用户名: 密码: 验证码:
深海七功能主从液压机械手及其非线性鲁棒控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搭载在水下运载器上的深海七功能主从液压机械手扩展了人类在海洋资源开发、海洋科学研究和深海水下作业等方面的作业能力,对于深海七功能主从液压机械手及其关节位置跟踪控制方法的研究具有重要的意义。
     本文研究了深海七功能主从液压机械手系统及其非线性鲁棒控制方法。论文提出了一种新的基于液压补偿环的双螺旋传动的从手肘关节结构,解决了从手肘关节的低速大扭矩、大摆角、配油配电和高度集成化问题;以从手肘关节研究对象,研究了具有参数不确定、未知外界扰动和部分状态反馈的肘关节非线性鲁棒控制方法;在成功研制了国家高技术研究发展计划4500米级深海七功能主从液压机械手的基础上,提出了针对具有参数不确定性、强非线性、液压系统和机械系统强耦合以及部分状态反馈的深海主从液压机械手从手系统的多输入多输出非线性鲁棒控制方法,解决了从手关节位置的跟踪控制问题。
     本文共分为七章,各章内容概括如下:
     第一章,介绍了深海七功能主从液压机械手系统的发展历史和现状,指出当前深海七功能主从液压机械手系统的难点和不足;介绍了目前深海七功能主从液压机械手从手的肘关节实现的各种方法;并回顾了当前比较流行的各种机械手控制方法;最后阐述了本课题的研究意义、研究难点和研究内容。
     第二章,介绍了深海七功能主从液压机械手系统的开发背景、总体结构设计、各分系统组成,以及各子系统的性能特点等。
     第三章,针对当前深海七功能主从液压机械手从手肘关节的配油配电、低速大扭矩、大摆角、高度集成的问题,提出基于液压补偿环的、具有配油配电功能的、双螺旋传动的从手肘关节结构。本章首先介绍从手肘关节的研究背景,详细研究了双螺旋液压传动的各种配置、运动学和动力学模型,在此基础上提出了基于压力补偿环的双螺旋液压摆动传动和具有配油、配电功能的深海七功能主从液压机械手从手肘关节。最后通过台架试验验证所研究的深海七功能主从液压机械手从手肘关节运动学特性和动力学特性,证明了深海七功能主从液压机械手从手肘关节良好的低速大扭矩传动特性。
     第四章,针对存在参数不确定性、液压系统和机械系统强耦合、强非线性特性的从手肘关节角度位置跟踪控制问题,提出了基于鲁棒自适应控制的全状态反馈非线性鲁棒控制方法,该方法是基于Backstepping控制设计方法和鲁棒自适应控制方法,使用Lyapunov稳定性理论,证明了当存在系统参数不确定时闭环系统的全局渐近稳定性和跟踪误差的渐近收敛性。仿真和实验研究表明,所提出的全状态反馈非线性鲁棒自适应控制方法具有良好的控制品质和鲁棒性能。
     本章还针对同时具有参数不确定性和部分状态反馈的深海七功能主从液压机械手从手肘关节的非线性鲁棒控制问题,提出了基于鲁棒观测器的鲁棒自适应控制方法,解决参数不确定性和部分状态反馈同时存在的控制难点问题。通过仿真研究和实验表明基于鲁棒观测器的鲁棒自适应控制器具有很好的控制品质和鲁棒性能,观测器的观测位置和速度误差具有较好的收敛性。
     第五章,针对基于模型控制的控制器设计对受控系统精确模型要求,详细分析了深海七功能主从液压机械手从手的D-H坐标变换矩阵,并以此为基础建立了末端执行器的雅克比矩阵和各个从手连杆质心的雅克比矩阵,从而得到机械手从手多刚体系统的总动能和势能,利用拉格朗日能量法建立机械手从手的多刚体动力学方程。文中还讨论了从手各连杆质量属性的获得以及应用到深海水场合下的液压机械手从手动力学模型势能力补偿方法;文中还介绍了利用MATLAB/Simulink仿真软件(?)Pro/Engineering接口直接建立深海七功能主从液压机械手从手的多刚体动力学Simulink仿真模型。最后通过应用具有重力补偿的PD控制器对深海七功能主从液压机械手从手的多刚体动力学模型进行位置跟踪仿真来验证所建立的模型的正确性。
     第六章,针对具有参数不确定性、液压和机械系统强非线性耦合特性的深海七功能主从液压机械手从手的多输入多输出关节位置跟踪的鲁棒控制问题,提出了基于滑模控制的多变量输入输出非线性鲁棒控制方法,利用Backsteping控制器设计方法,对液压机械手系统进行解耦控制,使用基于Lyapunov稳定性理论的设计方法保证了控制器的稳定性和渐进收敛的特性,通过在4500米级深海七功能主从液压机械手实验平台上的仿真和实验研究表明,所提出的控制方法具有很好的控制品质和鲁棒性能。
     本章还利用第四章提出的基于鲁棒观测器的鲁棒自适应控制器设计方法,研究机械手从手基于鲁棒观测器的多输入多输出鲁棒自适应控制方法,从理论上解决了具有参数不确定性、未知外界干扰、部分状态反馈以及液压系统和机械系统强非线性耦合的位置跟踪控制问题。
     第七章,总结归纳了本文的主要研究工作和创新点,对深海七功能主从液压机械手前沿研究作出展望以及未来所需要继续开展的工作。
Mounted on the subsea undwater vehicle, subsea seven functions master-slave hydraulic manipulator greatly extens people's capability in the development of marine resources, marine scientific reaseachs and subsea operational capabilities, ect., The studies on the subsea seven function maser-slave hydraulic manipulator system and its joint position tracking control methods have important significance.
