用户名: 密码: 验证码:
工程机械臂系统结构动力学及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术和产品设计技术的飞速发展,高速化、高精度、抗冲击、低噪声、轻量化和长寿命成为机械产品性能的发展趋势,其动态特性研究越来越成为机械产品设计的关键,正成为国内外专家研究的热点。工程机械臂是各种工程机械设备的关键、重要部件,是一种多功能高效机械部件,其动力学性能决定着工程机械整机的性能发挥。工程机械的作业工况通常比较的恶劣,工程机械臂所受的载荷情况非常复杂,为保证其工作安全可靠,提高施工质量和作业效率,对其进行准确的动力学分析非常必要。
     工程机械臂通常是冗余自由度、强非线性、刚柔耦合的多体系统,其动力学及特性研究涉及到多体动力学以及控制、结构动态优化、运动学逆问题等方面的问题。
     目前技术条件下对工程机械臂动力学的研究在产品建模、仿真模拟、数值计算等关键技术均处于探索阶段,而用户对工程机械产品的性能要求日益增长。因此,对于工程机械臂系统动力学及特性研究具有重要的理论价值和实际的工程意义。
     本文以工程机械臂系统为研究对象,主要研究多体动力学尤其是柔性多体动力学理论在建模、仿真方面的应用,重点是进行理论性的分析。对工程机械臂的动力学建模、仿真、数值计算以及运动控制、结构动态优化等方面作了细致的研究工作,并结合液压挖掘机及大型船用挖掘机机械臂实例进行研究,主要研究内容归纳如下:
     1)研究了工程机械臂的多刚体动力学方程及柔性多体动力学方程的建模方法,主要讨论了等效有限元方法和拉格朗日定理,重点研究了柔性梁的多体动力学理论基础。
     2)采用基于集中质量和惯量的等效有限元法建立液压挖掘机机械臂的动力学微分方程,运用龙格-库塔(Runge-Kutta)数值求解法对运动微分方程进行推导和数值求解,对各臂杆的动力学特性进行了分析,并运用ADAMS软件进行仿真分析。
     根据柔性多体动力学理论,采用模态函数描述臂架的弹性变形,采用LAGRANGE定理和虚功原理建立液压挖掘机臂架系统刚柔耦合的非线性动力学方程,并通过数值求解、动力学仿真的方法对建立的动力学方程进行分析。
     对已建立的动力学方程利用MATLAB进行数值求解,运用仿真软件ADAMS及NASTRAN建立液压挖掘机机械臂刚柔耦合模型并进行仿真分析,并对比二者结果。运用数值求解的方法进行模态计算和动力学响应分析,求解相关几何参数的一
     阶固有频率灵敏度,分析影响机械臂动力学特性的主要模态参数。
     3)考虑大型船用挖掘机机械臂的轴向变形,采用拉格朗日定理建立其柔性机械臂动力学方程,采用数值求解的方法,利用复模态分析中的状态矢量法对机构动力学控制方程进行了解耦,得到机械臂在标称运动附近振动固有频率和大范围刚性转动角速度的关系。
     应用UG、NASTRAN、ADAMS等软件建立了柔性臂架、柔性变幅绳、柔性抓斗提升钢丝绳、刚性支架、刚性回转平台的船用挖掘机虚拟样机模型。根据船用挖掘机机械臂系统结构及工况特点,施加载荷并进行动力学分析,通过后处理模块,得到系统位移、速度、加速度等动态性能,以及连接点的铰接力和动臂的动态应力等特性。
     4)研究液压挖掘机机械臂的轨迹规划及运动控制。分析了工程机械臂控制策略理论基础,根据控制原理及机械臂铲斗运动轨迹跟踪控制表达式,建立工作装置机械臂PID控制模型及基于RBF神经网络的PID控制模型,运用Matlab及相关软件对控制模型进行仿真计算,分析了系统的动态响应和稳态误差,并得出基于RBF神经网络的PID控制优于常规控制的结论,能够实现挖掘机工装轨迹的智能控制。
     5)利用模态分析、谐响应分析确定对系统动态性能影响最大的模态频率,以此为基础构建动态优化的目标函数,再利用灵敏度分析缩减设计变量以提高动态优化的效率。
     利用有限元分析软件中的优化模块对液压挖掘机工作装置机械臂结构系统进行了动态优化设计。
     采用拉格朗日乘子法将液压挖掘机工作装置机械臂结构约束动态优化问题转化为无约束的动态优化问题,得到此拉格朗日函数的极小值点并且此拉格朗日函数极值点将逐步逼近原目标函数的约束最优点,由收敛准则可得近似最优解。
     以有限元分析为基础,将正交试验法与BP神经网络结合,建立了工作装置机械臂结构设计变量与动态特性之间的非线性映射关系的神经网络模型,用遗传算法优化神经网络模型得到最优解。
With the rapid development of computer technology and digital design technology, high speed, high precision, lightweight and impact resistant, low noise,and long life have become the development trend of mechanical products performance. The dynamic characteristic research more and more becomes the key of the mechanical products design, is becoming hot topics in the study of domestic and foreign experts. Engineering mechnical arm is the critical and important parts of various engineering machinery and equipment, it is a kind of multi-functional efficient mechanical parts.the performance play of machine is determined by the engineering arm. Working condition of engineering mechanical tending to be bad,and load of engineering mechanical arm being very complicated, it is necessary to conduct kinetic analysis, to ensure the safety and reliability of its work,and to improve construction quality and operational efficiency.
     The engineering mechanical arm generally is a mufti-body system with redundant freedom, strong nonlinear, coupled with rigid and flexible characters.The system is related to multi-body dynamics, control theory, structural dynamics and kinematic reverse problem, etc.
