用户名: 密码: 验证码:
离子液体的构建及在非水生物催化合成天然香料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着绿色化学在全球的倡导及消费者对天然香料日益强烈的追求,生物仿生合成天然香料成为香料工业最具发展潜力的途径之一。离子液体是一种环境友好的绿色溶剂,可替代易挥发性有机溶剂应用于非水生物催化。然而,迄今人们对离子液体对酶行为的影响机制和规律性了解甚少。为此,本论文开展了新型对称烷基咪唑型离子液体的设计、合成、性质及作为天然香料仿生合成介质的研究。设计合成出十种阳离子是1,3-二烷基咪唑[D(R)IM]+而阴离子为[PF6]-和[OAc]-的新型对称烷基咪唑型离子液体。其中,四种对称烷基咪唑醋酸盐离子液体未见文献报道。研究发现,阳离子咪唑环1、3位N上取代基的碳链长短与同分异构之间的构型差异都会显著影响离子液体的性质。当阳离子相同时,[OAc]-类离子液体的密度、热稳定性、粘度、极性及表面张力都要低于相应的[PF6]-与[NTf2]-离子液体。
     考察离子液体的提取、富集和定香性能,研究离子液体与香料分子间的相互作用。离子液体提取芳樟油表明,具有较高极性与较低粘度的离子液体对芳樟油的提取率较高。SEM结果证实离子液体可以有效破坏植物组织细胞,从而有助于精油的释放。离子液体顶空单滴微萃取酯类香料结果显示,离子液体对酯类化合物的富集倍数既受其憎水性、极性和粘度的影响,还与分析物本身的结构及性质密切相关。良好的憎水性、较低的极性有利于富集,而高粘度则相反。离子液体对芳香族酯类的富集倍数最高,萜类酯其次,饱和脂肪族酯相对最低。离子液体对香料的定香性能研究发现,具有较高极性的离子液体与极性较大的香料如醇类化合物之间的作用力较强,而低极性的离子液体与弱极性的香料如酮类、酯类、萜类化合物之间的作用力较强,高粘度有助于离子液体对香料的定香作用。
     分别以脂肪酶催化(-)-薄荷醇与乙酸酐酯化合成(-)-乙酸薄荷酯及脂肪酶催化拆分(±)-薄荷醇为模型反应,考察不同离子液体介质对酶行为的影响。结果发现酶在离子液体中的活性、立体选择性和稳定性显著优于有机溶剂正己烷,(-)-薄荷醇转化率高达97.4%,(±)-薄荷醇拆分反应转化率与e.e.值分别可达48.1%与98.1%。荧光光谱和圆二色谱研究结果表明,酶在离子液体中有较大的酶蛋白分子裸露程度和良好的二级结构稳定性。以上事实表明离子液体的阳离子尺寸及空间构型是影响酶行为的重要因素。
     采用新型功能导电聚合物共价键合脂肪酶固定于铜网电极上,然后涂覆离子液体构建新型生物反应器。以催化拆分(R,S)-1-苯乙醇为模型反应,考察酶的活性、稳定性和重复利用性。结果表明,所制备的生物反应器具有良好的酶催化活性与立体选择性,在最佳反应条件下,最初反应速率、反应转化率及e.e.值分别为1.76Umg-1、47.4%和99.0%。固定化酶的半衰期是游离酶的5.1倍,生物反应器重复使用10次后酶活性没有明显减少。共价键合方式固定酶及离子液体良好的亲生物性使生物传感器在酶活性和稳定性方面得到较大提高。
With the development of new green chemistrymethodologiesandthe dramaticallyincreasing demand of consumers fornatural flavours, biocatalysis has become one of the mostpromising approaches for the synthesis of natural flavours inthe fragrance and flavourindustry. Being valuable environmentally benign media, ionic liquids (ILs) have recentlyappeared as clean alternatives to volatile organic solvents for a wide variety of non-aqueousenzymatic reactions. However, so far, the researches on the influence of ionic liquids onenzyme are preliminary ones. In particular, the effects and mechanism of ionic liquids onenzyme are poorly understood. In the present work, the design, synthesis and characterizationof novel symmetrical alkylimidazolium ILs were studied, and the enzymatic syntheses ofnatural flavours were assayed with different ILs as media.
     Ten novel symmetrical alkylimidazolium ILs were designed and synthesized. The cationswere1,3-dialkylimidazolium [D(R)IM]+, while the anions mainly consisted of PF6-and OAc-.Among these ILs, four acetate ILs had not been reported before. It was found that the alkylchain length at the1-and3-position of nitrogen of the imidazole cation, as well as the spatialconfiguration of isomers, would significantly affect the properties of IL. When the cationremained the same, the density, thermal stability, viscosity, polarity and surface tension of theacetate ILs were lower than those of hexafluorophosphate ILs and bis-(trifluoromethyl-sulfonyl) imide ILs.
     The extraction performance, the enrichment performance and the lasting fragranceperformance of novel ILs were investigated. Furthermore, interactions between ILs andflavour molecules were explored. The ILs were employed as the solvent for extraction of theessential oil from Cinnamomum camphora presl leaves. It was found that the IL with higherpolarity and lower viscosity offered a better capacity for the extraction. SEM resultsdemonstrated that IL treatment disintegrated the plant materials efficiently thus increasing therelease of essential oil. The ILs were chosen as the extractant based headspace single-dropmicro-extraction for esters flavors. The results showed that the extraction efficiency dependnot only on the viscosity, hydrophobicity and polarity of the IL, but also on the structure andproperties of the analyte. More specifically, good hydrophobicity and low polarity of ILs helpthe enrichment of ester compounds, whereas high viscosity shows opposite effects. Besides,the enrichment factors of aromatic esters were highest, followed by terpene esters andsaturatedaliphatic esters. The ILs were employed as the fixative of the fragrant compoundswith different functional groups. It was observed that relative high-polarity IL had a stronginteraction with polar flavour molecule such as alcohols. In constrast, relative weak-polarityIL had a strong interaction with weak polar flavour molecule such as ketones, esters andterpenes. Additionally, IL with high viscosity offered good lasting fragrance efficiency.
     The enzymaticsynthesis of (-)-menthyl acetate by esterificationfrom (-)-menthol andacetic anhydride catalyzed by Pseudomonas cepacialipase and the enzymatic kineticresolution of (±)-menthol over Candida antarctica lipaseby using propionic anhydride as theacyl donor in the acylation reaction were chosen as model reaction to investigate the properties of lipase in different ILs, respectively. The results showed that the reactivity,selectivity and stability of the lipase in IL medium were obviously better than those in organicsolvent hexane. Under optimal reaction conditions, the conversion of (-)-menthol was up to97.4%, the conversion of (±)-menthol and the enantiomeric excess of (-)-menthyl propionatewas48.1%and98.1%, respectively. Moreover, fluorescence spectroscopy and circulardichroism results showed that the lipase in IL had slightly big exposure level of amino acidresidues and excellent secondary structure stability. The fact above also revealed that not onlydoes the alkyl chain length of the imidazole cation affect the efficiency of enzyme in estersynthesis but also the spatial configuration of the IL plays an important role in overall enzymeactivity.
