用户名: 密码: 验证码:
牛AMPK家族7个基因SNP检测及其与生长和肉质性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以秦川牛、南阳牛、鲁西牛和安格斯牛4个肉用品种共计630头个体为研究对象,利用PCR-SSCP、PCR-RFLP、DNA随机个体直接测序、创造酶切位点酶切(ACRS-PCR-RPLP)、飞行质谱MALDI-TOF技术研究分析了牛AMPK家族中7个基因的遗传变异,分析了其遗传结构和遗传多样性。对7个基因的多态位点与200头秦川牛的生长及肉质性状进行了关联分析,同时应用生物信息学方法,分析了这7个基因的DNA和蛋白质序列特征,从分子水平上深入了解了它们的作用规律和机理,以期筛选对肉牛重要经济性状具有显著效应的功能基因或分子标记,为肉牛的高效选育和分子标记数据库的建立、种质资源保护和利用提供遗传学依据。本研究主要获得了以下结果:
     1、系统分析了牛PRKAA1、PRKAA2、PRKAB1、PRKAB2、PRKAG1、PRKAG2、 PRKAG3共7个基因序列和蛋白序列,借助生物信息学理论和方法,分析归纳了7个基因的组织表达差异,预测了各基因蛋白二级和三级结构、信号肽、跨膜螺旋、结构域特征和亚细胞定位,并将牛各基因蛋白与其它物种进行同源比较,构建了系统发生树,阐释了这一基因家族的高度保守性和在各物种起源进化过程中的重要作用。
     2、采用PCR-SSCP与基因测序相结合的方法,研究了秦川牛、南阳牛、鲁西牛、安格斯牛四个品种PRKAA1基因5、7、8、9、10外显子的多态性,发现了PRKAA1基因第7外显子上的213T>A多态位点与秦川牛肌内脂肪含量极显著关联(P<0.01)。
     3、将随机个体测序与飞行质谱技术相结合,发现存在于牛PRKAA2基因第4外显子27G>C、60T>C、第8内含子1046G>C、1188T>A四个突变。27G>C位点与秦川牛背膘厚和眼肌面积显著关联(P<0.05);60T>C位点与秦川牛体斜长、体高、尻长、腰角宽、坐骨端宽、眼肌面积显著关联(P<0.05);1046G>C位点与秦川牛胸深、背膘厚显著关联(P<0.05);1188T>A位点与秦川牛坐骨端宽、背膘厚及眼肌面积显著关联(P<0.05)。单倍型和连锁不平衡分析,以上4个SNPs存在5个频率大于0.03的单倍型。27G>C与60T>C位点合并效应分析,CCTT、CGCT、CGTT、GGCC、GGCT、GGTT6种组合基因型中GGCC基因型优于其他基因型组合效应;1046G>C、1188T>A位点合并分析,CCTT、CGAT、CGTT、GGAA、GGAT、GGTT6种组合基因型中GGAT基因型优于其他基因型组合效应。
     4、采用PCR-SSCP方法结合直接测序技术,在秦川牛PRKAB1基因上共检测到18个多态位点。其中第一外显子129T/C多态位点与秦川牛肌内脂肪含量、眼肌面积显著关联(P<0.05)。第二外显子63T/C多态位点与秦川牛体斜长、腰高、眼肌面积显著关联(P<0.05)。第3内含子、第4外显子、第4内含子上15个SNPs中12个位点与秦川牛体高、腰高、尻长、腰角宽、胸深、胸围六个体尺性状显著关联(P<0.05), In444G/A位点多态性与眼肌面积显著关联(P<0.05)。第5内含子57C/T位点与胸围、眼肌面积极显著关联(P<0.01)。单倍型和连锁不平衡分析表明,存在于intron3、exon4、intron4上的15个SNPs中仅有5个频率大于0.03的单倍型。In423A/G与In424C/T位点合并基因型组合效应分析,AACT基因型优于其他组合基因型。
     5、SSCP结合测序方法在牛PRKAB2基因上共检测到10个突变。其中第三内含子上的In336C/A和In385T/G位点与秦川牛体尺和肉质性状没有关联,第五内含子上的8个SNPs中,In5130C/G、In5410T/C三个位点与秦川牛体尺性状没有关联(P>0.05),其他5个位点In560A/G、In5118A/G、In5396A/G、In5421A/C)与秦川牛体尺性状都有不同程度的关联性(P<0.05),In548T/C、In561A/G、 Ins118A/G、In5130C/G、In5421A/C位点与肌内脂肪含量显著关联(P<0.05)。第五内含子8个SNPs位点可能形成5个频率大于0.03的单倍型,In560A/G与In561A/G位点组合效应值分析,AAAA、AAAG组合基因型为最优组合型。
     6、测序结合创造酶切法和飞行质谱技术在秦川牛PRKAG1基因上共检测到In21174T>G和In51248T>C两个多态性位点,均为中度多态,秦川牛群体在两位点处于Hardy-Weinberg平衡(P>0.05)。 In211746T>G位点与秦川牛体尺和肉质没有相关(P>0.05),In512482T>C位点与体高、腰角宽、胸围、坐骨端宽、眼肌面积、肌内脂肪含量显著关联(P<0.05)。
     7、采用同样方法在秦川牛PRKAG2基因上发现了8个SNPs,其中En3223A>G突变为错义突变,引起编码氨基酸由丝氨酸到甘氨酸的改变。生物信息学分析,该位点氨基酸突变引起了PRKAG2三级结构较大变化。关联分析显示该位点与秦川牛体高、腰高、腰角宽、尻长、胸深、胸围、眼肌面积等性状显著关联(P<0.05),In516C>T位点只与秦川牛体高性状显著关联(P<0.05), En,3112T>C位点与秦川牛体高、尻长及腰角宽性状显著关联(P<0.05)。其他5个位点与秦川牛体尺和肉质性状并不相关(P>0.05)。
     8、采用直接测序、飞行质谱、ACRS-RFLP-PCR多种方法,在牛PRKAG3基因上共检出45个SNPs位点,其中编码区10个,3'UTR区18个,部分内含子上17个。关联分析表明,4个SNPs位点与秦川牛体斜长显著相关,8个位点与体高显著相关,21个位点与腰高和尻长相关,17个位点与腰角宽和胸深相关,6个位点与胸围相关,5个位点与坐骨端宽相关,2个位点与肌内脂肪含量相关,7个位点与眼肌面积相关,3个位点与背膘厚相关。
Polymorphism of seven genes from AMPK family on630individuals from four cattle breeds (Qinchuan, Nanyang, Luxi and Angus) were detected by PCR-SSCP, PCR-RFLP, ACRS-PCR-RFLP, MALDI-TOF to analyze genes genetic structures and varieties. We also analyzed the association of the different genotypes with200Qinchuan cattle body measurements and meat quality traits, and further analyzed the gene and protein structure characters of the seven genes via bioinformation in order to profoundly understand their regularization and mechanism in molecular level.The objectives of the present study were to select candidate functional genes or gene markers which were important to beef cattle economic traits, to set up efficient breeding and molecular markers data base and to provide useful genetic information for cattle germplasm protection and usage. The main results of our study were as follows.
