用户名: 密码: 验证码:
考虑列车纵向作用的高架车站动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着国民经济日益增长的需求,铁路建设得到了快速发展,其中车站的建设规模越来越大,高架车站这种立体化的结构形式也得到越来越多的采用,在交通的高效组织和城市建设中扮演重要的角色。与此同时,这种新型的车站结构也会带来一些新的问题。列车通过高架车站以及在车站内频繁地制动或起动时,会引起列车和高架车站结构之间的动力相互作用,这种动力作用对结构的安全性和乘客及站内工作人员的舒适性产生影响。
     本文在车桥耦合振动理论的基础上,研究了高速铁路高架车站结构在车辆激励下的振动响应这一振动工程研究领域的前沿课题。通过建立列车一高架车站耦合系统三维动力分析模型,实现列车高速通过车站和在车站内制动或起动时的全过程动力仿真分析,对列车荷载在高架车站内传递规律进行研究,并对高架车站结构在列车荷载作用下的振动安全性和使用舒适度以及列车高速通过车站结构时的运行安全性和平稳性进行振动评价。主要的研究内容和创新点包括:
     (1)对高速铁路及高架车站的发展进行了综述,总结了高架车站的结构形式及特点、振动问题及研究内容。重点对车桥耦合振动、高架车站动力分析和列车纵向动力作用研究现状进行了总结,指出目前高架车站振动和列车纵向作用研究中的不足之处。
     (2)在以前列车纵向分析的传统单质点分析模型和纵向多质点模型基础上,建立高速动车组的纵向动力分析模型。基于此高速动车组的纵向分析模型,通过我国CRH2型200km/h动车组按7级常用制动在线路上制动停车的算例,计算得到作用于轨面的列车制动力时程。同时,研究了列车制动时对桥梁的纵向动力作用,通过建立考虑梁轨纵向相互作用的车辆—轨道—桥梁系统纵向动力分析模型,以典型国产高速列车制动时通过铺设无缝钢轨的十跨高墩简支梁桥作为算例,求解高速列车制动时车辆—轨道—桥梁系统的纵向动力响应。并与我国桥涵设计规范中关于列车制动附加力对桥梁结构静力作用的计算结果进行比较分析。
     (3)建立了考虑列车纵向作用的高速列车—高架车站系统动力分析模型,其中车辆子系统以多刚体动力学建立三维动力分析模型,推导考虑纵向自由度的车辆运动方程。车站结构子系统通过有限元建模,两者通过纵向、垂向和横向轮轨关系假定联系起来,由此建立的系统方程通过全过程迭代法求解。其中车辆—结构耦合关系是系统动力分析的关键,主要介绍了轮轨垂向和纵向密贴假定,横向的简化的Kaller线性蠕滑理论或蛇形波假定。而数值求解方法是研究的难点,主要介绍了全过程迭代法的计算流程及其与以往计算方法的区别和优势。
     (4)对列车在高架车站内制动进站和起动出站时车站结构的关键部位进行动力测试,分析列车的制动和起动对车站结构的振动影响,同时也为高架车站的动力仿真计算分析提供试验验证。并且进一步对车站结构的使用舒适性和安全性进行评价,并研究判别车站使用舒适性和安全性的初步标准。
     (5)以第3章介绍的高速列车—高架车站动力分析基本理论为基础,以南京南站为算例,计算分析南京南站在不同列车不同的运行状态下的动力响应特征,并结合第四章南京南站的动力测试,对比制动工况下的计算结果和实测结果。最后对列车和高架车站结构的振动舒适性进行评价。
ABSTRACT:With the increasing demand of national economy, the railway construction has developed a lot. The construction scale of railway station is becoming larger and larger, and the elevated railway station, which is a kind of three-dimensional structure, is more widely adopted, thus playing a significant role in the efficient organization of transport and urban construction. On the other hand, this new kind of station structure will bring some new problems. The train passing through the elevated railway station and its frequent braking and starting will lead to the dynamic interaction between the train and the station structure, which will influence the safety of structure and comfort of passengers and staff in the station.