     A new functional conducting polymer was developed to immobilize lipase on copper netand the ionic liquid was finally coated on the surface of the modified electrode to fabricate anovel bioreactor. The resolution of (R,S)-1-phenylethanol was selected as a model reaction toinvestigate the activity, stability and reuse of the enzyme immobilized on the bioreactor. Theresults showed that the enzyme immobilized on the bioreactor exhibited high catalytic activityand selectivity. Under optimal conditions, initial reaction rate, the conversion of(R,S)-1-phenylethanol and enantiomeric excess of (R)-1-phenylethyl acetate was1.76Umg-1,47.4%and99%, respectively. Also, the lipase immobilized on the bioreactor was recycled10times without substantial diminution in activity and its half life time was5.1-fold that of thenative lipase in hexane. The functional conducting polymer combined with the ionic liquid forthe enzyme immoblization provided good enzyme activity and stability.
引文
[1] Food and Drug Administration. US Code of Federal Regulations21,101.22a.3[R]. Washington DC,1985.
    [2] The Council of the European Communities. Council Directive88/388/EEC[R].1988.
    [3] Brochado A R, Matos C, M ller B L, et al. Improved vanillin production in baker’s yeast through insilico design[J]. Microbial Cell Factories,2010,9(1):84-98.
    [4] Muheim A, Lerch K. Towards a high yield bioconversionof ferulic acid to vanillin[J]. AppliedMicrobiology and Biotechnology,1999,51(4):456-461.
    [5] Krings U, Berger RG. Biotechnological production of flavours and fragrances[J]. Applied Microbiologyand Biotechnology,1998,49(1):1-8.
    [6] Serra S, Fuganti C, Brenna E. Biocatalytic preparation of natural flavours and fragrances[J]. Trends inBiotechnology,2005,23(4):193-198.
    [7] Feron G, WachéY. Microbial biotechnology of food flavor production[C]. In: Dominick T (ed). Foodbiotechnology,2nd edn. New York: Dekker,2005.407-441.
    [8]宋贤良,朱利,温其标等.国内外食品生物技术研究进展[J].粮食与油脂,2002,6:32-35.
    [9]徐岩,章克昌.微生物脂肪酶合成白酒芳香酯的研究[J].中国酒,1997,(4):33-34.
    [10]曾家豫,周兴辉,张继等.有机介质中酶催化合成己酸乙酯的研究[J].食品科学,2009,30(6):123-127.
    [11]张艳,何丽明,蒋群等.在有机溶剂中猪胰脂肪酶催化合成己酸乙酯的研究[J].精细化工,2010,27(2):150-154.
    [12] De Barros D P C, Fonseca L P, Fernandes P, et al. Biosynthesis of ethyl caproate and other short ethylesters catalyzed by cutinase in organic solvent[J]. Journal of Molecular Catalysis B: Enzymatic,2009,60(3-4):178-185.
    [13] Hasegawa T. Butter flavoring material containing lipase-treated oils and fats[P]. JP58043755,1983.
    [14] Kanisawa T, Yamaguchi Y, Hattori S. Production of flavors by biochemical methods. I. Production ofdairy flavors by microbial lipase[J]. Nippon Shokuhin Kogyo Gakkaishi,1982,29(12):693-699.
    [15] Mase T, Asano K, Ikeda Y, et al. Characterization and Application of Lipase39-A from Cryptococcusflavescens for Cheese Flavoring[J]. Food Science and Technology Research,2013,19(1):89-95.
    [16]刘敏尧,张军,刘靓等.一种利用复合酶制剂制备奶味香精的方法[P].中国专利,1857112.2006-11-08.
    [17]汪薇,赵文红,白卫东等.酶促奶油水解制备天然奶味香精[J].食品与发酵工业,2011,37(1):94-97.
    [18] De Barros D P C, Azevedo A M, Cabral J M S, et al. Optimization of flavor esters synthesisby Fusarium solani pisi cutinase[J]. Journal of Food Biochemistry,2012,36(3):275-284.
    [19] Brault G, Shareck F, Hurtubise Y, et al. Isolation and Characterization of EstC, a NewCold-Active Esterase from Streptomyces coelicolor A3(2)[J]. Plos One,2012,7(3): e32041.
    [20] Ahn J E, Park S Y, Atwal A, et al. Angiotensin I-converting enzyme (ACE) inhibitory peptides fromwhey fermented by Lactobacillus species[J]. Journal of Food Biochemistry,2009,33(4):587-602.
    [21] Fox P F, Wallace J M. Formation of flavor compounds in cheese[C]. In: Neidleman S L, Laskin AI(eds). Advances in Applied Microbiology. San Diego, CA: Academic Press,1997,45:17-85.
    [22] Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to foodapplications[J]. Current Opinion in Biotechnology,2007,18(2):163-169.
    [23] Kamekura M, Hamakawa T, Onishi H. Application of halophilic nuclease H of Micrococcus varianssubsp. halophilus to commercial production of flavoring agent5'-GMP[J]. Applied and EnvironmentalMicrobiology,1982,44(4):994-995.
    [24] Golzer P, Janzowski C, PoolZobel B L, et al.(E)-2-hexenal-induced DNA damage and formation ofcyclic1,N-2(1,3-propano)-2'-deoxyguanosine adducts in mammalian cells[J]. Chemical Research inToxicology,1996,9(7):1207-1213.
    [25] Sarry J E, Günata Z. Plant and microbial glycoside hydrolases: volatile release from glycosidic aromaprecursors[J]. Food Chemistry,2004,87(4):509-521.
    [26] Cabaroglu T, Selli S, Canbas A, et al. Wine flavour enhancement through the use of exogenous fungalglycosidases[J]. Enzyme and Microbial Technology,2003,33(5):581-587.
    [27]孙宝国.食用调香术[M].北京:化学工业出版社,2003.252.
    [28] Etschmann M M W, Sell D, Schrader J. Screening of yeasts for the production of the aroma compound2-phenylethanol in a molasses-based medium[J]. Biotechnology Letters,2003,25(7):531-536.
    [29] Mei J F, Min H, LüZ M. Biocatalytic synthesis of2-phenylethanol by yeast cells. Chinese Joumal ofCatalysis,2007,28(11):993-998.
    [30] Benedetti F, Forzato C, Nitti P, et al. Synthesis of all stereoisomers of cognac lactones via microbialreduction and enzymatic resolution strategies[J]. Tetrahedron Asymmetry,2001,12(3):505-511.