     This dissertation focuses on the study of seven function master-slave hydraulic manipulator system and it nonlinea robust control methods. A new elbow structure of the slave manipulator based on the pressure compensated ring using the double-srew-pair transmission method is proposed, which solved the problems of low speed and high torque, large swing angles, oil and electricity distribution functions and high integration of the elbow of the slave manipulator. Using the elbow of the slave manipulator as the study object, the nonlinear robust control method of the elbow system, which has parametric uncertainties, uncertain outer disturbances and partial feedbacked states, was studied. Based on the subsea seven fuction master-slave hydraulic manipulator of National High Tech. Development Project of4500meters class deep sea operational systems, which was successfully developed, a multi-input mulit-output(MIMO) roubust nonlinear control method focusing on slave manipulator control system in presents of parametric uncertainties, strong nonlinearities, strong couples between hydro-mechanical systems as well as partly feedbacked states is proposed, which solved the joint positons tracking problems of the slave manipulator.
     This dissertation is divided into seven chapters, each chapter is summarized as follows:
     In the first chapter, the histrory developments and current status of subsea seven function master-slave hydraulic manipulators were introduced. The advantages and shorotcomings of subsea seven function master-slave manipulator were also been analyzed. The elbows of current prevailing subea hydraulic manipulators were been reviewed. Then the current popular manipulator control methods were introduced. Finally, the research significance, research difficulties and research contents were presented.
     In chapter two, the development background of the subsea seven function master-slave hydraulic manipulator was introduced, and then its total structure and sub-systems along with their features and performance were also described briefly.
     In chapter three, according to the problems of oil and electricity distribution function, low speed high torque, large swing angles of highly integrated slave manipulator elbow, a new kind of slave manipulator elbow based on the double-screw transmission principle is proposed, in this chapter, the research background of the elbow was introduce firstly, then with the detailed sutdy of the kinematics and dynamics model of the various hydraulic driving double-screw-pair trasmisision configurations, a swinging elbow structure of slave manipulator based on the double-screw-pair transmission under hydraulic drive, wich had the function of oil and electricy distribution, was proposed based on the pressure compensated ring; Finally, the kinematics and dyanimcs character of developed slave mainpulator elbow was verified under the labotory, which tesified its well low speed high torque driving character which satisfied the requirements of the subsea seven function master-slave hydraulic manipulator.
     In chapter four, for the slave manipulator elbow joint angle position tracking systems with parameter uncertainties and strong hydro-mechanical coupled nonlinearity characters, taking the advantages of Backstepping controller design method, a full state feeback robust adaptive control algorithm is proposed. By the Lyapunov stability design method, the global stability and convergence of full state feedback robust adaptive controller close-loop system is guarenteed under parameter uncertainties. For the slave manipulator elbow joint position tracking with parameter uncertainties and partial states feedback, a novel robust adaptive controller based on the robust observer is designed. Simulation and experiments showed that the proposed controllers have perfect control performance and robust character, the observe error of position and velocity is converged fairly well. The proposed robust adaptive control algorithm based on the robust observer could also be applied to multi input-output variables control of subsea seven function master-slave hydraulic control system.
