof. Non-contact multiband method for emissivity measurement. Infrared Physics and Technology, 2003, 44(2): 91~99
    [20] Keyvan Shahla, Rossow Rodney, Romero Carlos, etal. Comparison between visible and near-IR flame spectra from natural gas-fired furnace for blackbody temperature measurements. Fuel, 2004, 83(9): 1175~1181
    [21] Childs P R N, Greenwood J R, Long C A. Review of temperature measurement. Review of Scientific Instruments, 2000, 71(8): 2959~2978
    [22] 王魁汉.温度测量技术的现状及展望(上).基础自动化,1997(1):1~5
    [23] 王魁汉.温度测量技术的现状及展望(下).基础自动化,1997(2):1~6
    [24] 王魁汉,李友,王柏忠.温度测量技术的最新动态与特殊与实用测温技术.自动化仪表,22(8):1~7
    [25] 叶滨.熔体自动测温系统.冶金自动化,2001(2):59~61
    [26] Spyrometer.高温电视系统技术说明.美国IST-Quadtek公司
    [27] 徐传华.奥托昆普公司的冶金技术.有色冶炼,2000,29(5):39~42
    [28] 程本同,柳宏涛,刘激扬.传感器在冶金工业中的应用.传感器技术,2000,19(2):1~4
    [29] 李军,刘梅冬,曾亦可.非接触红外测温的研究.压电与声光,2001,23(3): 202~205
    [30] 周俐,王建军,王雪松.钢水连续测温的新方法.钢铁研究学报,2002,14(2): 49~51
    [31] 刘青云.我国铜冶炼工业的自动化现状与发展.有色冶金设计与研究,16(4): 51~56
    [32] 任鸿九,王立川.有色金属提取冶金手册(铜镍).北京:冶金工业出版社,2000年:21~156
    [33] Huai-Chun Zhou, Yu-Bo Hou, Dong-Lin Chen, etal. An inverse radiative transfer problem of simultaneously estimating profiles of temperature and radiative parameters from boundary intensity and temperature measurements. Quantitative spectroscopy & radiative transfer, 2002, 74(5): 605-620
    [34] Keanini R G, Allgood C A. Measurement of time varying temperature fields using visible imaging CCD cameras. International Communications in Heat and Mass Transfer, 1996, 23(3): 305~314
    [35] Huang Y, Yan Y, Riley G. Vision-based measurement of temperature distribution in a 500-kW model furnace using the two-colour method. Measurement, 2000, 28(3): 175~183
    [36] Jihong Hwang, Sridhar kompella, Srinivasan Chandrasekar,
    
    etal. Measurement of temperature field in surface grinding using infra-red imaging system. Tribology, 2003, 125(4): 377~383
    [37] Zhou Huai-Chun, Han Shu-Dong, Sheng Feng, etal. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images Quantitative Spectroscopy and Radiative Transfer, 2002, 72(4): 361~383
    [38] 王补宣,李天铎,吴占松.图象处理技术用于发光火焰温度分布测量的研究.工程热物理学报,1989,10(4):446~448
    [39] 王式民,吕震中,麻庭光.图像处理技术在全炉膛火焰监测中的应用.动力工程,1996,16(6):68~72
    [40] 徐伟勇,余岳峰,孙江.数字图像处理技术在火焰检测上的应用.中国电力,1994,(14):41~44
    [41] 孙江,徐伟勇,余岳峰.根据煤粉火焰图像判断燃烧状况的计算机判断算法.热力发电,1997,(1):14~18