    [31] Brenna E, Dei Negri C, Fuganti C, et al. Baker’s yeast-mediated approach to (-)-cis-and(+)-trans-Aerangis lactones[J]. Tetrahedron Asymmetry,2001,12(13):1871-1879.
    [32] Romero-Guido C, Belo I, Ta T M, et al. Biochemistry of lactone formation in yeast and fungi and itsutilisation for the production of flavor and fragrance compounds[J]. Applied Microbiology andBiotechnology,2011,89(3):535-547.
    [33] Guo Y Q, Feng C L, Song H L. Effect of POX3gene disruption using self-cloning CRF1cassette inYarrowia lipolytica on the γ-decalactone production[J]. World Journal of Microbiology andBiotechnology,2011,27(12):2807-2812.
    [34] Gomes N, Teixeira J A, Belo I. Fed-batch versus batch cultures of yarrowia lipolytica forγ-decalactone production from methyl ricinoleate[J]. Biotechnology Letters,2012,34(4):649-654.
    [35] Hua D L, Ma C Q, Song L F, et al. Enhanced vanillin production from ferulic acid using adsorbentresin[J]. Applied Microbiology and Biotechnology,2007,74(4):783-790.
    [36] Barghini P, Di Gioia D, Fava, F, et al. Vanillin production using metabolically engineered Escherichiacoli under non-growing conditions[J]. Microbial Cell Factories,2007,6:13.
    [37] Lee E G, Yoon S H, Das A, et al. Directing vanillin production from ferulic acid by increasedacetyl-CoA consumption in recombinant Escherichia coli[J]. Biotechnology and Bioengineering,2009,102(1):200-208.
    [38] Sarangi P K, Sahoo H P. Ferulic acid production from wheat bran using Staphylococcus aureus[J].New York Science Journal,2010,3(4):79-81.
    [39] Ashwini T, Mahesh B, Uday A. Production of biovanillin by one-step biotransformation using fungusPycnoporous cinnabarinus[J]. Journal of Agricultural and Food Chemistry,2010,58(7):4401-4405.
    [40] Ashengroph M, Nahvi I, Zarkesh-Esfahani H, et al. Pseudomonas resinovorans SPR1, a newly isolatedstrain with potential of transforming eugenol to vanillin and vanillic acid[J]. New Biotechnology,2011,28(6):656-664.
    [41] Plaggenborg R, Overhage J, Loos A, et al. Potential of Rhodococcus strains for biotechnologicalvanillin production from ferulic acid and eugenol[J]. Applied Microbiology and Biotechnology,2006,72(4):745-755.
    [42] Yamada M, Okada Y, Yoshida T, et al. Biotransformation of isoeugenol to vanillin by Pseudomonasputida IE27cells[J]. Applied Microbiology and Biotechnology,2007,73(5):1025-1030.
    [43] Ashengroph M, Nahvi I, Zarkesh-Esfahani H, et al. Candida galli strain PGO6: a novel isolated yeaststrain capable of transformation of isoeugenol into vanillin and vanillic acid[J]. Current Microbiology,2011,62(3):990-998.
    [44] Cheetham P S J, Gradley M L, Sime J T. Flavour/aroma materials and their preparations[P]. WO,2000050622,2000-08-31.
    [45] Lesage-Meessen L, Lomascolo A, Bonnin E, et al. A biotechnological process involving filamentousfungi to produce natural crystalline vanillin from maize bran[J]. AppliedBiochemistry andBiotechnology,2002,102-103(1-6):141-153.
    [46] Hansen E H, M ller B L, Kock G R, et al. De novo biosynthesis of vanillin in fission yeast(Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae)[J]. Applied andEnvironmental Microbiology,2009,75(9):2765-2774.
    [47] Brochado A R, Matos C, M ller B L, et al. Improved vanillin production in baker's yeast through insilico design[J]. Microbial Cell Factories,2010,9:84.
    [48]赵建芬,韦寿莲,严子军.香兰素的抑菌性及其应用的初步研究[J].微生物学杂志,2009,29(6):73-76.
    [49] Rabenhorst J, Hopp R. Process for the preparation of vanillin and microorganisms suitable therefor[P].US,6133003,2000-10-17.
    [50] Muheim A, Muller B, Munch T, et al. Microbiological process for producing vanillin: United States,US6235507B1[P].2001.
    [51] Muheim A, Lerch K. Towards a high yield bioconversion of ferulic acid to vanillin[J]. AppliedMicrobiology and Biotechnology,1999,51(4):456-461.
    [52] Di Gioia D, Luziatelli F, Negroni A, et al. Metabolic engineering of Pseudomonas fluorescens for theproduction of vanillin from ferulic acid[J]. Journal of Biotechnology,2011,156(4):309-316.
    [53]杨文文,吴秋林,唐鸿志等.“香料皇后”——天然香兰素生物合成的研究进展[J].微生物学通报,2013,40(6):1087-1095.
    [54] Romero-Guido C, Belo I, Ta T M N, et al. Biochemistry of lactone formation in yeast and fungi and itsutilisation for the production of flavour and fragrance compounds[J]. Applied Microbiology andBiotechnology,2011,89(3):535-547.
    [55] Okui S, Uchiyama M, Mizugaki M. Metabolism of hydroxyl fatty acids.I. Metabolic conversion ofricinoleic acid by a certain microorganism to8-D-hydroxy tetradec-cis-5-enoic acid[J]. Journal ofBiochemistry,1963,53:265-270.
    [56] Gomes N, Teixeira J A, Belo I. Fed-batch versus batch cultures of Yarrowia lipolytica forgamma-decalactone production from methyl ricinoleate[J]. Biotechnology Letters,2012,34(4):649-654.
    [57] Braga A, Belo I. Immobilization of Yarrowia lipolytica for aroma production from castor oil[J].Applied Biochemistry and Biotechnology,2013,169(7):2202-2211.
    [58] An J U, Joo Y C, Oh D K. New Biotransformation Process for Production of the Fragrant Compoundgamma-Dodecalactone from10-Hydroxystearate by Permeabilized Waltomyces lipofer Cells[J].Applied and Environmental Microbiology,2013,79(8):2636-2641.
    [59] Schrader J, Etschmann M M W, Sell D, et al. Applied biocatalysis for the synthesis of natural flavourcompound—current industrial processes and future prospects[J].Biotechnology Letters,2004,26(6):463-472.
    [60] WachéY, Aguedo M, Nicaud J M, et al. Catabolism of hydroxyacids and biotechnological productionof lactones by Yarrowia lipolytica[J]. Applied Microbiology and Biotechnology,2003,61(5-6):393-404.
    [61] WachéY. Production of dicarboxylic acids and flavours by the yeast Yarrowia lipolytica[C]. In: BarthG, Steinbüchel A (eds). Yarrowia lipolytica, molecular biology and biotechnology. Berlin: Springer,2010.407-441.