     Under the current condition, the Research on the engineering arm dynamics is in the exploration stage such as in the product modeling, simulation and numerical calculation, etc,but the user's requirements for the performance of the engineering mechanical product is increasing. So it is of greattheoretic value and real engineering significance to study the engineering mechanical arm dynamics.
     In this article, the engineering arm system is considered as the study object. The application of mufti-body dynamics, especially the flexible mufti-body dynamics theory in the modeling and simulation is mainly studied, and focus on the theoretic analysis. Much research has been done on the dynamics modeling,simulation,numerical calculation, and motion control, structures dynamic optimization,etc.and the study is conducted Combined with the examples of hydraulic excavators and large marine excavator, and the main content is summarized as follows:
     1).The modeling method of multi-body dynamics equations and flexible multi-body dynamics equations of the engineering mechanical arm was researched,the equivalent finite element method and Lagrange theorems was mainly discussed,and the relevant theory has been studied, especially focusing on the multi-body dynamics.theoretical basis of the flexible beam.
     2).The modal functions are adopted to describe elastic deformation of the mechanical arm,Lagrange theorem and the principle of virtual work is used to establish rigid-flexible coupling nonlinear dynamic equations of arm frame system.And the established dynamic equation are analyzed through the numerical solution, dynamic simulation method.
     The dynamic equations are numerically solved byMATLAB, the rigid-flexible coupling model of hydraulic excavator's mechanical arm is established and simulated by the simulation software ADAMS and NASTRAN, it is showed that the modeling method of dynamic equations adopted in this paper is correct by contrasting the both results. The modal and dynamic response is calculated by applying the numerical solution method,the sensitivity of the first natural frequency for the Geometric parameters related is solved, the main modal parameters are analyzed which influence dynamic characteristics of mechanical arm.
     3).Considering axial deformation of large marine excavator engineering arm, its flexible engineering mechanical arm dynamic equations by using Lagrange theorems, the method of numerical solution is adopting, institutional dynamics equations were decoupled by using complex state vector method in the complex modal analysis, and the relationship between the vibration natural frequencies in the vicinity of nominal movement and a wide range of rotation angular velocity is gotten.
     The virtual prototype model of marine excavator including a flexible boom, flexible grab hoisting rope,flexible luffing rope,rigid frame,rigid rotating platform is established by using soft such as UG,NASTRAN,ADAMS,etc. the load is applied and dynamic analysis is conducted according to structure and work conditions of marine excavator mechanical arm system,the dynamic performance of the system is gotten by post-processing module such as the displacement, velocity, acceleration, etc.