     Based on the vehicle-bridge vibration theory, the frontier subject in the vibration-engineering field of the vibration responses of elevated high-speed railway station under vehicle load is studied in this dissertation. By establishing a three-dimensional dynamic analytical model of the coupling train-elevated railway station system, the whole process dynamic emulation analysis of a train passing through the station at a high speed as well as its braking and starting is performed.In this dissertation, the transfer mechanism of vehicle load in the elevated railway station is studied and the safety and comfort of the station structure under vehicle load as well as the safety and stability of the train passing through the station at a high speed are evaluated. The main research contents and innovation points are as follows:
     (1) The developments of the high-speed railway and the elevated railway station are summarized as well as the structures, the characters, the vibration problems and research contents of the elevated railway station. The vehicle-bridge coupling vibration, the dynamic analysis of elevated railway station and the longitudinal dynamic interaction of the train are especially summarized. Some weak points in the research of the vibration of elevated railway station and the longitudinal interaction of train are also proposed.
     (2) Based on the traditional single-particle analytical model and longitudinal multi-particle model on the longitudinal analysis of train, the longitudinal dynamic analytical model of high-speed EMU is established. Based on this longitudinal analytical model, through the study case of CRH2EMU with the speed of200km/h braking at a7-level service braking, the time-history of braking force acting on the rail surface can be obtained. Meanwhile, the longitudinal dynamic effect on bridge under the train braking is studied. Taking the longitudinal interaction between the bridge and rail into consideration, a longitudinal dynamic analytical model of train-rail-bridge system is established. Taking the typical domestic high-speed train passing through a10-span simply supported bridge paved with gapless rail as a study case, the dynamic responses of the train-rail-bridge system when a high-speed train is braking are obtained.
     (3) A dynamic analytical model of high-speed train-elevated railway station system considering the longitudinal interaction of train is established. In this model, the train subsystem is modeled as a three-dimensional analytical model on the basis of multi-body dynamics and the motion equation of train considering longitudinal degrees of freedom can be derived. The station structure subsystem is modeled through finite element modeling. The two subsystems are connected through the assumptions of longitudinal, vertical and transverse wheel-rail relations. The resulting system equations can be solved by the whole process iterative method. The train-structure coupling relation is the key to the dynamic analysis of the above system, in which the wheel and the rail are assumed to be closely contacted in the vertical and longitudinal directions and in the transverse direction, the wheel-rail relation is assumed through the simplified Kaller linear creep theory or the wheel-set hunting assumption. The Numerical method is a research difficulty and in this dissertation, the calculation procedure of the whole process iterative method is introduced as well as its differences from and advantages over other methods.
     (4) A dynamic test on the key parts of the station structure when the train is braking to stop in the station and starting to leave is performed. During the test, the vibration influence due to braking and starting of train on the station structure is analyzed and the test also provides experiment verification for the dynamic emulation analysis of the elevated railway station. The comfort of the station is also evaluated and the preliminary standard of station comfort is studied.
     (5) Based on the basic dynamic analysis theories of high-speed train-elevated railway station system introduced in Chapter3, with the Nanjing South Railway Station used as a study case, the dynamic response characteristics of the station under different train running status is calculated and analyzed. Combined with the dynamic tests introduced in Chapter4, the calculation results and the measured results under the same braking conditions are compared. Eventually, the vibration comfort of the train and the elevated railway station is evaluated.
引文
[1]夏禾,等.交通环境振动工程[M].北京:科学出版社,2010.
    [2]Flyba L. Dynamics of railway bridges [M]. London:Thomas Telford,1996.
    [3]Flyba L. Vibration of solids and structures under moving loads[M]. London:Thomas Telford, 1999.