    [62] Alchihab M, Destain J, Aguedo M, et al. Production of aroma lactones by yeasts[J]. BiotechnologieAgronomie Societe et Environnement,2010,14(4):681-691.
    [63] Boog ALG M, Peters ALJ, Roos R. Process for producing-lactones from11-hydroxy fatty acids[P].US5215901.1993Jun1.
    [64] Hosoi K, Okawa T. Production of γ-dodecalactone[P]. JP3479337.2003Oct3.
    [65] Saitoh C, Masuda Y, Yashiro A, et al. Process for producing hydroxylated fatty acid and-lactone[P].US6777211.2004Aug17.
    [66]田鹏,康艳红,宋溪明.绿色溶剂——离子液体的相平衡和微观结构[M].北京:科学出版社,2009.1.
    [67]张星辰.离子液体——从理论基础到研究进展[M].北京:化学工业出版社,2008.4-5.
    [68]王军,杨许召,吴诗德等.离子液体的性能及应用[M].北京:中国纺织出版社,2007.115-171.
    [69] Margolin A L, Klibanov A M. Peptide synthesis catalyzed by lipases in anhydrous organic solvents[J].Journalofthe American Chemical Society,1987,109(12):3802-3809.
    [70] Lau R M, van Rantwijk F, Seddon K R, et al. Lipase-catalyzed reactions in ionic liquid[J]. OrganicLetters,2000,2(26):4189-4191.
    [71] van Rantwijk F, Lau R M, Sheldon R A. Biocatalytic transformations in ionic liquid[J]. Trends inBiotechnology,2003,21(3):131-138.
    [72] Vidya P, Chadha A. The role of different anions in ionic liquids on Pseudomonas cepacia lipasecatalyzed transesterification and hydrolysis[J]. Journal of Molecular Catalysis B: Enzymatic,2009,57(1-4):145-148.
    [73] Ou G, Yang J, He B, et al. Buffer-mediated activation of Candida antarctica lipase B dissolved inhydroxyl-functionalized ionic liquids[J]. Journal of Molecular Catalysis B: Enzymatic,2011,68(1):66-70.
    [74] Nara SJ, Mohile SS, Harjani JR, et al. Influence of ionic liquids onthe rates and regioselectivity oflipase-mediated biotransformations on3,4,6-tri-O-acetyl-Dglucal[J].Journal of Molecular Catalysis B:Enzymatic,2004,28(1):39-43.
    [75] Sheldon R A, Lau R M, Sorgedrager M J, et al. Biocatalysis in ionic liquids[J]. Green Chemistry,2002,4(2):147-151.
    [76] Irimescu R, Kato K. Lipase-catalyzed enantioselective reaction of amines with carboxylic acids underreduced pressure in non-solvent system and in ionic liquids[J]. Tetrahedron Letters,2004,45(3):523-525.
    [77] Park S, Viklund F, Hult K, et al. Vacuum-driven lipase-catalysed direct condensation of L-ascorbicacid and fatty acids in ionic liquids: synthesis of a natural surface active antioxidant[J]. GreenChemistry,2003,5(6):715-719.
    [78] JiangYY,GuoC,XiaHS, et al. Magnetic nanoparticles supported ionic liquids for lipase immobilizationenzyme activity in catalyzing esterification[J]. Journal of Molecular Catalysis B: Enzymatic,2009,58(1-4):103-109.
    [79]郭丽涛,乐长高.离子液体中的酶催化反应[J].化学通报,2012,75(5):400-406.
    [80] KaarJL, JesionowskiAM, BerberichJA, et al.Impact of Ionic Liquid Physical Properties on LipaseActivityand Stability[J]. Journal of the American Chemical Society,2003,125(14):4125-4131.
    [81] Gorke J T, Okrasa K, Louwagie A, et al. Enzymatic synthesis of poly-(hydroxyalkanoates) in ionicliquids[J]. Journal of Biotechnology,2007,132(3):306-313.
    [82] Noritomi H, Nishida S, Kato S. Protease-catalyzed esterification of amino acid in water-miscible ionicliquid[J]. Biotechnology Letters,2007,29(10):1509-1512.
    [83] Noritomi H, Suzuki K, Kikuta M, et al. Catalytic activity ofalpha-chymotrypsin in enzymatic peptide synthesis in ionicliquids[J]. Biochemical EngineeringJournal,2009,47(1-3):27-30.
    [84] Zhao H, Song Z, Olubajo O. High transesterification activities of immobilized proteases in newether-functionalized ionic liquids[J]. Biotechnology Letters,2010,32(8):1109-1116.
    [85]袁久刚,范雪荣,王强等.离子液体预处理对羊毛蛋白酶水解性能的影响[J].化学学报,2010,68(2):187-193.
    [86] Hinckley G, Mozhaev V V, Budde C, et al. Oxidative enzymes possess catalytic activity in systemswith ionic liquids[J]. Biotechnology Letters,2002,24(10):2083-2087.
    [87] Okrasa K, Guibe-Jampel E, Therisod M. Ionic liquids as a new reaction medium foroxidase-peroxidase-catalyzed sulfoxidation[J]. Tetrahedron Asymmetry,2003,14(17):2487-2490.
    [88]聂艳艳,蒋育澄,胡满成等.基于离子液体共溶剂效应的氯过氧化物酶催化氧化邻苯二胺的研究[J].化学学报,2010,68(10):982-988.
    [89] Lourenco N M T, Osterreicher J, Vidinha P, et al. Effect of gelatin-ionic liquid functional polymers onglucose oxidaseand horseradish peroxidase kinetics[J]. Reactive&Functional Polymers,2011,71(4):489-495.
    [90] Kohlmann C, Greiner L, Leitner W, et al. Ionic liquids as performance additives for electroenzymaticsyntheses[J]. Chemistry-A European Journal,2009,15(43):11692-11700.
    [91] Kohlmann C, Robertz N, Leuchs S, et al. Ionic liquid facilitates biocatalytic conversion of hardlywater soluble ketones[J]. Journal of Molecular Catalysis B: Enzymatic,2011,68(2):147-153.
    [92] Moniruzzaman M, Kamiya N, Nakashima K, et al. Formation of reverse micelles in aroom-temperature ionic liquid[J]. A European Journal of Chemical Physics and Physical Chemistry,2008,9(5):689-692.
    [93] Moniruzzaman M, Kamiya N, Nakashima K, et al. Water-in-ionic liquid microemulsions as a newmedium for enzymatic reactions[J]. Green Chemistry,2008,10(5):497-500.
    [94] Moniruzzaman M, Kamiya N, Goto M. Biocatalysis in water-in-ionic liquid microemulsions: a casestudy with horseradish peroxidase[J].Langmuir,2009,25(2):977-982.
    [95] Choi H J, Uhm K N, Kim H K. Production of chiral compound using recombinant Escherichia colicells co-expressing reductase and glucose dehydrogenase in an ionic liquid/water two phase system[J].Journal of Molecular Catalysis B: Enzymatic,2011,70(3-4):114-118.