     1. Systematical analysis on nucleotide sequences and their protein sequences of7gengs including PRKAA1, PRKAA2, PRKAB1, RKAB2, PRKAG1, PRKAG2and PRKAG3. By theories and methods of bioinformation, the tissue expression patterns of7genes were analyzed and induced. We predicted the secondary and tertiary structure, hydrophobic nature, signal peptide, transmembrane helices region, functional domain and subcellular localization of the seven genes coding protein. Moreover, we compared the amino acid sequences of target genes with other corresponding proteins from other species, and further constructed the phylogenetic trees of them. It is demonstrated that AMPK family gene are homologous and conservative highly and plays a significant role in the origin of species evolution process.
     2. PCR-SSCP and DNA sequencing method were used to study genetic variations of exon5, exon7, exon8, exon9, and exon10of PRKAA1gene on four bovine breeds, including Qinchuan, Nanyang, Luxi as well as Angus.213T>A mutation were detected in exon7affected the intramuscular fat content (IFC) of beef in Qinchuan cattle (P<0.01) significantly. No SNPs were found in PRKAA1gene exon5, exon8, exon9and exon10.
     3. Two SNPs (27G>C,60T>C) located in exon4and two SNPs (1046G>C,1188T>A) in intro8were detected in PRKAA2gene by random DNA sequencing method and MALDI-TOF technology. To analyze genetic structures and varieties on the detected4SNPs in four cattle populations and association with body measurement or meat quality traits in Qinchuan cattle, the27G>C SNP were associated with Back Fat thickness (BF) and Loin Muscle Area (LMA)(P<0.05) significantly. The60T>C SNP were associated with Body Length (BL), Withers Height (WH), Rump Length (RL), Hip Width (HW), Pin Bone Width (PBW) and LMA (P<0.05) significantly. The1046G>C SNP were associated with BF and Chest Depth (CD)(P<0.05) significantly. The1188T>A SNP affected PBW, BF and LMA (P<0.05) significantly. Haplotype analysis results showed there were5genotypes from the4SNPs had the haplotype frequencies over0.03. Combined27G>C with60T>C, we obtained six genotypes, including CCTT, CGCT, CGTT, GGCC, GGCT, GGTT, and we found the cattle individuals of GGCC genotype had superior body measurements and meat quality traits, and maybe can be selected as the candidate genotype. Combined1046G>C with1188T>A, we obtained six genotypes, including CCTT、CGA、CGTT、GGAA、GGA、GGTT, and we found the cattle individuals of GGAT genotype had superior body measurements and meat quality traits.
     4. Eighteen SNPs were detected in PRKABI gene of Qinchuan cattle population by PCR-SSCP and DNA sequencing respectively. All the mutations found in the three exons caused amino acids synonymous mutations. SNP129T>C effected IMC and LMA of Qinchuan cattle (P<0.05) significantly, SNPs63T>C were associated with BL, HW and LMA of Qinchuan cattle (P<0.05) significantly.12SNPs of the detected15SNPs in intron3, exon4and intron4were associated with WH, HW, RL, CD and Heart Girth (HG) of Qinchuan cattle (P<0.05) significantly. Only In444G/A SNP affected LMA (P<0.05) significantly. SNP57C>T in intron5had significant differences on HG and LMA (P<0.01).The analysis results of detected15SNPs in intron3, exon4and intron4haplotype showed only5haplotypes frequencies were higher than0.03. Based on the association results between In423A/G and In424C/T with cattle related production traits, we selected AACT as candidate genotype.
     5. Through PCR-SSCP and DNA sequencing technology, ten SNPs have been found in intron3and intron5of PRKAB2gene. The association analysis suggested that In336C/A and In385T/G in intron3no relationship with body measurement traits and meat quanlity traits, In561A/G、In5130C/G, In5410T/C SNPs of the8SNPs in intron5had no relationship with body measurement traits in Qinchuan cattle population (P>0.05); whereas, the other5SNPs (In548T/C、In560A/G、In5118A/G、In5396A/G、In5421A/C) were associated with body measurement traits (P<0.05); In548T/C, In560A/G, In561A/G, In5118A/G, In5130C/G, and In5421A/C SNPs were associated with IMF (P<0.05) significantly. The possibility of forming haplotypes of the8SNPs in intron5was carried out by the online software SHEsis,5 haplotypes frequencies were higher than0.03.After analyzing the combined effects of Ins60A/G and Ins61A/G SNPs, AAAA and AAAG were found to be the best genotype.
     6. Throuth DNA sequencing and MALDI-TOF,11746T>G SNP was found in intron2of PRKAG1gene. Via DNA sequencing and ACRS-PCR-RFLP technology,12482T>C SNP was detected in intron5of PRKAG1gene. The two SNPs were both in medium polymorphism level. In Qinchuan cattle population, they were at Hardy-Weinberg equilibrium.11746T>G SNP had no association with body measurement and meat quality traits (P>0.05).However,12482T>C SNP was associated with Withers height (WH), Hip width (HW), Heart girth (HG), Pin bone width (PBW), LMA and IMF (P<0.05) significantly.
     7. Eight SNPs were found in PRKAG2gene, only En3223A>G was missense mutation with the change of Ser into Gly. Bioinformatics analysis suggested that this missense mutation led to great change in tertiary structure of PRKAG2gene. En3223A>G introduced a restriction enzyme cutting site for Msp I. Association analysis suggested that En3204G>C, En3223A>G, and In39T>C SNPs were related to WH, HH, HW, RL, CD, HG and LMA (P <0.05);En13112T>C SNP was associated with WH, RL, and HW (P<0.05).