    [4]曹雪琴,刘必胜,吴鹏贤.桥梁结构动力分析[M].北京:中国铁道出版社,1987.
    [5]夏禾,张楠.车辆与结构动力相互作用(第二版)[M].北京:科学出版社,2005.
    [6]翟婉明,夏禾.列车—轨道—桥梁动力相互作用理论与工程应用[M].北京:科学出版社,2011.
    [9]Chu K H, et al. Dynamic interaction of railway train and bridges[J]. Vehicle System Dynamics, 1980,9(4):207-236.
    [10]Chu K H, et al. Railway-bridge impact:simplified train and bridge model[J]. Structural Engineering, ASCE,1979,105(9):1823-1844.
    [11]Bhatti M H. Vertical and lateral dynamic response of railway bridges due to nonlinear vehicle and track irregularities [D]. Chicago:Illinois Institute of Technology,1982.
    [12]Wang T L, et al. Dynamic response of highway tracks due to road surface roughness[J]. Computers & Structures,1993,49(6):1055-1067.
    [13]Wang T L, Chu K H. Railway bridge/vehicle interaction studies with new vehicle model[J]. Structural Engineering,1991,117(7):2099-2116.
    [14]Diana G, Cheli F. Dynamic interaction of railway systems with large bridges[J]. Vehicle System Dynamics,1989,18(1-3):71-106.
    [15]Diana G, et al. A numerical method to define the dynamic behavior of a train running on a deformable structure[J]. MECCANICA,1988, Special Issue:27-42.
    [16]曹雪琴.列车通过时桥梁结构竖向振动分析[J].上海铁道学院学报,1981,2(3):1-15.
    [17]陈英俊.桥上列车在地震作用下的运行安全性[C].工程安全及耐久性—中国土木工程学会第九届年会论文集,2000:174-177.
    [18]曾庆元,郭向荣.列车桥梁时变系统振动分析理论及应用[M].北京:中国铁道出版社,1999.
    [19]王荣辉,郭向荣,曾庆元.高速列车—钢桁梁桥系统横向振动随机分析[J].铁道学报,1996,18(1):90-95.
    [20]郭文华,郭向荣,曾庆元.大跨度斜拉桥空间振动计算分析[J].振动与冲击,1998,17(1):30-33.
    [21]李小珍.高速铁路列车—桥梁系统耦合振动理论及应用研究[D].成都:西南交通大学博 士学位论文,2000.
    [22]李小珍,强士中.京沪高速南京越江钢斜拉桥车桥耦合振动分析[J].西南交通大学学报,1999,34(2):153-157.
    [23]翟婉明.车辆—轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [24]陈果.车辆—轨道耦合系统随机振动分析[D].成都:西南交通大学博十学位论文,2000.
    [25]王开云,翟婉明,蔡成标.车辆在弹性轨道结构上的横向稳定性分析[J].铁道车辆,2001,39(7):1-4.
    [26]蔡成标.高速铁路列车—线路—桥梁耦合振动理论及应用研究[D].成都:西南交通大学博士学位论文,2004.
    [27]高芒芒.高速铁路列车—线路—桥梁耦合振动及列车走行性研究[D].北京:中国铁道科学研究院博十学位论文,2002.
    [28]H. Xia, G. De Roeck and Jose M. Goicolea. Bridge vibration and control [M]. New York:Nova science publishers, inc,2012.
    [29]Xia H, Zhang N, Cao Y M. Experimental study of train-induced vibrations of environments and buildings[J]. Journal of Sound and Vibration,2005,280(3):1017-1029.
    [30]Xia H, Zhang N. Dynamic analysis of railway bridge under high-speed trains[J]. Computers & Structures,2005,83(23):1891-1901.
    [31]Xia H, Zhang N, De Roeck G. Dynamic analysis of high speed railway bridge under articulated trains[J]. Computers & structures,2003,81(26):2467-2478.