     In chapter five, for the requirement of accurary plant modeling for model based control design, the D-H coordinate transformation and its transformation matrix of slave manipulator were analysised, and then the end-effector Jacobian matrix and all links Jacobian matrix of slave were established, which could be used to develop the total kinematic and potential energy of the salve manipulator. Based on the Larange energy method, the dynamic equation of slave manipulator was derived. The way to aquire the linkage mass attribution was also discussed in detail. And to apply the dynamic equation of slave manipulator to subsea environment, the potential-energy-like force was compensated. The method to develop miltibody dynamics simulation model in Matlab/simulink software was alse discussed.finally, the accurate of slave manipulator mulit-body dynamic model was verified with the control of PD controller with gravity compensation, and the estabilished mulit-body dynamic model could be applied to the study of position tracking control of slave manipulator of subsea seven function master-slave manipulator systems.
     In chapter six, for the MIMO robust positon tracking control of slave manipulator of subsea seven function master-slave maniputor with parametric unceranities, external unknow disturbances and strong hydro-mechical coupled nonlinearities. A multi-variable sliding mode robust control method with Backstepping controller design method is proposed, with the help of Backstepping design method, the coupled hydro-mechanical system was decoupled, and by the Lyapunov stability design mehod, the global stability of closed loop system was guaranteed. The simulation and experiments on the slave manipulator showed that the proposed controlled had fairly well control performance and robustness. And based on the control method propsed in chapter four, a novel MIMO robust adaptive controller based on robust observer is discussed, which theoreticall solved the control problems with partial feedbacked states, parameter uncertainties and strong hydro-mechanical coupled nonlinearities of slave manipulator of subsea seven function slave-master hydraulic manipulator.
     In chapter seven, the main work results and innovations of the dissertation were summarized. Future work and the research orientation of the subsea seven function master-slave hydraulic manipulator were also prospected.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科学出版社,2000.
    [2]晏勇,马培荪,王道炎等.深海ROV及其作业系统综述[J].机器人,2005,27(1):82-89
    [3]腾宇浩,张将,刘健.水下机器人多功能作业工具包[J].机器人,2002,24(6):492-496
    [4]Schilling robotics.http://www.schilling.com
    [5]ISE.http://www.ise.bc.ca/rov.html
    [6]孟庆鑫,张铭钧等.水下作业机械手的研究与发展[J].海洋技术.1995,14(4):108-111
    [7]马夏飞.主从式多功能水下机械手结构设计要点浅析[J].海洋技术.1991,10(4):60-65
    [8]章艳.压力适应型深海水下液压机械手主从式多关节复合控制研究[D].浙江大学硕士学位论文.2006:5-10
    [9]Mark W.spon. Robot Dynamics and control [M]].Jonh Willey and Sons, NewYork,1989:5-10
    [10]Ishitsuka, Makoto,Ishii.Kazuo. Development of an Underwater Manipulator mounted for an Auv. Department of Brain Science and Engineering,Proc. Of MTS/IEEEOCEANS,2005, P1640020 Kyushu Insitute of Technology,Wakamatsu,Kitakyushu 808-0196, Japan
    [11]Frost.A.R, McMaster.A.P,etc.Development of a remotely operated vehicle for aquaculture. Aquacultrual Engineering,v15,no.6,1996:461P;
    [12]Hyungwon SHIM, Bong-Huan JUN, Pan_Mook LEE, Hyuk Baek. Workspace control system of underwater tele-operated manipulators on an ROV[J]. Ocean Engineering,2010, 37(11-12):1036-1047.
    [13]E.I.Rivin. Mechanical Design of Robots[M]. McGraw-Hill, New York,1998
    [14]陈卓如.低速大扭矩液压马达理论、技术与设计[M].北京:机械工业出版社,1989
    [15]赵应樾.液压马达[M].上海:上海交通大学出版社,2000
    [16]J G Ziegler, N B Nichols. Optimum Settings for Automatic Controllers[J]. IEEE Transactions of the ASME,1942, November:759-768
    [17]O D Aidan. Handbook of PI and PID Controller Tuning Rules[M]. Imperial College Press: London,2006.