     8. By DNA sequencing, MALDI-TOF and ACRS-RFLP-PCR,45SNPs were found in PRKAG3gene,10in coding region,18in3'UTR and17in introns. The SNPs in coding region did not lead to amino acid change, except1794T/C,4002C/T, and5359C/T mutations. The association analysis suggested that4SNPs were associated with BL significantly;8SNPs were associated with WH significantly;21SNPs were associated with HH and RL;17SNPs were associated with HW and CD;6SNPs were associated with HG;5SNPs were associated with PBW;2SNPs were associated with IMF;7SNPs were associated with LMA;3SNPs were associated with BF;7SNPs had no association with body measurement or meat quality traits in Qinchuan cattle.
引文
陈幼春.1995.牛的品种、高档牛肉种类和生产因素.黄牛杂志,21(1):37-40
    陈生会,郭治和,白从义.2002.秦川牛改良神木当地牛效果调查研究.黄牛杂志,28(2):48-52
    戴茹娟,吴常信,李宁.1996.DNA标记及其在家禽遗传育种中的应用.中国畜牧杂志,32(5):55-57
    董飚,孟和,顾志良,龚道清.2007.脂联素与脂联素受体的研究进展.中国畜牧兽医,34(2):44-48
    杜立新.1995.分子遗传标记及其在动物育种中的应用(上).黄牛杂志,22(2):31-33
    高丽南.2012.AMPK对肉牛脂肪沉积的影响及其基因多态性研究.[硕士学位论文].呼和浩特:内蒙古农业大学
    郭金玲,李梦云,刘延贺,聂芙蓉.2008.AMPK对骨骼肌中糖代谢的调节作用及对肉质的影响.饲料工业,29(10):51-53
    郭荣俊,常焕章,贾志正.1999.关于商洛地区引进秦川牛情况的调查报告.黄牛杂志,25(1):37-38
    冯京海,张敏红,郑姗姗,谢鹏,李军乔.2006.日循环高温对肉鸡线粒体活性氧产生量、钙泵活性及胸肌品质的影响.畜牧兽医学报,37(12):1304-1311
    符庆瑛和高钰琪.2005.蛋白激酶AMPK的研究进展.生命科学,17(2):147-152
    滑留帅,陈宏,杨奇,杨晓冰,张国坪,宋玉同,袁海江,文进宝,张永军,马富平.2008.固原地区秦川牛及其利杂群体屠宰性能的研究.中国牛业科学,34(5):1-4
    李梦云,陈代文,张克英.2006.PRKAG3在猪组织器官中的表达差异及与胴体品质关系研究.畜牧兽医学报,37(6):566-570
    李文彬,徐建峰,闫晓波,闫晓波,黄建伟,郭丽娜,王瑨,巩永成.2010.平凉红牛杂交类群生长发育测定及肉用性能分析.中国牛业科学,36(2):13-15
    李武峰,杨润军,甘乾福,张路培,许尚忠,李俊雅,高雪.2009.肉牛PRKAG3基因多态性及其与胴体和肉质性状的关联分析.畜牧兽医学报,40(7):1106-1111
    刘靖星.2009.AMPKa2基因多态性与2型糖尿病及脂联素、抵抗素相关性研究.[硕士学位论文].兰州:兰州大学
    刘益平.1999.分子遗传标记在家禽育种中的应用.四川畜牧兽医,(1):21-22
    刘正远,袁缨.2005.影响肉质的生物化学和组织学因素.饲料工业,26(11):44-46
    马捷琼,刘缠民,陈宏.2006.我国珍贵的黄牛品种秦川牛的开发利用和保护现状.生物学教学,31(11):2-3
    宋娇,付睿琦,李颖颖,杨烨.2012.肉鸡PRKAA基因表达与MyHC基因表达和肌内脂肪沉积关系的研究.中国畜牧杂志,48(23):10-13
    田万强,李林强,咎林森.2011.秦川牛胴体不同部位肌内脂肪酸组成成分分析及其结构研究.中国牛业科学,37(1):10-13
    王金雷,朱庆,刘益平,杜华锐.2008.鸡PRKAB2基因PCR-SSCP分析及其与屠宰性状和肉质性状的相关性.遗传,30(8):1033-1038
    佟辉,陈杰,杨晓静,邵根宝,贾超,陈伟华,赵茹茜.2008.背最长肌肌红蛋白mRNA表达与肉色表观性状之间的相关.食品与生物技术学报,27(3):94-98
    晏兆莉和张成忠.1996.家畜育种中MAS的遗传标记与QTL.西北民族学院学报,22(2):206-209
    杨会涛,陈代文,余冰2006. AMPK上游激酶-肿瘤抑制因子LKB1.生命的化学,26(4):321-323
    原积友和刘收选.1999.秦川牛普查研究报告.黄牛杂志,5(1):39-40
    咎林森,田万强,刘永峰.2010.我国肉牛良繁体系现状与方略.中国牧业通讯,(14):21-23
    咎林森,辛亚平,陈宏,史文利,王洪程.2011.陕西肉牛产业发展现状、问题及建议.中国牛业科学,37(5):1-3
    咎林森,张恩平,辛亚平,胡建宏,宋宇轩.2006.秦川牛在不同立地条件下生长发育及肉用生产性能的比较研究.家畜生态学报,27(6):33-40
    张金良.1999.商洛引进秦川牛饲养现状调查.黄牛杂志,25(6):62-69
    张细权,李加琪,杨关福.1997.动物遗传标记.北京:北京农业大学出版社
    张岩,郭秀侠,刘文,贾永宏.2004.秦川牛品种资源的保护与利用.黄牛杂志,30(6):36-40
    张沅.2001.家畜育种学.北京:中国农业出版社
    张志恒,尹栾,刘收选,罗创国.2004.秦川牛普查情况报告.黄牛杂志,30(6):66-67
    周娜娜.2008.优质鸡PRKAG3基因单核昔酸多态性与屠宰性状和肉质性状的相关研究.[硕士学位论文].雅安:四川农业大学
    祝贵希,王方来,刘明光,赵爱轩,张金聚,王安田.1995.优质高档牛肉生产技术研究报告.黄牛杂志,21(1):14-18
    Adjei A A and Hidalgo M.2005. Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol,23:5386-5403
    Al-Khalili L, Chibalin A V, Yu M, Sjodin B, Nylen C, Zierath J R, Krook A.2004. MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways. Am JPhysiol Cell Physiol,286:C1410-C1416
    Alessi D R, Sakamoto K, Bayascas J R.2006. LKB1-dependent signaling pathways. Annu Rev Biochem,75: 137-163
    Andersson U, Filipsson K, Abbott C R, Woods A, Smith K, Bloom S R, Carling D, Small C J.2004. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem,279: 12005-12008
    Andersson L and Georges M.2004. Domestic animal genomics:deciphering the genetics of complex traits. Nat Rev Genet,5(3):202-212
    Arad M, Benson D W, Perez-Atayde A R, McKenna W J, Sparks E A, Kanter R J, McGarry K, Seidman J G, Seidman C E.2002. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest,109:357-362
    Arsham A M, Howell J J, Simon M C.2003. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem,278:29655-29660
    Asehenbach W G, Hirshman M F, Fujii N, Sakamoto K, Howlett K F, Goodyear L J.2002. Effect of AICAR treatment on glycogen in metabolism in skeletal muscle. Diabetes,51:567-573
    Barnes B R, Glund S, Long Y C, Hjalm G, Andersson L, Zierath J R.2005.5'-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics. FASEB J,19:773-778
    Barnes B R, Marklund S, Steiler T L, Walter M, Hjalm G, Amarger V, Mahlapuu M, Leng Y, Johansson C, Galuska D, Lindgren K, Abrink M, Stapleton D, Zierath J R, Andersson L.2004. The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem,279:38441-38447
    Benkel B, Kollers S, Fries R, Sazanov A, Yoshida E, Valle E, Davoren J, Hickey D.2005. Characterization of the bovine ampkgammal gene. Mamm Genome,16(3):194-200
    Bergeron R, Russell R R 3rd, Young LH, Ren J M, Marcucci M, Lee A, Shulman G I.1999. Effect of AMPK activation on muscle glucose metabolism in Conscious rats. Am JPhysiol,276:E938-E944
    Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, Salmon A, Ostman-Smith I, Watkins H.2001. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy:evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet,10:1215-1220
    Boudeau J, Baas A F, Deak M, Morrice N A, Kieloch A, Schutkowski M, Prescott A R, Clevers H C, Alessi D R.2003. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J,22:5102-5114
    Boudeau J, Scott J W, Resta N, Deak M, Kieloch A, Komander D, Hardie D G, Prescott A R, van Aalten D M, Alessi D R.2004. Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci,117(Pt 26): 6365-6375
    Bowker S L, Majumdar S R, Veugelers P, Johnson J A.2006. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care,29:254-258