     4).The manipulator trajectory planning and motion control of hydraulic excavator's mechanical arm are researched.the theoretical foundation of control strategy for the engineering mechanical arm is analyzed, based on control theory and manipulator bucket trajectory tracking control expression,the PID control model and PID control model based on RBF neural network of working device's mechanical arm,the controlling model simulation is conducted by using matlab and related software, dynamic response and steady state error of system are analyzed, the conclusion which PID control based on RBF neural network is superior to conventional PID control is drawn,intelligent control of the hydraulic excavator's working device trace Can be achieved.
     5).Modal analysis and harmonic response analysis is used to determine the modal frequency of the biggest influence on the system's dynamic performance,based on this dynamic optimization objective function is built.and the sensitivity analysis is used to reduce design variables in order to improve the efficiency of dynamic optimization.
     The structure system dynamic structure optimization design for hydraulic excavator working device's mechanical arm was conducted using finite element analysis software optimization module,
     Constrained dynamic optimization problem of hydraulic excavator working device structure is changed into unconstrained dynamic optimization problem by using the Lagrange multiplier method.Get the minimum point of Lagrange function and the Lagrange function extremum points gradually close to the constraint optimal point of the original objective function, the optimal solution can be approximated based on the convergence criterion.
     Based on finite element analysis,the orthogonal test method combined with BP neural network, the neural network model of the nonlinear mapping relationship between working device design variables and the dynamic characteristics is set up. The optimal solution is gotten by using genetic algorithm to optimize neural network model.
引文
[1]杨元明,张伟,宋天霞.具有确定运动姿势的柔性体的动力学分析研究.应用数学和力学.2006,1(27):119-126.
    [2]熊晓燕.复杂机械系统动态特性分析和实验辨识方法的研究[D].太原理工大学,2008.Xiong XiaoYan. Dynamic Characteristic's Analysis and Experimental Identification Method of Complex Mechanical Systems[D]. TaiYuan University of Technology, 2008.
    [3]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用——建模、分析、仿真、修改、控制、优化,机械工业出版社,2004,1.
    [4]姚延风,刘强,吴文镜.基于刚柔-机电耦合的机床直线电机进给系统动态性能仿真研究[J].振动与冲击,2011,30(1):191-196.
    [5]LUYan-ping(吕艳平), W U Guo-rong(吴国荣). Nonlinear Dynamic Analysis of Three Dimensional Flexible Multibody Systems [J]. Journal of Sonthwest Jiaotong University (English Edition),2008:16(1):55-60.
    [6]Wei LI, Yi YANG, De-ren SHENG, Jian-hong CHEN, Yong-qiang CHE. Nonlinear dynamic analysis of a rotor/bearing/seal system [J]. Journal of Zhejiang University-SCIENCE A (Applied Physics&Engineering),2011:12(1):46-55.
    [7]张凯之.盾构机冗余驱动回转系统动态特性研究[D].上海交通大学,2011.Zhang Kai Zhi. Study on Dynamic Characteristics of Redundantly driven Revolving System of Shield TBM[D]. Shanghai Jiao Tong University,2011.
    [8]潘振宽,洪嘉振等多体系统动力学微分/代数方程组数值方法.力学进展,1996,26(1):28-40.
    [9]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [10]贾启芬,于雯,刘习军,王春敏.汽车悬架系统的分段线性非线性振动机理的研究[J].工程力学,2005,22(1):373-377.
    [11]万岭,洪明,姜大正.基于运行模态分析的船舶结构模态参数辨识[C].第四届 全国船舶与海洋工程学术会议论文集,2009.
    [12]赵亮,谢强.基于模态灵敏度分析的框架结构损伤识别:灵敏度分析[J].工业建筑,2005,35(S1):894-895.
    [13]胡毓仁.船舶与海洋工程结构疲劳可靠性分析[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [14]M.-H. Chiang C.-C. Huang. Experimental implementation of complex path tracking control for large robotic hydraulic excavators[J]. Int J Adv Manuf Technol (2004)23:126-132.