    [96] Cvjetko M, Vorkapic-Furac J, Znidarsic-Plazl P.Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor[J]. Process Biochemistry,2012,47(9):1344-1350.
    [97] Feher E, Illeova V, Kelemen-Horvath I, et al. Enzymatic production of isoamyl acetate inan ionic liquid-alcohol biphasic system[J]. Journal of Molecular Catalysis,2008,50(1):28-32.
    [98] Pohar A, Plazl I, Znidarsic-Plazl P. Lipase-catalyzed synthesis of isoamyl acetate inan ionic liquid/n-heptane two-phase system at the microreactor scale[J]. Lab on a Chip,2009,9(23):3385-3390.
    [99] Xue L Y, Li Y, Zou F X. The catalytic efficiency of lipase in a novel water-in-[Bmim][PF6]microemulsion stabilized by both AOT and Triton X-100[J]. Colloids and Surfaces B: Biointerfaces,2012,92:360-366.
    [100] Rios A P de los, Hernandez-Fernandez F J, Tomas-Alonso F, et al. Synthesis of flavour esters usingfree Candida antarctica lipase B in ionic liquids[J]. Flavour and Fragrance,2008,23(5):319-322.
    [101]单海霞,陆杨,李在均等.新型温控离子液体介质中脂肪酶催化合成乙酸苯乙酯[J].催化学报,2010,31(3):289-294.
    [102] De Diego T, Lozano P, Abad M A, et al. On the nature of ionic liquid and their effects on lipase thatcatalyze ester synthesis[J]. Journal of Biotechnology,2009,140(3-4):234-241.
    [103] Lozano P, Bernal J M, Navarro A. A clean enzymatic process for producing flavour esters by directesterification in switchable ionic liquid/solid phases[J]. Green Chemistry,2012,14(11):3026-3033.
    [104] Hara P, Mikkola J P, Murzin D Y, et al. Supported ionic liquids in Burkholderia cepacialipase-catalyzed asymmetric acylation[J]. Journal of Molecular Catalysis B: Enzymatic,2010,67(1-2):129-134.
    [105]单海霞,陆杨,李在均等.新型1,3-二丁基咪唑离子液体中脂肪酶催化拆分(R,S)-1-苯乙醇[J].化学学报,2010,68(10):1010-1016.
    [106] Park S, Kazlauskas R J. Improved preparation and use of room-temperature ionic liquids inlipase-catalyzed enantio-and regioselective acylations[J]. Journal of Organic Chemistry,2001,66(25):8395-8400.
    [107] Kragl U, Eekstein M K. Enzyme catalysis ionic liquids[J]. Current Opinion in Biotechnology,2002,13(6):565-571.
    [108] Huddleston J G, Visser A E, Reichert W M, et al. Characterization and comparison of hydrophilic andhydrophobic room temperature ionic liquids incorporating the imidazolium cation[J]. Green Chemistry,2001,3(4):156-164.
    [109] Solutskin E, Ocko B M, Tamam L, et al. Surface layering in ionic liquids: an X-ray reflectivitystudy[J]. Journal of the American Chemical Society,2005,127(21):7796-7804.
    [110] Angelini G, Chiappe C, De Maria P, et al. Determination of the polarities of some ionic liquids using2-nitrocyclohexanone as the probe[J]. Journal of Organic Chemistry,2005,70(20):8193-8196.
    [111] Miki K, Westh P, Nishikawa K, et al. Effect of an "ionic liquid" cation,1-butyl-3-methylimidazolium,on the molecular organization of H2O[J]. Journal of Physical Chemistry B,2005,109(18):9014-9019.
    [112] Shah S, Gupta M N. Kinetic resolution of (+/-)-1-phenylethanol in [Bmim][PF6] using high activitypreparations of lipases[J]. Bioorganic and Medicinal Chemistry Letters,2007,17(4):921-924.
    [113] Lu X B, Hu J Q, Yao X, et al. Composite system based on chitosan and room temperature ionic liquid:direct electrochemistry and electrocatalysis of hemoglobin[J]. Biomacromolecules,2006,7(3):975-980.
    [114] De Diego T, Lozano P, Gmouh S, et al. Understanding structure-stability relationships of Candida antartica lipase B in ionic liquids[J]. Biomacromolecules,2005,6(3):1457-1464.
    [115] Shimojo K, Nakashima K, Kamiya N, et al. Crown ether-mediated extraction and functionalconversion of cytochrome C in ionic liquids[J]. Biomacromolecules,2006,7(1):2-5.
    [116] Hwang S, Lee K T, Park J W, et al. Stability analysis of Bacillus stearothermophilus L1lipaseimmobilized on surface-modifed silica gels[J]. Biochemical Engineering Journal,2004(17):85-90.
    [117]孙志浩.生物催化工艺学[M].北京:化学工业出版社,2005.299-325.
    [118] Andreescu S, Marty J L. Twenty years research in cholinesterase biosensors: from basic research topractical applications[J]. Biomolecular Engineering,2006,23(1):1-15.
    [119] Arya S K, Datta M, Malhotra B D. Recent advances in cholesterol biosensor[J]. Biosensors andBioelectronics,2008,23(7):1083-1100.
    [120] Choi M F M. Progress in enzyme-based biosensors using optical transducers[J]. Microchim Acta,2004,148(3-4):107-132.
    [121] Sassolas A, Blum L J, Leca-Bouvier B D. Immobilization strategies to develop enzymaticbiosensors[J]. Biotechnology Advances,2012,30(3):489-511.
    [122] Holbrey J D, Reichert W M, Swatloski R P, et al. Efficient, halide free synthesis of new, low costionic liquids:1,3-dialkylimidazolium salts containingmethyl-and ethyl-sulfate anions[J].GreenChemistry,2002,4(5):407-413.
    [123] Ohno H, YoshizawaM. Ion conductive characteristics of ionic liquids prepared by neutralization ofalkylimidazoles[J]. Solid State Ionics,2002,154(SI):303-309.
    [124] Dzyuba SV, Bartsch RA. New room-temperature ionic liquids with C2-symmetrical imidazo-liumcations[J]. Chemical Communications,2001,(16):1466-1467.
    [125] Handy S T. Greener solvents: room temperature ionic liquids from biorenewable sources[J].Chemistry—A European Journal,2003,9(13):2938-2944.
    [126] Liu CF, Sun RC, Zhang AP, et al. Homogeneous modification of sugarcane bagasse cellulose withsuccinic anhydride using a ionic liquid as reaction medium[J]. Carbohydrate Research,2007,342(7):919-926.
    [127] Wilkes J S, Zaworotko M J. Air and water stable1-ethyl-3-methylimidazolium based ionic liquids[J].Journal of the Chemical Society-Chemical Communications,1992,(13):965-967.