    [18]John J.Craig. Introduction to Robotics Mechanics and Control[M].机械工业出版社2006
    [19]GOOD,M.C.,SEWWT,L.M., STROBEL,K.L.Dynamic Models for Control System Design of Integrated Robot and Drive Systems[J] ASME J.Dyn.Sys.,Meas.,and Cont.,Vol.107,Mar 1985
    [20]LUH,J.Y.S., An Anatomy of Industrial Robots and Their Controls[J], IEEE Tans. Automation Control, vol. ac-28, no.2,FEB.1983
    [21]RIVIN, E.I. Mechanical Design of Robots[M]. MCGRAW-HILL ST.LUOIS,1988
    [22]P.K.Khosla.Some Experimental Results on Model-Based Control Schemes[J]. IEEE Conference on Robotics and Automation, Philadelphia, April 1988
    [23]M.Leahy,K.Valavanis, G.Saridis. the Effects of Dynamic Modles on Robot Control[M]. IEEE Conference on Robotics and Automation. San Francisco, April 1986
    [24]A Unified Approach for Motion and Force Control of Robot Manipulators:The Operational Space Formulation,"IEEEJournal of Robotics and Automation. Vol.Ra-3,NO.1,1987
    [25]C.An, C.AtKenson, J.HollerBach,"Model-Based Control of Direct Drive Arm,PartⅡ: Control[J]. IEEE Conference on Robotics and Automation, Philadelphia, Aprial 1988
    [26]FORREST-BARLACH, M.G., BABCOCK, S.M. Inverse Dynamics Position control of a compliant manipulator[J],Proc. IEEE conference on Robotics and Automation,San Francisco,pp.196-205,Apr 1986.
    [27]Jean-Jacques E.Slotine Weiping Li. Applied Nonlinear Contro[M]. 机械工业出版社,2006
    [28]Utkin, V.I.. Variable Structure Systems with Sliding Mode:A Survey[J]. E.E.E Trans. Automatic Control,2(1977)
    [29]Yorger.D.R., Slotine J.-J.E. Task-Resolved Motion Control of Vechicle Manipulator Systems[J]. Int. J.Robotics and Automation.1966
    [30]Young K.-K.D. Controller Design for A Manipulator Using Theory of Variable Structure Systems[J]. IEEE Transaction Systems, Man, Cybernetics,8,2(1978)
    [31]Cheng Guan, Shanan Zhu. Adaptive Time-Varying Slindg Mode Control for Hydraulic Servo System[J].8th International Conference control. Automation Robotics and Vision Kunming, China,6-9the December 2004
    [32]K J Astrom, B Wittenmark. Adaptive Control[M], Boston:Addison-Wesley,1989.
    [33]K R Goheen, E R Jefferys. Multivariable Self-Tuning Autopilots For Autonomous and Remotely Operated Underwater Vehicle[J]. IEEE Journal of Oceanic Engineering,1990, 15(3):144-151
    [34]Jean-Jacques E.Slontine, WEIPING Li. Adaptive manipulator control:A Case Study[J]. IEEE Transaction on Automation Control.. Vol.33, No.11, November1988
    [35]Jean-Jacques E.slotine. Putting Physics in Control-The Example of Robotics[J]. IEEE Control Systems Magazine,1998
    [36]Romeo Ortega, Mark W.Spong. Adaptive Motion Control of Rigid Robots:A tutorial [J]. Proc.27th Conferrence on Decision and Control, Austin,Texas. Dec1988
    [37]Mark W.Spong. On the Robust Control of Robot Manipulators[J]. IEEE Transactions On Automation Control, Vol 37, No.11, November 1992
    [38]Miroslav Kristic, Ioannis Kanellakopoulos Petar Kokotovic. Nonlinear and Adaptive Control Design[M]. JOHN WILEY AND SONS, NEW YORK 2005
    [39]A P Aguiar, A M. Dynamic Positioning and Way-Point Tracking of Underactuated AUVs in the Presence of Ocean Currents[J]. International Journal of Control, 2007,80(7):1092-1108
    [40]J H Li, P M Lee. Design of an Adaptive Nonlinear Controller for Depth Control of an Autonomous Underwater Vehicle[J]. Ocean Engineering,2005,32(6):2165-2181
    [41]高剑,赵宁宁,徐德民等.水下航行器轴向运动的自适应积分反演跟踪控制[J].兵工学报,2008,29(3):374-378
    [42]K W Zhu, L Y Gu. A MIMO Nonlinear Robust Controller for Work-Class ROVs Positioning and Trajectory Tracking Control[C]. Proceedings of 2011 Chinese Control and Decision, Mianyang, Sichuan, May 23-25,2011,2565-2570
    [43]Bin Yao. Adaptive Robust Control of Nonlinear Systems with Application to Control of Mechanical Systems[D]. University of California at Berkeley.