    [15]杨帅.机械产品动态性能建模、分析、优化及工程应用研究[D].天津大学,2009.Yang Shuai. Research on Mechanical Products Dynamic Performance Modeling, Analysis, Optimization and Application [D]. TaiYuan University of Technology,2009.
    [16]K. J. Kitching, D. J. Cole, D. Cebon. Performance of a Semi-Active Damper for Heavy Vehicles. ASME Journal of Dynamic Systems, Measurement, and Control, 2000,122(3):498-506.
    [17]俞云书编著.结构模态试验分析[M].北京:中国宇航出版社,2000.
    [18]杨志军,陈宇东,陈塑寰,陈新.结构拓扑修改重分析算法在I-DEAS中的实现[J].吉林大学学报(工学版),2009,39(3):708-711.
    [19]W.Schiehen. Multibody system dynamics instructions for authors. Multibody System Dynamics.2002,7:439-444.
    [20]陈根良,王皓,来新民,林忠钦.基于广义坐标形式牛顿-欧拉方法的空间并联机构动力学正问题分析[J].机械工程学报,2009,45(7):41-47.
    [21]K.S.ANDERSON and J.H.CRITCHLEY. Improved "Order-N" Performance Algorithm for Simulation of Constrained Multi-rigid-body Dynamic Systems. Multi-rigid-body Dynamics.2003.9.185-212.
    [22]Fichter E F. A Stewart platform based manipulator; general theory and practical construction.
    [23]The Internation Journal of Robotics Research,1986,5(2):157-182. Alain Codourey. Dynamic modeling of parallel robots for computed-torque control implementation. The International Journal of Robotics Research,1998,17(12):1325-1336.
    [24]宋宇,陈无畏,黄森仁.车辆悬架多刚体动力学分析及PID控制研究[J].农业机械学报,2004,35(1):4-7.
    [25]童水光,王相兵,钟崴,张健.基于虚拟样机技术的轴向柱塞泵动态特性分析[J].机械工程学报,2013,49(2):174-182.
    [26]戴丽,刘杰,刘宇,赵丽娟.基于多体动力学的混凝土泵车臂架的运动分析[J].东北大学学报(自然科学版),2007,28(10):1469-1472.
    [27]P. Betsch. A DAE, Approach to Flexible Multibody Dynamics[J]. Multibody system dynamics,20028:367-397.
    [28]R.GLanglois. Multibody Dynamics of Very Flexible Damped Systems[J]. Multibody system dynamics,1999,3:109-136.
    [29]P.Shi, J. A Deformation Field for Euler-Bernoulli Beams with Applications to Flexiblt: Multibody Dynamics[J]. Multibody system dynamics,2001,5:79-104.
    [30]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [31]郭大猛,刘杰,刘阔,刘登伟,凌学勤.混凝土泵车柔性臂架建模及逆动力学研究[J].中国工程机械学报,2009,7(1):13-19.
    [32]金国光,刘又午,王树新等.带有空间伸展机构的复杂航天器柔性多体动力学分析[J],中国机械工程学报,2000,11(G):650-653.
    [33]张绪平,余跃庆.综合考虑关节及杆柔性的空间机器人动力学分析[J],机械科学与技术,1998,17(5):775-778.
    [34]孙世基,陆志华.内燃机曲柄连杆机构运动动力学分析的柔性多体建模方法[J],内燃机,1995(5):8-13.
    [35]袁士杰.Rob erson-Wi ttenburg方程对非完整约束多刚体系统碰撞问题的推广[J].兵工学报,2009,45(7):41-47.
    [36]陈根良,王皓,来新民,林忠钦.基于广义坐标形式牛顿-欧拉方法的空间并联机构动力学正问题分析[J].机械工程学报,2009,45(7):41-47.
    [37]刘震,毛君,陈洪月.多刚体系统动力学在锚杆机动力学建模中的应用[J].吉林大学学报(信息科学版),2013,31(3):290-296.