    Buhl E S, Jessen N, Schmitz O, Pedersen S B, Pedersen O, Holman G D, Lund S.2001. Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes,50: 12-17
    Carling D. AMPK.2004. Curr Biol,14(6):R220
    Carling D and Hardie D G. 1989. The substrate and sequence specificity of the AMP-activated protein kinase PHosPHorylation of glycogen synthase and PhosPhorylase kinase. Biochim Biophys Acta,1012: 81-86
    Celenza J L, Eng F J, Carlson M.1989. Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: Evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol Cell Biol,9: 5045-5054
    Chan A Y, Soltys C L, Young M E, Proud C G, Dyck J R.2004. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J Biol Chem,279: 32771-32779
    Chen S, An J, Lian L, Qu L, Zheng J, Xu G, Yang N.2013. Polymorphisms in AKT3, FIGF, PRKAG3, and TGF-p genes are associated with myofiber characteristics in chickens. Poult Sci,92:325-330
    Chen Z P, Stephens T J, Murthy S, Canny B J, Hargreaves M, Witters L A, Kemp B E, McConell G K.2003. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes,52:2205-2212
    Cheung P C, Salt I P, Davies S P, Hardie D G, Carling D.2000. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J,346(Pt 3):659-669
    Chinetti G, Zawadski C, Fruchart J C, Staels B.2004. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochem Biophys Res Commun,314(1):151-158
    Ciobanu D, Bastiaansen J, Malek M, Helm J, Woollard J, Plastow G, Rothschild M.2001. Evidence for new alleles in the protein kinase adenosine monophosphate-activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics,159: 1151-1162
    Corradetti M N, Inoki K, Bardeesy N, DePinho R A, Guan K L.2004. Regulation of the TSC pathway by LKBI:evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrolne. Genes Dev,18:1533-1538
    Culmsee C, Monning J, Kemp B E, Mattson M P.2001. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J Mol Neurosci,17(1):45-58
    da Silva X G, Leclerc I, Salt I P, Doiron B, Hardie D G, Kahn A, Rutter G A.2000. Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc Natl Acad Sci, USA, 97:4023-4028
    Daniel T and Carling D.2002. Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-parkinson-White Syndrome. J Biol Chem,277:51017-51024
    Demeure O, Liaubet L, Riquet J, Milan D.2004. Determination of PRKAG1 coding sequence and mapping of PRKAG1 and PRKAG2 relatively to porcine back fat thickness QTL. Anim Genet,35(2):123-125
    Derave W, Ai H, Ihlemann J, Witters LA, Kristiansen S, Richter EA, Ploug T.2000. Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes,49:1281-1287
    Ding S T, Liu B H, Ko Y H.2004. Cloning and expression of porcine adiponectin and adiponectin receptor 1 and 2 genes in pigs. J Anim Sci,82:3162-3174
    Diraison F, Parton L, Ferre P, Foufelle F, Briscoe CP, Leclerc I, Rutter GA.2004. Over-expression of sterol-regulatory-element-binding protein-lc (SREBPlc) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release:modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Biochem J,378(Pt 3):769-778
    Dyck J R, Gao G, Widmer J, Stapleton D, Fernandez C S, Kemp B E, Witters L A.1996. Regulation of 5'-AMP-activated protein kinase activity by the noneatalytie beta and gamma subunits. J Biol Chem, 271:17798-17803
    Dyck J R, Kudo N, Barr A J, Davies S P, Hardie D G, Lopaschuk G D.1999. Phosphorylation control of cardiac acetyl-CoA carboxylase by Camp-dependent protein kinase and 5'-AMP activated protein kinase. Eur J Biochem,262(1):184-190
    Enfalt A C, von Seth G, Lundstrom K, Josell A, Lindahl G, Hedebro-Velander I, Braunschweig M, Andersson L.2002. A third allele (V1991) at the RN locus with effect on carcass composition and meat quality[A]. Proceedings 48th International Congress of Meat Science and Technology[C]. Rome, 618-619
    Evans J M, Donnelly L A, Emslie Smith A M, Alessi D R, Morris A D.2005. Metformin and reduced risk of cancer in diabetic patients. BMJ,330:1304-1305
    Ferre P, Azzout-Marniche D, Foufelle F.2003. AMP activated protein kinase and hepatic genes involved in glucose metabolism. Biochem Soc Trans,31(Pt 1):220-223
    Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, Viollet B.2005. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes,54(5):1331-1339
    Foretz M, Taleux N, Guigas B, Horman S, Beauloye C, Andreelli F, Bertrand L, Viollet B.2006. Regulation of energy metabolism by AMPK:a novel therapeutic approach for the treatment of metabolic and cardiovascular diseases. Med Sci (Paris),22(4):381-388
    Fryer L G, Foufelle F, Barnes K, Baldwin S A, Woods A, Carling D.2002. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal musele cells. J Biol Chem,363(Pt 1):167-174
    Gollob M H, Green M S, Tang A S, Gollob T, Karibe A, Ali Hassan A S, Ahmad F, Lozado R, Shah G, Fananapazir L, Bachinski L L, Roberts R.2001. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. NEngl JMed,344:1823-1831
    Hall T A.1999. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser,41:95-98
    Hardie D G and Carling D.1997. The AMP-activated protein kinase -- fuel gauge of the mammalian cell? Eur J Biochem,246:259-273
    Hardie D G, Carling D, Carlson M.1998. The AMP-activated/SNF1 protein kinase subfamily:metabolic sensors of the eukaryotic cell? Annu Rev Biochem,67:821-855
    Hardie D G and Sakamoto K.2006. AMPK:a key sensor of fuel and energy status in skeletal muscle. Physiology (Betllesda),21:48-60