    [42] 徐伟勇,余岳峰,张银桥等.采用传像光纤和数字图像处理技术检测燃烧火焰.动力工程.1999,19(1):45~48
    [43] 余岳峰,赵铁成,徐伟勇.煤粉燃烧火焰的三色法温度测量.上海交通大学学报,2000,34(9):1257~1260
    [44] 周怀春,娄新生,肖教芳,等.炉膛火焰温度场图像处理试验研究.中国电机工程学报,1995,15(5):295~300
    [45] 周怀春,娄新生,尹鹤龄,等.采用辐射能信号的电站锅炉燃料调节对象建模及控制仿真研究.中国电机工程学报,1996,16(4):226~229
    [46] 周怀春,娄新生,尹鹤龄,等.单色火焰图像处理技术在锅炉燃烧监控中的应用研究.电力系统自动化,1996,20(10):18~22
    [47] 周怀春,娄新生,邓元凯,等.采用辐射能信号的电站锅炉燃料调节对象建模及控制仿真研究.中国电机工程学报,1996,16(4):226~229
    [48] 娄春,韩曙东,刘浩,等.一种煤粉燃烧火焰辐射成像新模型.工程热物理学报,2002,23(6)增刊:93~96
    [49] 王飞,薛飞,马增益,等.运用彩色CCD测量火焰温度场的试验研究及误差分析.热能动力工程,1998,13(74):81~84
    [50] 卫成业,严建华,商敏儿,等.利用面阵CCD进行火焰温度分布测量(Ⅰ).热能动力工程,2002,17(97):58~61
    [51] 卫成业,严建华,商敏儿,等.利用面阵CCD进行火焰温度分布测量(Ⅱ).热能动力工程,2002,17(98):161~165
    [52] 卫成业,李晓东,马增益,等.高温火焰图像处理比色测温法的数值方法研究.燃烧科学与技术,1998,4(3):307~311
    [53] 王飞,薛飞,马增益,等.运用彩色CCD双色信息测量燃烧火焰温度场.发电设备,1998,13(6):2~5
    [54] 卫成业,王飞,马增益等.运用彩色CCD测量火焰温度场的校正算法.中国电机工程学报,2000,20(1):70~76
    [55] 常太华,孙丽丽.数字图像处理技术用于锅炉炉膛火焰检测.华北电力大学学报,2001,27(1):87~91
    [56] 王景中.基于多探测器的闪速炉红外成像实时测温系统.激光与红外,2001,31(2):108~109
    
    
    [57] 姜学东,韦穗.基于彩色CCD的三色法测量炉膛火焰温度场分布.安徽大学学报,2002,26(4):24~28
    [58] 周怀春,韩曙东,郑楚光.两种辐射温度图像监测方法的模拟比较、分析及其适用性评价.中国电机工程学报,2002,22(6):109~114
    [59] 杨世铭,陶文铨.传热学.北京:高等教育出版社.1998:239~250
    [60] 朱麟章.高温测量原理与应用.北京:科学出版社.1991:60~513
    [61] 王魁汉.温度测量技术.沈阳:东北工学院出版社.1991:167~192
    [62] 由富恩,张存芳,付乐勇.辐射测温仪原理及其检定.北京:中国计量出版社.1990:115~203
    [63] 罗惠明,等.广州:华南理工大学出版社.1997:158~160
    [64] 杨磊,李峰,付龙,等.电视监视实用技术.北京:机械工业出版社.2002:182~186
    [65] Howes M J, Morgan D V. 电荷耦合器件和系统.北京:国防工业出版社.1983:65~83
    [66] 刘广玉,陈明,吴志鹤,等.新型传感器技术及应用.北京:北京航空航天大学出版社.1995:250~263
    [67] 王庆有.CCD应用技术.天津:天津大学出版社.1993:5~173
    [68] 蔡文贵,李永远,许振华.CCD技术及应用.北京:电子工业出版社.1992:3~130
    [69] 袁祥辉.固体图像传感器及其应用.重庆:重庆大学出版社.1996:23~75
    [70] 苏显渝,李继陶.信息光学.北京:科学出版社,1999:23~51
    [71] 赵凯华,钟锡华.光学(上册).北京:北京大学出版社.1982:39~133
    [72] 姚启均.光学教程.北京:高等教育出版社.1987:139~233
    [73] 王耀南,李树涛,毛建旭.计算机图像处理与识别技术.北京:高等教育出版社,2001:108~123
    [74] 章毓晋.图像处理和分析.北京:清华大学出版社,1999:179~213
    [75] 郑南宁.计算机视觉与模式识别.北京:国防工业出版社,1998:80~90
    [76] 闫敬文.数字图像处理技术与图像图形基本教程.北京:科学出版社,2002: 30~87
    [77] 霍宏涛,林小竹,何薇.数字图像处理.北京:北京理工大学出版社,2002: 17~167
    [78] 清源计算机工作室.MATLAB高级应用.图形及影像处理.北京:机械工业出版社,2000:5~317
    [79] 张宜华.精通MATLAB5.北京:清华大学出版社.1999:151~240
    [80] 孙兆林.MATLAB6.X图像处理.北京:清华大学出版社.2002:151~155
    [81] 贾涛,程强,韩曙东,等.一种火焰辐射图像探头的标定方法.热力发电,2002,(5):23~25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700