    [38]K.S.ANDERSON and J.H.CRITCHLEY. Improved "Order-N" Performance Algorithm for Simulation of Constrained Multi-rigid-body Dynamic Systems. Multi-rigid-body Dynamics.2003.9.185-212.
    [39]邓子龙,汪亮彬,张林艳,付越.液压挖掘机工作装置多体系统动力学仿真研究[J].机械与电子,2009,(12):33-35.
    [40]于国飞,宋文荣,许纯新.基于Matlab的挖掘机工作装置动力学方程[J].机械与电子,2009,(12):33-35.
    [41]刘杰,戴丽,赵丽娟,才娟,张靖.混凝土泵车臂架柔性多体动力学建模与仿真[J].机械与电子,2009,(12):33-35.
    [42]任会礼,王学林,胡于进,李成刚.履带起重机臂架后倾动力学仿真[J].机械与电子2005,(12):40-43.
    [43]张思奇,周淑文.混凝土泵车臂架自动浇筑联合仿真[J].工艺与设备,2006,11:91-93.
    [44]周淑文,张思奇.混凝土泵车臂架瞬态动力学分析[J].设计计算,2006,10:72-79.
    [45]王欣,姚敏,曹旭阳,白朝阳,周波,徐金帅.强夯机臂架防后倾研究[J].设计计算,2006,10:72-79.
    [46]吕彭民,汪红兵.混凝土泵车冲击载荷对结构动态特性的影响[J].中国公路学报,2003,16(4):115-117.
    [47]郭立新,陈长征,张国忠等.混凝土泵车布料机构水平工况的动态分析[J].振动与冲击,1999,18(3):77-80.
    [48]蒋红旗,王繁生.起重机吊臂结构有限元模态分析[J].振动与冲击,1999,18(3):77-80.
    [49]钟飞,史青录.基于ANSYS Workbench的挖掘机式冲击器工作装置模态分析[J].机械研究与应用,2012,(4):37-42.
    [50]童水光,蔡琴,袁铭鸿,张健,强夯机臂架应力测试与结构优化[J].工程设计学报,2013,20(2):126-139.
    [51]张成凤,徐长生.基于BP神经网络的起重船臂架结构优化设计[J].武汉理工大学学报(交通科学与工程版),2012,36(3):590-593.
    [52]同志学,史丽晨,张立岗.火车煤采样机多自由度机械臂运动轨迹控制研究[J].武汉理工大学学报(交通科学与工程版),2012,29(9):81-84.
    [53]刘晓峰.55t汽车起重机柔性臂架动特性及主动控制研究[D].大连理工大学,2011.
    [54]黎育红,聂凌霄.基于ADAMS虚拟样机的多体系统动力学仿真[J].武汉大学学报(工学版),2010,43(6):757-761.
    [55]Haihong L,hiyong Yang,Tian Huang. Dynamics and elasto-dynamics optimization of a 2-DOF planar parallel pick-and-place robot with flexible links. Struct Multidisc Optim (2009)38:195-204.
    [56]周新民,伯瑜,尹志宏,何邦贵.机械结构有限元建模动态凝聚技术的应用[J].重庆大学学报(自然科学版),2000,23:20-23.
    [57]陆念力,顾迪民,周贤彪.复杂多体机构动力学分析的等效有限元法[J].建筑机械,1991(9):11-15.
    [58]车仁炜.机构动力分析的一种等效元素法[D].哈尔滨工业大学,2000.
    [59]杨绿峰,韩志斌,李桂青.样条李兹法计算开口薄壁杆件约束扭转,广西科学,1998,5(4):276-279.
    [60]颜云辉,谢里阳,韩清凯.结构分析中的有限单元法及其应用[M].沈阳:东北大学出版社,2000,28-47.
    [61]Zhang Xuping, James KM. Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links.Intell Robot Syst, 50,323-340(2007).
    [62]Mehrdad Farid,Stanislaw A.Lukasiewicz.Dynamis modeling of spatial manipulators with flexible links and joints.Computers and Structures 75 (2000) 419-437.
    [63]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996:pp 52-57.
    [64]吴国荣,钟伟芳,李美之,梁以德.大运动柔性梁非线性动力响应分析[J].振动与冲击,2005,24(1):11-15.