    Hardie D G, Saltl P, Hawley S A, Davies S P.1999. AMP-aetivated proteinkinase:an utrasensitive system for monitoring cellar energy change. Biochem J,338(Pt 3):717-722
    Hawley S A, Boudeau J, Reid J L, Mustard K J, Udd L, Makela T P, Alessi D R, Hardie D G. 2003. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol,2:28
    Hawley S A, Gadalla A E, Olsen G S, Hardie D G. 2002. The antidiabetic drug metformin activates the AMP activated Protein kinase caseade via an adenine nucleotide-independent mechanism. Diabetes, 51:2420-2425
    Hayashi T, Hirsham M F, Fujii N, Habinowski S A, Witters L A, Goodyear L J.2000. Metabolic stress and altered glucose transport:activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes,49:527-531
    Hayashi T, Hirsham M F, Kurth E J, Winder W W, Goodyear L J.1998. Evidence for AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes,47: 1369-1373
    Heaton M P, Grosse W M, Kappes S M, Keele J W, Chitko-McKown C G, Cundiff L V, Braun A, Little D P, Laegreid W W.2001. Estimation of DNA sequence diversity in bovine cytokine genes. Mamm Genome,12:32-37
    Henin N, Vincent M F, van den Berghe G. 1996. Stimulation of rat liver AMP-activated protein kinase by AMP analogues. Biochim Biophys Acta,1290(2):197-203
    Hong S P, Eeiper F C, Woods A, Carling D, Carlson M.2003a. Activation of yeast Snfl and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci, USA,100:8839-8843
    Hong Y H, Varanasi U S, Yang W, Lefft L.2003b. AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J Biol Chem, 278:27495-27501
    Horikoshi M, Hara K, Ohashi J, Miyake K, Tokunaga K, Ito C, Kasuga M, Nagai R, Kadowaki T.2006. A polymorphism in the AMPKalpha2 subunit gene is associated with insulin resistance and type 2 diabetes in the Japanese population. Diabetes,55(4):919-923
    Horman S, Beauloye C, Vertommen D, Vanoverschelde J L, Hue L, Rider M H.2003. Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2. J Biol Chem,278:41970-41976
    Horman S, Browne G, Krause U, Patel J V, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C G, Rider M H.2002. Activation of AMP-activated protein kinase leads to the phosphorylaton of elongation factor 2 and an inhibition of protein synthesis. Curr Biol,12:1419-1423
    House C M, Stapleton D, Dyck J, Gamble J, Ullrich C, Witters L A, Kemp B E.1997. Posttranslational modifications of the 5'-AMP-activated protein kinase betal subunit. J Biol Chem,272:24475-24479
    Hudson E R, Pan D A, James J, Lucocq J M, Hawley S A, Green K A, Baba O, Terashima T, Hardie D G. 2003. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol,13:861-866
    Hutber C A, Hardie D G, Winder W W.1997. Electrical stimulation in activates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am JPhysiol,272(2 Pt 1):E262-E266
    Immonen K, Ruusunen M, Hissa K, Puolanne E.2000. Bovine muscle glycogen concentration in relation to finishing diet, slaughter and ultimate pH. Meat Sci,55:25-31
    Jacinto E and Hall M N.2003. Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol,4(2): 117-126
    Jaleel M, Villa F, Deak M, Toth R, Prescott A R, van Aalten D M, Alessi D R.2006. The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem J,394(Pt 3):545-555
    Jaremko M, Justenhoven C, Abraham B K, Schroth W, Fritz P, Brod S, Vollmert C, Illig T, Brauch H.2005. MALDI-TOF MS and TaqMan assisted SNP genotyping of DNA isolated from formalin-fixed and paraffin-embedded tissues (FFPET). Hum Mutat,25(3):232-238
    Jeanmougin F, Thompson J D, Gouy M, Higgins D G, Gibson T J.1998. Multiple sequence alignment with Clustal X. Trends Biochem Sci,23:403-405
    Jorgensen S B, Viollet B, Andreelli F.2003. Knockout of the alpha2 but not alphal 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-l-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J Biol Chem,2:125-130
    Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K.2002. Mechanism for fatty acid "sparing" effect on glucose-induced transcription:regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem,277:3829-3835
    Kawanaka K, Nolte L A, Han D H, Hansen P A, Holloszy J O.2000. Mechanisms underlying impaired GLUT-4 translocation in glycogen-supercompensated muscle of exercised rats. Am J Physiol,279: E1311-E1318
    Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp B E, Witters L A, Mimura O, Yonezawa K.2003. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOM) signaling pathway. Genes Cells,8(1):65-79
    Kobayashi H, Ouchi N, Kihara S, Walsh K, Kumada M, Abe Y, Funahashi T, Matsuzawa Y.2004. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res, 94(4):e27-e31
    Kola B, Hubina E, Tucci S A, Kirkham T C, Garcia E A, Mitchell S E, Williams L M, Hawley S A, Hardie D G, Grossman A B, Korbonits M.2005. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. JBiol Chem,280:25196-25201
    Konfortov B A, Licence V E, Miller J R.1999. Resequencing of DNA from a diverse panel of cattle reveals a high level of polymorphism in both intron and exon. Mamm Genome,10:1142-1145
    Kowalewska-Luczak I and Kulig H.2011. Association between polymorphism in bovine PRKAG3 gene and milk production traits. Genetika,47(8):1135-1139
    Larde R and Thompson R.1990. Efficiency of marker assisted in the improvement of quantitative traits. Genetics,124:743-765
    Le Roy P, Naveau J, Elsen J M, Sellier P.1990. Evidence for a new major gene influencing meat quality in pigs. Genetics,55:33-40