    [128] Zhang Z H, Wu Y C, Ge Q, et al. Preparation of1-methyl-3-propylimidazolium acetate and itsapplication in dye sensitized solar cells[J]. Solar Energy,2010,84(3):390-393.
    [129]程春祖,朱庆松.离子液体1-乙基-3-甲基咪唑醋酸盐的制备及用于纤维素溶解纺丝的研究进展[J].高分子通报,2011,8(2):24-29.
    [130]徐纪刚,陈功林,李晓俊等.醋酸盐离子液体的合成方法[P].中国专利,CN101337938.2009-01-07.
    [131] Liang W D, Zhang S, Li H F, et al. Oxidative desulfurization of simulated gasoline catalyzed byacetic acid-based ionicliquids at room temperature[J]. Fuel Processing Technology,2013,109:27-31.
    [132] Quarmby I C, MantzR A, Goldenberg L M, et al. Stoichiometry of latent acidity in bufferedchloroaluminate ionic liquids[J].Analytical Chemistry,1994,66(21):3558-3561.
    [133] Quarmby I C, Osteryoung R A.Latent acidity in buffered chloroaluminate ionic liquids[J]. Journal ofthe American Chemical Society,1994,116(6):2649-2650.
    [134]李淑彩.离子液体数据库及结构-性质关系研究[D]:[硕士学位论文].开封:河南大学化学化工学院,2007.
    [135]单海霞.新型烷基咪唑离子液体的合成及应用[D]:[博士学位论文].无锡:江南大学化学与材料工程学院,2010.
    [136] Ngo H L, LeCompte K, Hargens L,et al. Thermal properties of imidazolium ionic liquids[J].Thermochim Acta,2000,357-358:97-102.
    [137] Bonh te P, Dias A P, Papageorgiou N, et al. Hydrophobic, highly conductive ambient-temperaturemoltensalts[J]. Inorganic Chemisry,1996,35(5):1168-1178.
    [138]王建英,赵风云,刘玉敏等.1-烷基-3-甲基咪唑系列室温离子液体表面张力的研究[J].化学学报,2007,65(15):1443-1448.
    [139] Law G, Watson P R. Surface tension measurements of N-alkylimidazolium ionic liquids[J]. Langmuir,2001,17(20):6138-6141.
    [140]姜兆华,孙德智,邵光洁.应用表面化学与技术[M].哈尔滨:哈尔滨工业大学出版社,2000.4-5.
    [141] Davey P N, ForsythS A, GunaratneH Q N, et al.Synthesis of3-(4-tert-butylphenyl)-2-propen-1-one, aprecursor to Lilial (R), via an aldol condensation in an ionic liquid[J]. GreenChemistry,2005,7(4):224-229.
    [142]Rios A P de los, Hernandez-Fernandez F J, Tomas-Alonso F, et al.Synthesis of flavour esters usingfree Candida antarctica lipase B in ionic liquids[J]. Flavour and Fragrance Journal,2008,23(5):319-322.
    [143]Francisco M, Lago S, Soto A, et al. Essential oildeterpenation by solvent extraction using1-ethyl-3-methylimidazolium2-(2-methoxyethoxy) ethylsulfate ionic liquid[J]. Fluid Phase Equilibria,2010,296(2):149-153.
    [144] LagoS, RodriguezH, Soto A,et al.Deterpenation of Citrus Essential Oil by Liquid-Liquid Extractionwith1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide Ionic Liquids[J]. Journal ofChemical&Engineering Data,2011,56(4):1273-1281.
    [145] Sun N, Rodriguez H, RahmanM, et al.Where are ionic liquid strategies most suited in the pursuit ofchemicals and energy from lignocellulosic biomass?[J].Chemical Communications,2011,47(5):1405-1421.
    [146] Pinkert A, MarshK N, PangS,et al.Ionic liquids and their interaction with cellulose[J]. ChemicalReviews,2009,109(12):6712-6728.
    [147]黄骏雄.样品制备与处理的进展—无溶剂萃取技术[J].化学进展,1997,9(2):179-183.
    [148] Yang X G, Peppard T. Solid-Phase Microextraction for Flavor Analysis[J]. Journal of Agricultural andFood Chemistry,1994,42(9):1925-1930.
    [149]刘永明,葛娜,王飞等.顶空气相色谱-质谱法同时测定蜂蜜中57种挥发性有机溶剂残留[J].色谱,2012,30(8):782-791.
    [150] Kjonaas R, Soller JL, McCoy LA. Identification of Volatile Flavor Componentsby Headspace Analysis: A Quick and Easy Experiment for Introducing GC/MS[J]. Journal of chemicaleducation,1997,74(9):1104.
    [151] ShimodaM, Shibamoto T. Isolation and identification of headspace volatiles from brewed coffee withan on-column GC/MS method[J]. Journal of agricultural and foodChemistry,1990,38(3):802-804.
    [152]孙宝国,何坚.香料化学与工艺学(第二版)[M].北京:化学工业出版社,2004.249.
    [153]李明,王培义,田怀香.香料香精应用基础[M].北京:中国纺织出版社,2010.1-2,118,84,76.
    [154] Bicchi C, Rubiolo P, Cordero C. Separation science in perfume analysis[J].Analytical andBioanalytical Chemistry,2006,384(1):53-56.
    [155] Liu H, Dasgupta P K. Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop[J].Analytical Chemistry,1996,68(11):1817-1821.
    [156] Jeannot M A, Cantwell F F. Solvent Microextraction into a Single Drop[J]. AnalyticalChemistry,1996,68(13):2236-2240.
    [157] PrzyjaznyA, Kokosa J M. Analytical characteristics of the determination of benzene, toluene,ethylbenzene and xylenes in water by headspace solvent microextraction[J]. Journal ofChromatography A,2002,977(2):143-153.
    [158] Theis A L, Waldack A J, Hansen S M,et al. Headspace solvent microextraction[J]. AnalyticalChemistry,2001,73(23):5651-5654.
    [159] Tankeviciute A, Kazlauskas R, Vickackaite V. Headspace extraction of alcohols into a single drop[J].Analyst,2001,126(10):1674-1677.
    [160] Liu J F, Jiang G B, Chi Y G,et al. Use of ionic liquids for liquid-phase microextraction of polycyclicaromatic hydrocarbons[J].Analytical Chemistry,2003,75(21):5870-5876.
    [161] Liu J F, Chi Y G, Jiang G B,et al. Ionic liquid-based liquid-phase microextraction, a new sampleenrichment procedure for liquid chromatography[J].Journal of Chromatography A,2004,1026(1-2):143-147.
    [162] Liu J F, J nsson J, Jiang G B. Application of ionic liquids in analytical chemistry[J]. Trac-Trendsin Analytical Chemistry,2005,24(1):20-27.