    [44]Bin Yao. Desired Compensation Adaptive Robust Control [J]. Journal of Dynamic Systems,Measurement, and Control.Vol.131.2009:0610001-7
    [45]Bin Yao, Masayoshi Tomizuka. Smooth Robust Adaptive Sliding Mode of Control of Manipulators with Guaranteed Transient Performance [J]. the Journal of Dyanmic Systems,Measurement, and Control. Vol.118,2006
    [46]Amit Mohanty, Bin Yao. Indirect Adaptive Robust Control of Hydrualic Manipulators with Accurate Parameter Estimates[J]. IEEE Transactions on Control Systems Technology. May 2011, Vol.19,No.3
    [47]Amit Mohanty, Bin Yao. Indirect Adaptive Robust Control of Uncertain Systems with Unknow Asymmetric Input Deadband using A Smooth Inverse[J]. Proc. ASME Dynamic Systems and Control Conference, Oct.2009,Hollywood, California,USA.
    [48]B.Yao and M.Tomizuka. Adaptive Robust Control of SISO Nonlinear Systems in a Semi-strict Feedback Form. Automatica, Vol.33. No.5, pp.893-900,1997.
    [49]B.Yao and M.Tomizuka. Adaptive Robust Control of MIMO Nonlinear Systems. IEEE Conference on Decision and Control. Pp2346-2351,1995
    [50]B.Yao. High Performance Adaptive Robust Control of Nonlinear Systems:a General Framework and New Schemes[J]. Proc. Of IEEE Conference on Decision and Control, pp335-340,1996.
    [51]BinYao, Fanping Bu, Jhon Reedy, George T.-C.Chiu. Adaptive Robust Motion Control of Signle-Rod Hydraulic Acutators:Theory and Experiments. IEEE Transcation on Mechatronics, Vol.5, No.1,March 2000
    [52]Fanping Bu, Bin Yao. Adaptive Robust Precision Motion Control of Sigle-Rod Hydraulic Auctuators with Time-Varying Unknow Inertia:A Case Study[J].
    [53]B.Yao and M.Tomizuka. Smooth Robust Adaptive Sliding mode Control of Robot Manipulators with Garanteed Transient Performance[J]. in Proc. Of American Control Conference,pp.1176-1180,1994.
    [54]D G Luenberger. Observing the State of a Linear System[J]. IEEE Transactions on Military Electronics,1964,8(2):74-80
    [55]R E Kalman, R C Bucy. New Results in Linear Filtering and Prediction Theory[J]. Transactions on ASME,1961,83(D):95-107
    [56]刘豹,唐万生.现代控制理论[M].机械工业出版社,第三版,2006.
    [57]D G Luenberger. High Gain Observer for Structured Multi-Output Nonlinear Systems[J]. IEEE Transactions on Automatic Control,2010,55(4):987-992
    [58]J Davila, L Fridman, A Levant. Second-Order Sliding-Mode Observer for Mechanical Systems[J]. IEEE Transactions on Automatic Control,2005,50(11):1785-1789
    [59]J Davila, L Fridman, A Direct Algebraic Approach to Observer Design under Switching Measurement Equations[J]. IEEE Transactions on Automatic Control,2004, 49(11):2044-2049
    [60]G.Kreisselmeier. Adaptive Observers with Exponential Rate of Convergence. IEEE Transactions on Automatic Control, vol.22, pp.2-8,1977
    [61]P.V.Kokotovic, Ed. Foundations of Adaptive Control[M]. Springer-Verlag., Berlinl 991
    [62]R.Marino, P.Tomei. Global adaptive Observers and Output Feedback Stabilization for a Class of Nonlinear Systems, pp.455-493
    [63]Bin Yao, Li Xu. Observer-based Adaptive Robust Control of a Class of Nonlinear Systems with Dynamic Uncertainties [J]. International Journal of Robust and Nonlinear Control. 2001,11:335-356
    [64]C.Canudas De Wit, N.Fixot Adaptive Control of Robot Manipulators via Velocity Estimated Feedback[J]. IEEE Transcation on Automation Control, Vol.37, No.8, August 1992
    [65]C.Canudas de Wit,N.Fixot, K.J.Astrom. Trajectory Tracking in Robot Manipulators via Nonlinear Estiamted State Feedback[J]. IEEE Trans. Robot. Automat., Vol.8, No.1, pp.138-144, Feb.1992
    [67]C.Canudas De Wit, J.J.E. Slotine. Sliding Observers for Robot Manipulators. Automatica, Vol.27, No.5, pp.859-864,1991
    [68]A.Filipescu,Al.Stancu, G.Stamatescu. On-line Parameter Estimation and Adaptive Gain Smooth Slinding Observer-Controller for Robotic Manipulator Control[J]. IEEE International Conference on Control and Automation. Guangzhou, China, May 2007
    [69]Mohammad Reza Sirousspour, Septimiu E.Salcudean. Nonlinear Control of Hydrualic Robots[J]. IEEE Transcations on Robtics and Automation, vol.17, No.2, April 2001
    [70]Fanping Bu, Bin Yao. Observer Based Coordiated Adaptive Robust Control of Robot Manipulator Driven by Signle-Rod Hydraulic Acutators[J]. Proc. Of IEEE Internaitonal Conference on Robotics and Automtion, San Francisco,CA. April 2000
    [73]王峰.基于海水压力的水下液压系统关键技术研究[D].浙江大学,2009
    [74]邱会强.深海水下作业机械手仿形手柄控制技术研究[D].浙江大学,2006
    [75]周海强,陈道良.摆动液压缸内部结构改进设计[J].液压气动与密封,2007-6
    [76]李树立,焦宗夏.叶片式摆动油缸马达泄露计算与控制[J],液压与气动,2005-11
    [77]H M Geyer. Rotary actuator. United States:US2945387[P].1960-07-19
    [78]H A Block. Fluid actuator for linear and rotary movements[P]. United States, Utility Patent Grant. US2955579.1960-10-11.