    Lebret B, Le Roy P, Monin G, Lefaucheur L, Caritez J C, Talmant A, Elsen J M, Sellier P.1999. Influence of the three RN genotypes on chemical composition, enzyme activities, and myofiber characteristics of porcine skeletal muscle. JAnim Sci,77:1482-1489
    Lee J H, Koh H, Kim M, Kim Y, Lee S Y, Karess R E, Lee S H, Shong M, Kim J M, Kim J, Chung J.2007. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature,447: 1017-1020
    Lemieux K, Konrad D, Klip A, Marette A.2003. The AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen-activated protein kinase σ and β in skeletal muscle. FASEB J,17(12):1658-1665
    Li X, Yang X, Shan B, Shi J, Xia D, Wegner J, Zhao R.2009. Meat quality is associated with muscle metabolic status but not cont ractile myofiber typecomposition in premature pigs. Meat Sci,81: 218-223
    Lin L, Flisikowski K, Schwarzenbacher H, Scharfe M, Severitt S, Blocker H, Fries R.2010. Characterization of the porcine AMPK alpha 2 catalytic subunitgene (PRKAA2):genomic structure, polymorphism detection and association study. Anim Genet,41:203-207
    Liu L, Cash T P, Jones R G, Keith B, Thompson C B, Simon M C.2006. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell,21:521-531
    Lizcano J M, Goransson O, Toth R, Deak M, Morrice N A, Boudeau J, Hawley S A, Udd L, Makela T P, Hardie D G, Alessi D R.2004. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J,23(4):833-843
    Mahlapuu M, Johansson C, Lindgren K, Hjalm G, Barnes B R, Krook A, Zierath J R, Andersson L, Marklund S.2004. Expression profiling of the γ-subunit isoforms of AMP-activated protein kinase suggests a major role for y3 in white skeletal muscle. Am J Physiol Endocrinol Metab,286: E194-E200
    Marklund L, Nystrom PE, Stern S, Andersson-Eklud L,Andersson L. Confirmed quantitative trait loci for fatnessand growth on pig chromosome 4. Heredity,1999,82:134-141.
    Marsin A S, Bouzin C, Bertrand L, Hue L.2002. The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J Biol Chem,277:30778-30783
    McKay S D, White S N, Kata S R, Loan R, Womack J E.2003. The bovine 5'AMPK gene family: mapping and single nucleotide polymorphism detection. Mamm Genome,14(12):853-858
    Merrill G F, Kurth E J, Hardie D G, Winder W W.1997. AICA riboside increases AMP-activated protein kinase, fatty acidoxidation, and glucose uptake in rat muscle. Am JPhysiol,273(6 Pt 1):E1107-E1112
    Milan D, Jeon J T, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Roy P L, Chardon P, Andersson L. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science, 288:1248-1251
    Minokoshi Y, Alquier T, Furukawa N, Kim Y B, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum M J, Stuck B J, Kahn B B.2004. AMP-kinase regulates food intake by responding to hormonal and nutrient signal in the hypothalamus. Nature,428:569-574
    Minokoshi Y, Kim Y B, Peroni O D, Fryer L G, Muller C, Carling D, Kahn B B.2002. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature,415:339-343
    Mu J, Brozinick J T Jr, Valadares O, Bucan M, Birnbaum M J.2001. A role for AMP-activated protein kinase in contraction and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell,7: 1085-1094
    Musi N and Goodyear L J.2003. AMP2-activated protein kinase and muscle glucose uptake. Acta Physiolgica Scandinavica,178:337-345
    Musi N, Hirshman M F, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson J M, Ljunqvist O, Efendic S, Moller D E, Thorell A, Goodyear L J.2002. Metformin increases Amp-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes,51: 2074-2081
    Neumann D, Suter M, Tuerk R, Riek U, Wallimann T.2007. Co-expression of LKB1, MO25alpha and STRADalpha in bacteria yield the functional and active heterotrimeric complex. Mol Biotechnol, 36(3):220-231
    Neumann D, Suter M, Tuerk R, Riek U, Wallimann T.2006. Co-expression of LKB1, MO25 alpha and STRAD alpha in bacteria yield the functional and active heterotrimeric complex. J Cell Sci,119(Pt 15): 3021-3023
    Ouchi N, Kobayashi H, Kihara S, Kumada M, Sato K, Inoue T, Funahashi T, Walsh K.2004. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cell. J Biol Chem,279:1304-1309
    Owen M R, Doran E, Halestra A P.2000. Evidence that metformin exertsits anti-diabetie effects through inhibition of complex 1 of the mitochondrial respiratory chain. Bioehem J,348(Pt 3):607-614
    Park H B, Jeon J T, Mickelson J R, Valberg S J, Sandberg K, Andersson L.2003. Molecular characterization and mutational screening of the PRKAG3 gene in the horse. Cytogenet Genome Res, 102:211-216
    Park J J, Seo S M, Kim E J, Lee Y J, Ko Y G, Ha J, Lee M.2012. Berberine inhibits human colon cancer cell migration via AMP-activated protein kinase-mediated downregulation of integrin β1 signaling. Biochem Biophys Res Commun,426:461-467
    Polekhina G, Gupta A, Michell J, et al.2003. AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol,13:867-871
    Ponticos M, Lu Q L, Morgan J E, Hardie D G, Partridge T A, Carling D.1998. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J,17:1688-1699
    Proszkowiec-Weglarz M, Richards M P, McMurtry J P.2006. Molecular cloning, genomic organization, and expression of three chicken 5'-AMP-activated protein kinase gamma subunit genes. Poult Sci,85: 2031-2041
    Putman C T, Kiriesi M, Peareey J, Pearcey J, MacLean I M, Bamford J A, Murdoch GK, Dixon W T, Pette D.2003. AMPK-activation increases uncoupling protein-3 expression and mitochondrial enzyme activities in rat muscle without fibre type transitions. JPhysiol,551:169-178