    [65]王玉玲.多柔体系统刚柔耦合动力学有限单元法[J].山东建筑工程学院学报,2001,16(1):65-69.
    [66]肖楠.基于刚柔耦合特性的非线性动力响应研究[D].天津大学,2006.
    [67]吴胜宝,章定国.大范围运动刚体-柔性梁刚柔耦合动力学分析[J].振动工程学报,2011,24(1):1-7.
    [68]ZHOUSu,PANZhen-kuan. IRRATIONAL TRANSFER FUNCTIONS OF EULER-BERNOULLI BEAMS AND APPLICATIONS TO MODELING FOR CONTROL DESIGNS[J]. JOURNAL OF QINGDAO UNIVERSITY,1999,12(4):1-11.
    [69]Slavic J, Boltezar M. Simulating multibody dynamics with rough contact surfaces and run-in wear[J].Nonlinear dynamics,2006,45:353-365.
    [70]A. J. Koivo, M. Thoma, E. kocaoglan, etc. Modeling and Control of Excavator Dynamics During Digging Operation[J]. J. Aerosp. Eng.,1996,6(1):8451-8459.
    [71]陈根良,王皓,来新民,林忠钦.基于广义坐标形式牛顿-欧拉方法的空间并联机构动力学正问题分析[J].机械工程学报,2009,45(7):41-47.
    [72]刁彦飞,魏洪兴,杨恩霞.拉格朗日方程平面展开式在机构动力学中的应用[J].哈尔滨工程大学学报,1999,20(3):90-96.
    [73]Mehrdad Farid, Stanislaw A. Lukasiewicz. Dynamic modeling of spatial manipulators with flexible links and joints[J]. Computers & Structures,2000,75 (4):419-437.
    [74]Basher,H.A. Modeling and simulation of flexible robot manipulator with a prismatic joint. Proceedings. IEEE SoutheastCon 2007.2007,3.
    [75]刘杰,戴丽,赵丽娟,才娟,张婧.混凝土泵车臂架柔性多体动力学建模与仿真[J].机械工程学报,2007,43(1):131-134.
    [76]LEUNG A Y T, WU Guozhong, ZHONG Weifang. Nonlinear dynamic analysis of flexible multibody system[J]. Acta Mechanica Solida Sinica,2004,17(4):330-336.
    [77]Eugeniusz Budny, Miroslaw Chlosta, Witold Gutkowski. Load-independent control of a hydraulic excavator, Automation in Construction,12,245-254(2003).
    [78]杨为,王家序,秦大同.液压挖掘机工作装置固有频率的试验灵敏度[J].农业机械学报,2006,37(2):21-24.
    [79]HE Qing-hua(何清华),GHANG Da-qing(张大庆),HAO Peng(郝鹏),ZHANG Hai-tao(张海涛).Modeling and control of hydraulic excavator's arm [J].J. CENT. SOUTH UNIV. TECHNOL.2006,13(4):422-427.
    [80]GAO Yingjie,JIN Yanchao,and ZHANG Qin. Motion Planning Based Coordinated Control for Hydraulic Excavators[J].CHINESE JOURNAL OF MECHANICAL ENGINEERING,2009,22(1):97-101.
    [81]刘震,毛君,陈洪月.多刚体系统动力学在锚杆机动力学建模中的应用[J].吉林大 学学报(信息科学版),2013,31(3):290-296.
    [82]K.S.ANDERSON and J.H.CRITCHLEY. Improved "Order-N" Performance Algorithm for Simulation of Constrained Multi-rigid-body Dynamic Systems. Multi-rigid-body Dynamics.2003.9.185-212.
    [83]袁士杰.Roberson-Wittenburg方程对非完整约束多刚体系统碰撞问题的推广[J].兵工学报,2009,45(7):41-47.
    [84]楚中毅,曲东升,孙立宁,崔晶.机器人动力学分析的等效有限元建模方法[J].机械工程学报,2005,41(6):13-17.