    [79]刘伟涛.360°双螺旋副旋转油缸内部流动特性及效率研究[D].长沙:中南大学,2010:37-40
    [80]李松柏.螺旋摆动液压缸动态特性的研究[D].长沙:中南大学,2011:18-22
    [81]石延平,臧勇.螺旋摆动油缸的工作效率分析及提高方法[J].液压与气动,2011-5
    [82]H.E.Merrit. Hydraulic Control Systems[M].New York, Willey,1967
    [83]J.Whatton. Fluid Power Systems[M]. Prentice Hall,1989
    [84]施生达.潜艇操纵性[M].国防工业出版社,1995.
    [85]王春行.液压控制系统[M].机械工业出版社,2004.
    [86]王占林.近代电气液压伺服控制[M].北京航天航空大学出版社,2005
    [87]Jean-Jacques E. Slotine,Weiping Li. Applied Nonlinear Control [M]. EagleWood Cliffs, New Jersey, Prentice Hall,1991
    [88]P.M. FitzSimons, J.J.Palazzolo.Part I:Modeling of a One-degree-of-freedom Active Hydraulic Mount[J]. ASME. Dynam. Syst, Meas., Contr., Vol.118, No.3, pp.439-442,1996
    [89]P.M. FitzSimons, J.J.Palazzolo.Part II:Control[J]. ASME. Dynam. Syst., Meas., Contr., Vol.118,No.3, pp.443-448,1996
    [90]A.Alleyne, J.K.Hedrick. Nonlinear Adaptive of Active Suspension[J]. IEEE Trans. Contr. Syst. Technol., Vol.3, pp.94-101, Jan.1995.
    [91]C.Canudas de Wit,K.J.Astrom, and N.Fixot. Computed Torque Control via Nonlinear Observers[J].IJACSP, vol.4, no.6, pp.443-452, Nov.1990
    [92]G.Leitman. On the Efficacy of Nonlinear Control in Uncertain Linear Systems[J]. J.Dynam. Syst. Measure Contr., vol.103, pp.95-102,1981
    [93]V.I.Utkin. Variable Structure Systems with Sliding Mdoe:A Survey [J]. IEEE Trans. Automat. Contr., vol.AC-22, p.212,1997.
    [94]A.Alleyne. Nonlinear Force Control of an Electrohydraulic Actuator[J]. in Proc. of JAPAN/USA Symposium on Flexible Automation,Boston, pp.193-200,1996
    [95]Miroslav Krstic, Ioannis Kanellkopoulos, Peter Kokotovic. Nonlinear and Adaptive Control Design [M]. John Wiley and Sons, NewYork,1995
    [96]C.Canudas de Wit, J.J.E.Slotine. Sliding Observers for Robot Manipulators", Automatica, vol.27, no.5, pp.859-864,1991
    [97]沈永欢.实用数学手册[M].科学出版社,1995.