    [32]Xia H, Han Y, Zhang N, et al. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations[J]. Earthquake engineering & structural dynamics,2006,35(12): 1563-1579.
    [33]张楠.高速铁路铰接式列车车桥动力耦合问题的理论分析与实验研究[D].北京:北京变通大学博十学位论文,2002.
    [34]郭薇薇.风荷载作用下大跨度桥梁的动力响应及行车安全性分析[D].北京:北京交通大学博士学位论文,2004.
    [35]韩艳.地震作用下高速铁路桥梁的动力响应及行车安全性研究[D].北京:北京变通大学博士学位论文,2005.
    [36]杜宪亭.强地震作用下大跨度桥梁空间动力效应及列车运行安全研究[D].北京:北京变通大学博十学位论文,2011.
    [37]王少饮.风及列车荷载作用下大跨度桥梁振动响应研究[D].北京:北京交通大学博士学位论文,2012.
    [38]程潜,张楠,夏禾,等.考虑制动条件的高速列车—轨道—桥梁系统动力响应分析[J].中国铁道科学,2013,34(1):8-14.
    [39]程海涛,王成国,钱立新.考虑车体柔性的货车动力学仿真[J].铁道学报,2000,22(6):40-45.
    [40]陆正刚,郭慧明,柔性车辆振动和运行平稳性控制研究[J].中国机械工程,2005,17(10):1026-1030.
    [41]Yagiz N and Gursel A. Active suspension control of a railway vehicle with a flexible body[J]. International Journal of Vehicle Autonomous Systems,2005,3(1):80-95.
    [42]Zhu H, et al. Study on active suspension of rail vehicles based on flexible car-body with fuzzy control strategy[J]. China Mechanical Engineering,2006,17(18):1883-7.
    [43]李奇.车辆—桥梁/轨道系统耦合振动精细分析理论及应用[D].上海:同济大学博士学位论文,2008.
    [44]李奇,吴定俊,邵长宇.考虑车体柔性的车桥耦合系统建模与分析方法[J].振动工程学报,2011,24(1):41-47.
    [45]李小珍,蔡婧,强士中.芜湖长江大桥斜拉桥的车桥耦合振动分析[J].铁道学报,2001,23(4):70-75.
    [46]熊建珍,高芒芒,俞翰斌.天兴洲长江大桥斜拉桥在地震作用下的车—桥耦合振动分析[J].中国铁道科学,2006,27(5):54-58.
    [47]韩艳,夏禾,郭薇薇.斜拉桥在地震与列车荷载同时作用下的动力响应分析[J].工程力学,2006,23(1):93-98.
    [48]张楠,夏禾,郭薇薇等.京沪高速铁路南京大胜关长江大桥风车桥耦合振动分析[J].中国铁道科学,2009,30(1):41-48.
    [49]夏禾,徐幼麟.大跨度悬索桥在风与列车荷载同时作用下的动力响应分析[J].铁道学报,2002,24(4):83-91.
    [50]Xia H, Xu Y L and Chan T H T. Dynamic interaction of long suspension bridges with running trains. Journal of Sound and Vibration,2000,237(2):263-280.
    [51]Xu Y L, Xia H and Yan Q S. Dynamic response of suspension bridge to high wind and running train[J]. Journal of Bridge Engineering,2003,8(1):46-55.
    [52]Cooperrider N K, et al. Analytical and experimental determination of nonlinear wheel/rail constrains[A]. Proc. of ASME, Symposium on equipment dynamics,1979.
    [53]De Pater, Yang G The geometrical contact between track and rail[J]. Vehicle system dynamics, 1988,17(3):126-135.
    [54]Garg V K著,沈利人译.机车车辆轨道系统动力学[M].成都:西南交通大学出版社,1996.
    [55]Kaller J J. Survey of wheel-rail rolling contact theory[J]. Vehicle system dynamics,1979,8(4): 317-358.