    [163] Aguilera-Herrador E, Lucena R, Cardenas S,et al. Ionic liquid-based single-drop microextraction/gaschromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xyleneisomers in waters[J].Journal of Chromatography A,2008,1201(1):106-111.
    [164] ChisvertA, Roman I P, Vidal L,et al. Simple and commercial readily-available approach for the directuse of ionic liquid-based single-drop microextraction prior to gas chromatography Determination ofchlorobenzenes in real water samples as model analytical application[J].Journal of Chromatography A,2009,1216(9):1290-1295.
    [165] Zhao H, Xia SQ, Ma PS. J. Use of ionic liquids as 'green' solvents for extractions[J]. Journal ofChemical Technology and Biotechnology,2005,80(10):1089-1096.
    [166] Anderson J L, Armstrong D W, Wei GT. Ionic liquids in analytical chemistry[J]. AnalyticalChemistry,2006,78(9):2892-2902.
    [167]樊静,范云场,王键吉等.室温离子液体对氨基苯磺酸的萃取性能[J].化学学报,2006,64(14):1495-1499.
    [168]赵发琼,李晶,曾百肇.离子液体单滴顶空微萃取系列乙酯的性能及其气相色谱分析[J].分析化学,2009,37(6):939-942.
    [169] Yao C, Twu P, Anderson J L. Headspace Single Drop Microextraction Using Micellar Ionic LiquidExtraction Solvents[J]. Chromatographia,2010,72(5-6):393-402.
    [170] Reichardt C. Pyridinium N-phenoxide betaine dyes and their application to the determination ofsolvent polarities part29-Polarity of ionic liquids determined empirically by means of solvatochromicpyridinium N-phenolate betaine dyes[J]. Green Chemistry,2005,7(5):339-351.
    [171] Wu W H, Akoh C C, Phillips R S.Stereoselective acylation of DL-Menthol in organic solvents by animmobilized lipase from Pseudomonas cepacia with vinylpropionate[J].Journalof theAmerican Oil Chemists' Society,1997,74(4):435-439.
    [172] Athawale V, Manjrekar N, Athawale M.Enzymatic synthesis of chiral menthyl methacrylate monomerby pseudomonas cepacia lipase catalysed resolution of (+/-)-menthol[J]. Journal of Molecular CatalysisB: Enzymatic,2001,16(3-4):169-173.
    [173] Wang D L, Nag A, Lee G C, et al. Factors affecting theresolution of dl-menthol by immobilizedlipase-catalyzedesterification in organic solvent[J].Journal of Agricultural and Food Chemistry,2002,50(2):262-265.
    [174] Yuan Y, Bai S, Sun Y. Comparison of lipase-catalyzed enantioselective esterification of (±)-mentholin ionic liquids and organic solvents[J]. Food Chemistry,2006,97(2):324-330.
    [175] Tsukada Y, Iwamoto K, Furutani H, et al. Preparation of novel hydrophobic fluorine-substituted-alkylsulfate ionic liquids and application as an efficient reaction medium for lipase-catalyzed reaction[J].Tetrahedron Letters,2006,47(11):1801-1804.
    [176]吴红平,方云,万会达等.少量离子液体对有机相R.miehei脂肪酶催化合成辛酸戊酯的影响[J].化学学报,2008,66(7):823-826.
    [177]Shan HX, Li ZJ, Li M, et al.Improved activity and stability of pseudomonas capaci lipase in a novelbiocompatible ionic liquid,1-isobutyl-3-methylimidazolium hexafluorophosphate[J]. Journal ofChemical Technology&Biotechnology,2008,83(6):886-891.
    [178]许建和,朱洁,川本卓男等.外消旋薄荷醇对映选择性酶促酯化中酸酐与羧酸的比较研究[J].生物工程学报,1997,13(4):387-393.
    [179] Morrow T I, Maginn E J. Molecular dynamics study of the ionic liquid1-n-butyl-3-methyl-imidazolium hexafluorophosphate[J]. Journal of Physical Chemistry B,2002,106(49):12807-12813.
    [180] Dzyuba S V, Bartsch R A. Expanding the polarity range ofionicliquids[J].Tetrahedron Letters,2002,43(26):4657-4659.
    [181] Law G, Watson P R. Surface orientation in ionic liquids[J]. Chemical Physics Letters,2001,345(1-2):1-4.
    [182] Miskolczy Z, Sebok-Nagy K, Biczok L,et al. Aggregation and micelle formation of ionic liquids inaqueous solution[J]. Chemical Physics Letters,2004,400(4-6):296-300.
    [183] Baker S N, McCleskeyT M, Pandey S,et al. Fluorescence studies of protein thermostability in ionicliquids[J]. ChemicalCommunications,2004,4(8):940-941.
    [184] De Diego T, Lozano P, Gmouh S, et al. Fluorescence and CD spectroscopic analysis of thealpha-chymotrypsin stabilization by the ionic liquid,1-ethyl-3-methylimidazolium bis[(tri-fluoromethyl)sulfonyl]amide[J].Biotechnology and Bioengineering,2004,88(7):916-924.
    [185]袁毅,白姝,姜晓妍.离子液体和有机溶剂中薄荷醇催化选择性酯化[J].化学工业与工程,2006,23(6):480-485.
    [186]袁毅,姜晓妍.在[BMIM][PF6]离子液中外消旋DL-薄荷醇催化手性选择性酯化[J].化学工业与工程,2008,25(6):493-498.
    [187]念保义,徐刚,杨立荣. L–薄荷醇的合成及手性拆分研究进展[J].化工进展,2006,25(4):401-405.
    [188] Straathof A J J, JongejanJ A. The enantiomeric ratio: origin,determination and prediction[J]. Enzymeand Microbial Technology,1997,21(8):559-571.
    [189] Xia Y M, Fang Y, Zhang K C, et al. Enzymatic synthesis of partial glycerol caprate in solvent-freemedia[J]. Journal of Molecular Catalysis B: Enzymatic,2003,23(1):3-8.
    [190]沈琼,黄滨,邵嘉亮等.运用圆二色谱研究酶与化合物相互作用的机理[J].中山大学学报,2006,45(4):62-64.
    [191] Chen Y H, Yang J T, Martinez H M.Determination of the secondary structures of proteins bycirculardichroism and optical rotatory dispersion[J].Biochemistry,1972,11(22):4120-4131.
    [192]Adler A J, LanganTA, Fasman G D.Complexes of deoxyribonucleic acid with lysine-rich(f1) histonephosphorylated at two separate sites:circular dichroism studies[J]. Archives of biochemistryand biophysics,1972,153(2):769-777.
    [193] Taylor RF. Protein immobilization--fundamentals and applications[M]. New York: Marcel DekkerInc,1991.1-13.
    [194] Pyo SH, Hayes DG. Designs of bioreactor systems for solvent-free lipase-catalyzed synthesis offructose-oleic Acid Esters[J]. Journal of the American Oil Chemists' Society,2009,86(6):521-529.