    [85]李建国,李爱雄,王洪山,黄枝姣.多步龙格-库塔方法的T1-稳定性[J].华中科技大学学报(自然科学版),2002,30(8):101-103.
    [86]Cai GuoPing,Hong Jiazhen. ASSUMED MODE METHOD OF A ROTATING FLEXIBLE BEAM.ACTA MECHANICA SINICA,37 (1),48-56(2005). Zhang Xuping, James KM. Dynamic modeling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links.Intell Robot Syst, 50,323-340(2007).
    [87]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996:pp 52-57.
    [88]宋建龙.柔性机械臂动力学建模与仿真研究[D].天津:天津大学,2001.
    [89]Cai GuoPing,Hong Jiazhen. ASSUMED MODE METHOD OF A ROTATING FLEXIBLE BEAM.ACTA MECHANICA SINICA,37 (1),48-56(2005).
    [90]童昕,罗宁,钱仲焱,冯培恩.液压挖掘机动态设计灵敏度分析方法[J].矿山机械,1997,11:25-26.
    [91]唐冕.大跨度自锚式悬索桥的静动力性能研究与参数敏感性分析[D].长沙:中南大学,2007,46-49.Tang Mian. The static and dynamic performance study of long-span self-anchored suspension bridges and parameter sensitivity analysis [D].Chansha:Central South University,2007,46-49.
    [92]张令弥,何柏庆,袁向荣.设计灵敏度分析的迭代模态法[J].南京航空航天大学学报,1994,3(26):320-321.
    [93]JONES K,TURCOTTE J. Finite element model updating using antiresonant frequencies. Journal of Sound and Vibration,252(4),717-727(2002).
    [94]张永德,汪洋涛,王沫楠,姜金刚.基于ANSYS与ADAMS的柔性体联合仿真[J].系统仿真学报,2008,20(17):4501-4504.
    [95]杨辉.刚-柔耦合动力学系统的建模理论与实验研究[D].上海:上海交通大学,2002.
    [96]刘杰,戴丽,赵丽娟,才娟,张靖.混凝土泵车臂架柔性多体动力学建模与仿真[J].机械工程学报,2007,43(1):131-135.
    [97]陈立平等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社.2005.
    [98]丁国富.液压挖掘机虚拟样机的实现方法和技术研究[D].浙江大学,2001.
    [99]朱伟,马履中,吴伟光,陈修祥.基于三平移并联机构的三维减振平台建模与仿真[J].农业机械学报,2008,39(1):142-146.
    [100]杜立群,颜云辉,王德俊.智能结构梁横向自由振动的状态矢量法[J].沈阳工业大学学报,1998,20(4):9-13.
    [101]杨辉.刚-柔耦合动力学系统的建模理论与实验研究[D].上海:上海交通大学,2002.
    [102]韩力,于骁,吕新民.PID控制在大型起重船吊物系统中的应用[J].起重运输机械,2011,(6):42-45.
    [103]刘金琨著.先进PID控制MATLAB仿真(第二版)[M].北京:电子工业出版社.2004年9月.
    [104]夏长亮,王明超.基于RBF神经网络的开关磁阻电机单神经元PID控制[J].中国电机工程学报2005,25(15):161-164.
    [105]白桦,陆念力,吕广明.液压挖掘机工作装置运动轨迹的智能化模糊控制.建筑机械,2000(1):39-41.
    [106]Pyung H C, Lee S J. A straight-line motion tracking control of hydraulic excavator system. Mechatronics,2002(1):119-138.
    [107]何钺.现代控制理论基础(机械类)[M].西安西安交通大学出版社,1988.
    [108]于国飞,宋文荣,许纯新.挖掘装置操作臂末端轨迹控制的试验研究[J].中国机械工程,2003,14(17):1448-1451.
    [109]周波,周辉.挖掘机器人工作轨迹跟踪智慧控制[J].武汉科技大学学报:自然科学版,2002,25(4):402-405.
    [110]Haga M, Hiroshi W, Fujishima K. Digging control systemfor hydraulic excavator. Mechatronics, 2001(6):665-676.
    [111]汪亮彬.液压挖掘机工作装置斗尖轨迹控制研究[D].大连:辽宁石油化工大学,2010.