    [56]Shen Z Y, Hedrick J K, Elkins J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[A]. Proceedings 8th IAVSD Symposium, MIT, Cambridge, 1983:591-605.
    [57]张楠,夏禾,郭薇薇.基于轮轨线性相互作用假定的车桥相互作用理论及应用[J].铁道学报,2010,32(2):66-71.
    [58]Zhang N, Xia H, Guo W W, et al. A vehicle-bridge linear interaction model and its validation[J]. International Journal of Structural Stability and Dynamics,2010,10(2):335-361.
    [59]Zhang N, Xia H, Guo W W. Vehicle-bridge interaction analysis under high-speed trains[J]. Journal of Sound and Vibration,2008,309(3):407-425.
    [60]张楠,夏禾.多点激励作用下车—桥—地震耦合系统分析[J].哈尔滨工程大学学报,2011,32(1):26-32.
    [61]夏超逸.撞击荷载作用下车桥系统的动力响应及高速列车运行安全研究[D].北京:北京交通大学博士学位论文,2012.
    [62]Olsson M. Finite element modal coordinate analysis of structures subjected to moving loads[J]. Journal of Sound and Vibration,1985,99(1):1-12.
    [63]Yang Y B, Chang C H and Yau J D. An element for analyzing vehicle-bridge systems considering vehicle's pitching effect[J]. International Journal for Numerical Methods in Engineering,1999,46(7):1031-1047.
    [64]Au F T K, Wang J J, Cheung Y K. Impact study of cable-stayed bridge under railway traffic using various models[J]. Journal of sound and Vibration,2001,240(3):447-465.
    [65]Xia H, Xu Y L, Chan T H T. Dynamic interaction of long suspension bridges with running trains[J]. Journal of Sound and Vibration,2000,237(2):263-280.
    [66]吴定俊.提速状态下车桥耦合振动理论与桥梁横向动力性能的研究[D].上海:同济大学博士学位论文,2005.
    [67]Zhai W, Cai Z. Dynamic interaction between a lumped mass vehicle and a discretely supported continuous rail track[J]. Computers & structures,1997,63(5):987-997.
    [68]Yang F, Fonder G A. An iterative solution method for dynamic response of bridge-vehicles systems[J]. Earthquake engineering & structural dynamics,1996,25(2):195-215.
    [69]Zhang N, Xia H. Dynamic analysis of coupled vehicle-bridge system based on inter-system iteration method[J]. Computers and Structures,2013,114-115:26-34.
    [70]Gao R, et al. Analysis and estimation of structural vibrations in elevated railway stations[A]. 4th HOSNTSLE[C], Osaka,2001:75-82.
    [71]Gao R, Jiang L C. Types and dynamic analysis of elevated railway station structures [A]. International symposium on traffic induced vibration and controls. Beijing,2001:295-302.
    [72]Gao R, Xia H. Traffic-induced vibrations and noises in elevated railway structures[A]. ISEV 2005, Okayama,2005:569-573.
    [73]温宇平,高日,刘智敏.城市轨道交通高架车站结构研究[J].铁道建筑,2000,3:12-14.
    [74]吴萱,高日.列车引起的高架铁路车站的振动与噪声[J].都市快轨交通,2004,17(3):24-28.
    [75]温宇平,F清湘.城市轨道交通高架车站结构动力分析[j].结构工程师,2001,(2):10-13.
    [76]温宇平.城市轨道交通高架车站结构研究[D].北京:北方交通大学硕士学位论文,2000.
    [77]刘枫,高日.城市高架轨道交通体系振动与噪声控制[J].噪声与振动控制,2000(4):32-35.
    [78]刘枫.高架车站结构振动与噪声分析评价[D].北京:北方交通大学硕士学位论文,2001.
    [79]单德山,李乔,杨兴旺.重庆轻轨大溪沟车站桥动力性能分析[J].桥梁建设,2006,6:5-8.