    [195] Xiong W, Li XF, Xiang JY, et al. High-density fermentation of microalga Chlorella protothecoides inbioreactor for microbio-diesel production[J]. Applied Microbiology and Biotechnology,2008,78(1):29-36.
    [196] Huang XJ, Yu AG, Xu ZK. Covalent immobilization of lipase from Candida rugosa ontopoly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potentialbioreactor application[J]. Bioresource Technology,2008,99(13):5459-5465.
    [197] Chen HC, Kuo CH, Twu YK, et al. A continuous ultrasound-assisted packed-bed bioreactor for thelipase-catalyzed synthesis of caffeic acid phenethyl ester[J]. Journal of Chemical Technology andBiotechnology,2011,86(10):1289-1294.
    [198] Lu J, Deng L, Zhao R, et al. Pretreatment of immobilized Candida sp.99–125lipase to improve itsmethanol tolerance for biodiesel production[J]. Journal of Molecular Catalysis B: Enzymatic,2010,62(1):15-18.
    [199] Dizge N, Keskinler B, Tanriseven A. Biodiesel production from canola oil by using lipaseimmobilized onto hydrophobic microporous styrene-divinylbenzene copolymer[J]. BiochemicalEngineering Journal,2009,44(2-3):220-225.
    [200] Jegannathan KR, Abang S, Poncelet D, et al. Production of biodiesel using immobilized lipase—acritical review[J]. Critical Reviews in Biotechnology,2008,28(4):253-264.
    [201] Chen H, Hsieh YL. Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid)electrolyte grafts[J]. Biotechnology and Bioengineering,2005,90(4):405-413.
    [202] Minovska V, Winkelhausen E, Kakuzmanova S. Lipase immobilized by different techniques onvarious support materials applied in oil hydrolysis[J]. Journal of the Serbian Chemical Society,2005,70(4):609-624.
    [203] Galarneau A, Mureseanu M, Atger S, et al. Immobilization of lipase on silicas. Relevance of texturaland interfacial properties on activity and selectivity[J].NewJournal of Chemistry,2006,30(4):562-571.
    [204] Torres P, Reyes-Duarte D, Lopez-Cortes N, et al. Acetylation of vitamin E by Candida antarcticalipase B immobilized on different carriers[J].Process Biochemistry,2008,43(2):145-153.
    [205] Kawakami K, Ueno M, Takei T, et al. Application of a Burkholderia cepacia lipase-immobilizedsilica monolith micro-bioreactor to continuous-flow kinetic resolution for transesterification of (R,S)-1-phenylethanol[J].Process Biochemistry,2012,47(1):147-150.
    [206] Xun EN, Lv XL, Kang W, et al. Immobilization of pseudomonas fluorescens lipase onto magneticnanoparticles for resolution of2-octanol[J]. Applied Biochemistry and Biotechnology,2012,168(3):697-707.
    [207] Wiemann LO, Nieguth R, Eckstein M, et al. Composite particles of novozyme435and silicone:advancing technical applicability of macroporous enzyme carriers[J]. ChemCatChem,2009,1(4):455-462.
    [208] Chiou SH, Wu WT. Immobilization of Candida rugosa lipase on chitosan with activation of thehydroxyl groups[J]. Biomaterials,2004,25(2):197-204.
    [209]Biegunski AT, Michota A, Bukowska J, et al. Immobilization of tyrosinase onpoly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods[J].Bioelectrochemistry,2006,69(1):41-48.
    [210]Ge J, Yan M, Lu D, et al. Hyperbranched polymer conjugated lipase with enhanced activity andstability[J]. Biochemical Engineering Journal,2007,36(2):93-99.
    [211] Dizge N, Aydiner C, Imer D Y, et al. Biodiesel production from sunflower, soybean, and wastecooking oils by transesterification using lipase immobilized onto a novel microporous polymer[J].Bioresource Technology,2009,100(6):1983-1991.
    [212] Zhao XG, Zhan XW. Electron transporting semiconducting polymers in organic electronics[J].Chemical Society Reviews,2011,40(7):3728-3743.
    [213] Michel M, Ettingshausen F, Scheiba F, et al. Using layer-by-layer assembly of polyaniline fibers inthe fast preparation of high performance fuel cell nanostructured membrane electrodes[J].Physical Chemistry Chemical Physics,2008,10(25):3796-3801.
    [214] Dubey N, Leclerc M. Conducting Polymers: Efficient Thermoelectric Materials[J]. Journal ofPolymer Science Part B: Polymer Physics,2011,49(7):467-475.
    [215] Lin P, Yan F. Organic Thin-Film Transistors for Chemical and Biological Sensing[J]. AdvancedMaterials,2012,24(1):34-51.
    [216] Tung TT, Feller JF, Kim T, et al. Electromagnetic properties of Fe3O4-functionalized graphene and itscomposites with a conducting polymer[J]. Journal of Polymer Science Part A: PolymerChemistry,2012,50(5):927-935.
    [217] Chen LB, Chen WF, Ma CH, et al. Electropolymerized multiwalled carbon nanotubes/polypyrrolefiber for solid-phase microextraction and its applications in the determination of pyrethroids[J].Talanta,2011,84(1):104-108.
    [218] Bagheri H, Piri-Moghadam H,Naderi M. Towards greater mechanical, thermal and chemical stabilityin solid-phase microextraction[J]. Trac-Trends in Analytical Chemistry,2012,34(1):126-139.
    [219] Soto-Oviedo MA, Araujo OA, Faez R, et al. Antistatic coating and electromagnetic shieldingproperties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber[J].Synthetic Metals,2006,156(18-20):1249-1255.
    [220] Kwon JY, Kim EY, Kim HD. Preparation and properties of waterborne-polyurethane coatingmaterials containing conductive polyaniline[J]. Macromolecular Research,2004,12(3):303-310.
    [221] Kaleta Z, Makowski BT, Soos T,et al. Thionation using fluorous Lawesson's reagent[J]. OrganicLetters,2006,8(8):1625-1628.
    [222] Kim YH, Hwang J, Son JI, et al. Synthesis, electrochemical, and spectroelectrochemical properties ofconductive poly-[2,5-di-(2-thienyl)-1H-pyrrole-1-(p-benzoic acid)][J]. Synthetic Metals,2010,160(5-6):413-418.
    [223] Schulze B, Klibanov AM. Inactivation and stabilization of stabilisins in neat organic solvents[J].Biotechnology and Bioengineering,1991,38(9):1001-1006.
    [224] Gorman L A S, Dordick JS. Organic solvents strip water off enzymes[J]. Bio-technology and Bioengineering,1992,39(4):392-397.
    [225]李明,李在均,李观燕等.对称烷基咪唑离子液体单滴微萃取–气质联用测定天然香料中酯类成分[J].化学学报,2012,70(15):1625-1630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700