    Rasmussen B B and Winder W W.1997. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase.J Appl Physiol,83:1104-1109
    Reardon W, Mullen A M, Sweeney T, Hamill R M.2010. Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Sci,86:270-275
    Rohrer G A, Nonneman D J, Miller R K, Zerby H, Moeller S J.2012. Association of single nucleotide polymorphism (SNP) markers in candidate genes and QTL regions with pork quality traits in commercial pigs. Meat Sci,92(4):511-518
    Roux M, Nizou A, Forestier L, Forestier L, Ouali A, Leveziel H, Amarger V.2006. Characterization of the bovine PRKAG3 gene:structure, polymorphism, and alternative transcripts. Mamm Genome,17(1): 83-92
    Rowan A, Churchman M, Jefferey R, Hanby A, Poulsom R, Tomlinson I.2000. In situ analysis of LKB1P STK11 mRNA expression in human normal tissues and tumours. J Pathol,192(2):203-206
    Russell R R 3rd, Bergeron R, Shulmanl G, Young L H.1999. Translocation of myoeardial GLUT-4and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol,277(2 Pt 2): H643-H649.
    Rutter G A, da Silva X G, Leclerc I.2003. Roles of 5'-AMP-activated kinase in mammalian glucose homeostasis. Biochem J,375(Pt 1):1-16
    Ryan M T, Hamill R M, O'Halloran A M, Davey G C, McBryan J, Mullen A M, McGee C, Gispert M, Southwood O I, Sweeney T.2012. SNP variation in the promoter of the PRKAG3 gene and association with meat quality traits in pig. BMC Genet,13:66
    Sakamoto K, Goransson O, Hardie D G, Alessi D R.2004. Activity of LKB1 and AMPK-related kinases in skeletal muscle:effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab, 287(2):E310-E317
    Salt I, Celler J W, Hawley S A, Prescott A, Woods A, Carling D, Hardie D G. 1998. AMP-activated protein kinase:greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem J,334(Pt 1):177-187
    Sazanov A, Benkel B F, Hickey D A, Kollers S, Fries R.1999. The bovine AMP-activated protein kinase subunit gammal gene (PRKAG1) maps to 5q21-q22.Anim Genet,30(6):473-474
    Shaw R J, Bardeesy N, Manning B D, Shaw R J, Bardeesy N, Manning B D, Lopez L, Kosmatka M, DePinho R A, Cantley L C.2004. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell,6:91-99
    Shaw R J and Cantley L C.2006. Ras, PI(3)K and mTOR signalling controls tumor cell growth. Nature, 441:424-430
    Shaw R J, Kosmatka M, Bardeesy N, Hurley R L, Witters L A, DePinho R A, Cantley L C.2004. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci, USA,101:3329-3335
    Shen Q W, Gerrard D E, Du M.2008. An inhibitor of AMP-activated protein kinase, inhibits glycolysis in mouse longissimus dorsi postmortem. Meat Science,78:323-330
    Shen Q W, Means W J, Thompson S A, Underwood K R, Zhu M J, McCormick R J, Ford S P, Du M.2006. Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin. Meat Science,74:388-395
    Shen Q W, Underwood K R, Means W J, McCormick R J, Du M.2007. The halothane gene, energy metabolism, adenosine monophosphate activated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle. JAnim Sci,85:1054-1061
    Shibata R, Ouchi N, Kihara S, Sato K, Funahashi T, Walsh K.2004. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of AMP-activated protein kinase signaling. J Biol Chem,279:28670-28674
    Sibut V, Hennequet-Antier C, Le Bihan-Duval E, Marthey S, Duclos M J, Berri C.2011. Identification of differentially expressed genes in chickens differing in muscle glycogen content and meat quality. BMC Genomics,12:112
    Skurat A V, Wang Y, Roach P J.1994. Rabbit skeletal muscle glycogen synthase expressed in COS cells. Identification of regulatory phosphorylation sites. J Biol Chem,269:25534-25542
    Slattery M L, Herrick J S, Lundgreen A, Fitzpatrick F A, Curtin K, Wolff R K.2010. Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk:mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, P13K and Aktl. Carcinogenesis,31:1604-1611
    Son B K, Akishita M, Iijima K, Iijima K, Kozaki K, Maemura K, Eto M, Ouchi Y.2008. Adiponectin antagonizes stimulatory effect of tumor necrosis factor-alpha on vascular smooth muscle cell calcification:regulation of growth arrest-specific gene 6-mediated survival pathway by adenosine 5'-monophosphate-activated protein kinase. Endocrinology,149:1646-1653
    Souza R P, Tiwari A K, Chowdhury N I, Ceddia R B, Lieberman J A, Meltzer H Y, Kennedy J L, Muller D J.2012. Association study between variants of AMP-activated protein kinase catalytic and regulatory subunit genes with antipsychotic-induced weight gain. JPsychiatr Res,46:462-468
    Stapleton D, Mitehelhill K I, Gao G, Widmer J, Michell B J, Teh T, House C M, Fernandez C S, Cox T, Witters L A, Kemp B E.1996. Mammalian AMP-activated protein kinase subfamily. J Biol Chem,271: 611-614
    Steinberg G R, O'Neill H M, Dzamko N L, Galic S, Naim T, Koopman R, Jorgensen S B, Honeyman J, Hewitt K, Chen Z P, Schertzer J D, Scott J W, Koentgen F, Lynch G S, Watt M J, van Denderen B J, Campbell D J, Kemp B E.2010. Whole body deletion of AMP-activated protein kinase β2 reduces muscle AMPK activity and exercise capacity. J Biol Chem,285:37198-37209
    Stoppani J A L, Hildebrandt A L, Sakamoto K. Cameron-Smith D, Goodyear L J, Neufer P D.2002. AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. Am J Physiol Endocrinol Metab,283:E1239-E1248