    [112]P.M.Fitz Simons, J.J.Palazzolo. Part 1:Modeling of a one-degree-of-freedom active hydraulic mount.ASME Journal of Dynamic Systems[J].Measurement and Control.2000,118(3):439-442.
    [113]许益民.电液比例阀控制系统分析与设计[M].北京:机械工业出版社,2005:116-138.
    [114]Deticek E, Kiker E. A daptive force control of hydraulic drives of facility for testing mechanical constructions[J]. Experimental Techniques.2001,25(1):35-39.
    [115]程涛.液压挖掘机的轨迹规划与控制[D].东北大学硕士学位论文.2007.
    [116]石秉良,张孝祖,薛念文,周孔亢.车辆悬挂系统的可控性与可观测性[J].江苏理工大学学报,1999,20(3):4-7.
    [117]张兴华,孙振兴,王德明.电动汽车用感应电机直接转矩控制系统的效率最优控制[J].电工技术学报,2013,28(4):255-260.
    [118]崔硕.时域指标在滚动轴承故障诊断中的应用[J].机械工程与自动化,2008,(1):101-102.
    [119]吕宪勇.挖掘机工装轨迹控制系统设计及实验研究.哈尔滨工业大学硕士学位论文.2011.
    [120]孙立宁,于晖,祝宇虹,张秀峰,蔡鹤皋.机构影响系数和并联机器人雅克比矩阵的研究[J].哈尔滨工业大学学报,2002,34(6):810-814.
    [121]高贯斌,王文,林铿,陈子辰.基于RBF神经网络的关节转角误差补偿[J].机械工程学报,2010,46(12):20-24.
    [122]吕广明.工程机电技术[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [123]李杰.板结构动应力优化设计研究[D].郑州:郑州机械研究所,2004.
    [124]石英,肖金生,刘春晓,崔东周.配气凸轮优化设计的惩罚函数法和增广拉格朗日乘子法[J].系统仿真学报,2008,20(17):4501-4504.
    [125]代向歌,彭高明.BP-GA算法对斗轮堆取料机回转平台的结构优化[J].机械设计与研究,2012,28(1):105-120.
    [126]于兰峰,王金诺.塔式起重机结构系统动态优化设计[J].西南交通大学学报,2007,42(2):206-210.
    [127]周海亭,吴坚华,姚利锋.动态缩聚法在齿轮箱船体基座动态响应中应用[J].噪声与振动控制,2002,34(6):6-8.
    [128]Byung-Young Moon, Beom-Soo Kang, Byeong-Soo Kim. Dynamic analysis of harmonically excited non-linear structure system using harmonic balance method[J]. KSME International Journal, 2001,15(11):1507-1516.
    [129]伍建国,陈新,毛海军,孙庆鸿.内圆磨床床身设计参数的灵敏度分析及动态设计[J].南京航空航天大学学报,2002,34(6):544-547.
    [130]李国超,简弃非,刘海燕.非线性约束在柴油机缸径与活塞行程优化设计中的应用[J].华南理工大学学报(自然科学版),2005,33(11):107-110.
    [131]张晶,翟鹏程,张本源.惩罚函数法在遗传算法处理约束问题中的应用[J].武汉理工大学学报,2002,24(2):52-59.
    [132]于颖,於孝春,李永生.扩展拉格朗日乘子粒子群算法解决工程优化问题[J].机械工程学报,2009,45(12):167-172.
    [133]梁晶晶,李瑞琴,任家骏,等.新型行星锥齿轮无级变速传动机构参数优化[J].机械设计,2013,30(3):49-52.
    [134]贺孝梅,刘初升,张成勇.基于增广拉格朗日乘子法的大型振动筛动态优化设计[J].中国矿业大学学报,2009,38(1):80-82.
    [135]王吉权,王福林,邱立春.基于BP神经网络的农机总动力预测[J].农业机械学报2011,42(12):121-126.
    [136]唐文艳,顾元宪.遗传算法在结构优化中的研究进展[J].农业机械学报,2002,32(1):26-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700