    [98]A.F.Filippov. Differential Equation with Discontinuous right-hand side[J]. Amer. Math. Soc. Trans., vol.62, pp.199,1960
    [99]John J.Craig. Introduction to Robotics Mechanics and Control[M].Addison Wesley Longman, NewYork,1995
    [100]Mark W.Spong, M.Vidyasagar. Robot Dynamics and Control[M]. Joh Wiley & Sons, NewYork,1989
    [101]L.Huang. A Concise Introduction to Mechanics of Rigid Bodies[M]. Springer, NewYork,2011
    [102]Matlab. SimMechanics Link User's Guide.2012
    [103]F.L. Lewis, C.T. Abdallah, D.M. Dawson. Control of Robot Manipulators[M]. NewYork: Macmillan,1993;
    [104]H.Berghuis, H.NIjmeijer. Global Regulation of Robots Using Only Position Measurements. Syst. Contr. Lett., Vol.21, pp.289-293,1993
    [105]R.Kelly and R.Carelli. A Class of Nonlinear PD-type Controller for Robut Manipulator. J. Robotic Systems. Vol.13, No.12, pp 793-802,1996
    [106]J.Y.S. Luh, M.W. Walker, R.P.C. Paul. Resolved Acceleration Control of Mechanical Manipulators. IEEE Trans. Automat. Contr., vol.AC-25, pp.468-474,1980.
    [107]R.Ortega, M.W.Spong. Adaptive Motion Control of Rigid Robts:A Tutorial. Automatica, vol.25, pp.877-888,1989.
    [108]H.Berhuis, H.Nijmeijer. A Passiveity Approach to Controller-Observer Design for Robots. IEEE Trans. Robot. Automat., vol.9, pp.740-754, Dec.1993
    [109]B.Paden, R.Panja. Globally Asymptotically Stable'PD+' Controller for Robot Manipulator. Int. J. Contr., vol 47, pp.1679-1712,1998
    [110]J.J.-E Slotine,W. Li, On the Adaptive Control of Robot Manipulators. Int. J. Robot. Res., vol6,pp.49-59,1987
    [111]M.W.Spong. On the Robust Control of Robot Manipulators. IEEE Trans. Automat. Contr., vol.37,pp.1782-1786,1992
    [112]S.Zenieh, M.Corless. Simple Robust Tracking Controllers for Robotic Manipulators. In Proc. SYROCO'94, Sept.1994,pp.193-198
    [113]C.Abdallah, D.Dawson, P.Dorato, M.Jamshidi. Survey of Robust Control for Rigid Robots. IEEE Contr. Syst., pp.24-30,1991
    [114]J Stephant, A Charara, D Meizel. Evaluation of a Sliding Mode Observer for Vehicle Sideslip Angle[J]. Control Engineering Practice,2007,15:803-812.
    [115]Y X Su, P C Muller, C H Zheng. A Simple Nonlinear Observer for a Class of Uncertain Mechanical Systems[J]. IEEE Transactions on Automatic Control,2007, 52(7):1340-1345.
    [116]程月华,姜斌,孙俊等.基于滑模观测器的卫星姿态控制系统滑模容错控制[J].上海交通大学学报,2007,45(2):190-195.
    [117]F. Parasiliti, R. Petrella, M. Tursini. Sliding Mode Observer for Speed Sensorless Control of Induction Motors[C]. Proceedings of the 34th IAS Annual Meeting on Industry Applications Conference, Phoenix, AZ, USA, Oct 3-7,1999, Vol.4,2277-2283.
    [118]F.Bu, B.Yao. Observer Based Coordinated Adaptive Robust Control of Robot Manipulators Driven By single-Rod Hydraulic Actuators. In Proc. IEEE Trans. Int.Conf. Robotics and Automation. Apr.2000, pp.3034-3039
    [119]Mohammad Reza Sirouspour, Septimiu E.Salcudean. Nonlinear Control of Hydraulic Robots. IEEE Transactions ON Automation. Vol.,17,No.2,April,2001
    [120]C.Canudas de Wit, J.J.E.Slotine. Sliding Observers for Robot Manipulators. Automatica, Vol.27, no.5, pp.859-864,1991
    [121]Frank L.Lewis, Darren M.Dawson, Chaouki T.Abdallah. Robot Manipulator Control Theroy and Practice[M]. Marcel Dekker, New York,2004
    [122]Thomas R. Kurfess[M].CRC PRESS, NewYork,2005.
    [123]Jing Zhou, Changyun Wen. Adaptive Backstepping Control of Uncertain Systems[M]. Springer-Verlag, Berlin Heidelberg,2008.
    [124]Hassan K. Khalil. Nonlinear Systems, Third Edition[M]]. Prentice Hall, Upper Saddle River,2002.
    [125]R.H.Warring. Hydraulic Handbook[M]. Trade&Technical Press, England,1983.
    [126]P.Novak, A.I.B. Moffat, C.Nalluri, R.Narayanan. Hydraulic Structures[M]. Spon Press, London and New York,2001.