    Sun M W, Lee J Y, de Bakker P I, Burtt N P, Almgren P, Rastam L, Tuomi T, Gaudet D, Daly M J, Hirschhorn J N, Altshuler D, Groop L, Florez J C.2006. Haplotype structures and large-scale association testing of the 5'AMP-activated protein kinase genes PRKAA2, PRKAB1, and PRKAB2 [corrected] with type 2 diabetes. Diabetes,55:849-855
    Syvanen A-C.2001. Accessing genetic variation:genotyping single nucleotide polymorphisms. Nat Rev Genet,2:930-942
    Tautz D.1989. Hypervariability of single sequences as a general source for polymorphism DNA markers. Nucleic Acicls Res,17:6463-6471
    Thmley A M, Stapleton D, Mann R J, Witters L A, Kemp B E, Bartlett P F.1999. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem,72:1707-1716
    Thorton C, Snowden M A, Carling D.1998. Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem,273:12443-12450
    Turnley A M, Stapleton D, Mann R J, Witters L A, Kemp B E, Bartlett P F.1999. Cellular distribution and development expression of AMP-activated protein kinase isoform in mouse central nervous system. J Neurochem,72:1707-1716
    Uimari P, Sironen A, Sev6n-Aimonen M L.2013. Evidence for three highly significant QTL for meat quality traits in the Finnish Yorkshire pig breed. JAnim Sci, Epub ahead of print
    Vincent M F, Bontemps F G, van Den Berghe G.1992. Inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside in isolated rat hepatocytes. Biochem J,281(Pt 1):267-272
    Wadley G D, Lee-Young R S, Canny B J, Wasuntarawat C, Chen Z P, Hargreaves M, Kemp B E, McConell G K.2006. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol Endocrinol Metab,290(4):E694-E702
    Wallimann T.1994. Bioenergetics. Dissecting the role of creatine kinase. Curr Biol,4:42-46
    Wang P H, Ko Y H, Liu B H, Peng H M, Lee M Y, Chen C Y, Li Y C, Ding S T.2004. The expression of porcine adiponectin and stearoyl coenzyme A dasaturase gense in differentiating adipocytes. Asian-Aust JAnim Sci,17:588-593
    Warden S M, Richardson C, O'Donnell J Jr, Stapleton D, Kemp B E, Witters L A.2001. Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. JBioehem,354:275-283
    Welsh J and McClelland M.1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res,18:7213-7218
    Wierinckx A, Mercier D, Oulmouden A, Petit J M, Julien R.1999. Complete genomic organization of futb encoding a bovine alpha 3-fucosyltransferase:exons in human orthologous genes emerged from ancestral intronic sequences. Mol Biol Evol,16:1535-1547
    Williams J G K.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,18:6531-6535
    Winder W W and Hardie D G. 1999. AMP-activated protein kinase, a metabolie master switch possible Roles in type2 diabetes. Am J Physiol,277(1 Pt 1):E1-E10
    Winder W W, Wilson H, Hardie D G, Rasmussen B B, Hutber C A, Call G B, Clayton R D, Conley L M, Yoon S, Zhou B.1997. Phosphory lation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol,82:219-225
    Wojtaszewski J F, Birk J B, Frosig C, Holten M, Pilegaard H, Dela F.2005.5'-AMP activated protein kinase expression in human skeletal muscle:effects of strength training and type 2 diabetes. J Physiol. 564(Pt 2):563-573.
    Wong K A and Lodish H F.2006. Revised model for AMP-activated protein kinase structure:The alpha-subunit binds to both the beta-and gamma-subunits although there is no direct binding between the betaand gamma-subunits. J Biol Chem,281:36434-36442
    Woods A, Azzout-Marniche D, Foretz M, Stein S C, Lemarchand P, Ferre P, Foufelle F, Carling D.2000. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol, 20:6704-6711
    Woods A, Vertomme D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider M H. 2003. Identification of phosphorylation sites in AMP-aetivated protein kinlase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem,278:28434-28442
    Woods A D, Milburn C C, Boudeau J, Deak M, Alessi D R, van Aalten D M.2004. Crystal structure of MO25 alpha in complex with the C terminus of the pseudo kinase STE20-related adaptor. Nat Struct Mol Biol,11:193-200
    Xu M, Li X, Wang J G, Du P, Hong J, Gu W, Zhang Y, Ning G.2005. Glucose and lipid metabolism in relation to novel polymorphisms in the 5'-AMP-activated protein kinase gamma2 gene in Chinese. Mol Genet Metab,86:372-378
    Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno N H, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T.2003. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature,423:762-769
    Yang W, Hong Y H, Shen X Q, Frankowski C, Camp H S, Leff T.2001. Regulation of transcription by AMP-activated protein kinase:phosphorylation of p300 blocks its interaction with nuclear receptors. J Biol Chem,276:38341-38344
    Yu H, Fujii N, Hirshman M F, Pomerleau J M, Goodyear L J.2004. Cloning and characterization of mouse 5'-AMP-activated protein kinase y3 subunit. Am J Physiol Cell Physiol,286:C283-C292
    Yu S L, Kim J E, Chung H J, Jung K C, Lee Y J, Yoon D H, Lee S H, Choi I, Bottema C D, Sang B C, Lee J H.2005. Molecular cloning and characterization of bovine PRKAG3 gene:structure, expression and single nucleotide polymorphism detection. JAnim Breed Genet,122:294-301
    Zhang Q, Zhao S, Chen H, Zhang L, Zhang L, Li F, Wang X.2011. SNP discovery and haplotype analysis in the bovine PRKAA2 gene. Mol Biol Rep,38:1551-1556
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman M F, Goodyear LJ, Moller D E.2001. Role of AMP-activated protein kinase in mechanism of metformin action. JClin Invest,108:1167-1174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700