    [127]Wen-Hua Chen, Donald J.Ballance, Peter J.Gawthrop, John O'Reilly. A Nonlinear Disturbance Observer for Robotic Manipulators[J]. IEEE Transactions on Industrial Electronics. Vol.47, No.4, August 2000.
    [128]Mrdjan Jankovic. Adaptive Nonlinear Output Feedback Tracking with a Partial High-Gain Observer and Backstepping[J]. IEEE Transactions on Automatic Control. Vol.42, No.1, January 1997.
    [129]Rajesh Rajamani, J.Karl Hedrick. Adaptive Observers for Active Automotive Suspensions: Theory and Experiment[J]. IEEE Transactions on Control System Technology. Vol.3, No. 1, March 1995.
    [130]Riccardo Marino, Giovanni L.Santosuosso, Patrizio Tomei. Robust Adaptive Observers for Nonlinear Systems with Bounded Disturbances[J]. IEEE Transactions on Automatic Control. Vol.46, No.6, June 2001.
    [131]Jorge Davila, Leonid Fridman, Arie Levant. Second-Order Sliding-Mode Observer for Mechanical Systems[J]. IEEE Transactions on Atuomatic Control. Vol.50, No.11, November 2005.
    [132]S.V.Drakunov. Sliding-Mode Observers Based on Equivalent Control Method[J]. Proc. Of the 31st Conf. on Decision and Control. Tucson, Arizona, Dec.1992.
    [133]Shahram Tafazoli, Clarence W.de Silva, Peter D.Lawrence. Tracking Control of an Electrohydraulic Manipulator in the Presence of Friction[J]. IEEE Transactions on Control Systems Technology. Vol.6, No.3, May 1998.
    [134]S.Nicosia, P.Tomei. Robot Control by Using Only Joint Position Measurements[J]. IEEE Transactions on Automatic Control. Vol.35 No.9, September 1990.
    [135]K.David Young, Vadim I. Utkin, Umit Ozguner. A Control Engineer's Guide to Sliding Mode Control[J]. IEEE Transactions on Control Systems Technology. Vol.7 No.3, May 1999.
    [136]Jaime A. Moreno, Marisol Osorio. A Lyapunov Approach to Second-Order Slidng Mode Controllers and Observers[J]. Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico, Dec.9-11,2008.
    [137]G.Bartolini, A.Ferrara, E.Usai. Chattering Avoidance by Second-Order Sliding Mode Control[J]. IEEE Transactions on Automatic Control. Vol.43 No.2, Feb.1998.
    [138]Atsuo Kawamura, Hiroshi Itoh, Kiyoshi Sakamoto. Chattering Reduction of Disturbance Observer Based Sliding Mode Control[J]. IEEE Transactions on Industry Application. Vol. 30 No.2, March 1994.
    [139]J.-J.E.Slotine, J.K.Hedrick, E.A.Misawa. Nonlinear States Estimates Using Sliding Observers[J]. Proceedings of 25th Conference on Decision and Control. Athens,Greece, December 1996.
    [140]Shunmugham R.Pandian, Fumiaki Takemura, Yasuhiro Hayakawa, Sadao Kawamura. Pressure Observer-Controller Design for Pneumatic Cylinder Actuators[J]. IEEE Transactions on Mechatronics. Vol.7 No.4, December 2002.
    [141]Marco A.Arteaga, Rafael Kelly. Robot Control Without Velocity Measurements:New Theory and Experimental Results[J]. IEEE Transactions on Robotics and Automation. Vol. 20 No.2, April 2004.
    [142]Mohammed Jerouane, Francoise Lamnabhi. A New Robust Slidng Mode Controller for A Hydraulic Actuator [J]. Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, Florida USA, Dec.2001.
    [143]Harry Berghuis, Henk Nijmeijer. Robot A Passivity Approach to Controller-Observer Design for Robots[J]. IEEE Transactions on Robotics and Automation. Vol.9 No.6, Dec. 1993.
    [144]Young Man Cho, Rajesh Rajamani. A Systematic Approach to Adaptive Observer Synthesis for Nonlinear Systems[J]. IEEE Transactions on Automatic Control. Vol.42 No. 4, April 1997.
    [145]Yaolong Tan, Ioannis Kanellakopoulos, Zhong-Ping Jiang. Nonlinear Observer/Controller Design for a Class of Nonlinear Systems[J]. Proceedings of the 37th IEEE Conference on Decision & Control. Tampa, Florida USA, December 1998.
    [146]Roy Featherstone. Rigid Body Dynamics Algorithms[M].Springer, NewYork,2008.
    [147]John R.Taylor. Classical Mechanics[M]. University Science Books, NewYork,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700