    [80]单德山,李乔,杨兴旺.重庆轻轨袁家岗车站桥车致振动分析[J].重庆交通学院学报,2005,24(4):27-30.
    [81]杨兴旺,单德山,李乔.重庆轻轨袁家岗车站桥动力性能分析[J].中国铁道科学,2004,25(6):77-81.
    [82]贺玉龙,向怡.郑西高速铁路渭南北高架车站环境振动测试分析[J].噪声与振动控制,2012,32(3):152-154.
    [83]向怡.郑西高铁渭南北高架站环境振动特性分析[D].成都:西南交通大学硕士学位论文,2011.
    [84]马莉,王澜,高芒芒,等.客运专线高架车站的减振设计研究[J].铁道建筑,2011,8:15-18.
    [85]马莉.大型复杂高架车站动力学响应与减震优化研究[D].北京:中国铁道科学研究院博士学位论文,2011.
    [86]Gao M M, Xiong J Z, Xu Z J. Influence of High Speed Train on Dynamic Response of Train and Station[A]. ISEV2009[C], Beijing,2009:159-163.
    [87]邓子铭.新长沙站结构振动分析与振动控制研究[D].长沙:中南大学博士学位论文,2010.
    [88]周涛.高速列车对建筑结构的振动影响[D].长沙:中南大学硕士学位论文,2009.
    [89]邓世海,郭向荣,王慧慧,等.高速列车对建筑结构的振动影响[J].噪声与振动控制,2010,30(002):72-76.
    [90]邓世海.列车对高架车站的振动影响研究[D].长沙:中南大学硕士学位论文,2010.
    [91]唐俊峰,郭向荣,邓子铭,等.列车运行引起建筑结构振动分析[J].铁道科学与工程学报,2011,8(3):7-12.
    [92]颜锋,钱基宏,赵鹏飞,等.武汉火车站高速列车对建筑结构的振动影响研究[J].建筑结构,2009(1):25-27.
    [93]Yan F, Qian J H, Zhao F P, et al. Study on vibration effect caused by high speed train in Wuhan station[A]. ISEV2009[C], Beijing,2009:159-163.
    [94]阳升,钱基宏,赵鹏飞,等.武汉火车站大跨度楼面结构振动舒适度研究[J].建筑结构,2009(1):28-30.
    [95]张高明,颜锋,钱基宏.基于车桥耦合振动原理的列车激励计算方法[A].第十四届空间结构学术会议论文集[C].2012.
    [96]陈志强,颜锋,王晓枫,等.珠三角城际列车对站房结构的振动影响研究[J].铁道标准设计,2010(12):109-111.
    [97]张高明.火车站站房结构在人行和列车激励作用下的振动舒适度问题研究[D].北京:中国建筑科学研究院硕士学位论文,2008.
    [98]张高明,钱基宏,郭向荣,等.新广州站站房结构在列车高速通过时的振动舒适度研究[J].工程抗震与加固改造,2010,32(006):121-127.
    [99]王国波,谢伟平,于艳丽,等.高速列车引起的武汉站楼板振动舒适度研究[J].振动与冲击,2010,29(12):110-113.
    [100]苏磊,王国波.高速列车作用下大跨度钢网架结构动力响应分析[J].建筑结构,2011,2.
    [101]徐薇.站桥合一大跨度车站结构车致动力效应分析[D].武汉:武汉理工大学硕士学位论文,2010.
    [102]刘祥.列车荷载作用下武汉站上部钢结构的疲劳分析[D].武汉:武汉理工大学硕士学位论文,2010.
    [103]谢伟平,徐薇.武汉站轨道箱型梁车致振动响应研究[J].振动与冲击,2012,31(8):186-190.
    [104]于艳丽.桥建合一大型站房结构关键技术研究[D].武汉:武汉理工大学博士学位论文,2010.
    [105]简方梁,吴定俊,李奇.上海虹桥车站人行走廊人致振动分析[J].振动与冲击,2010,29(8):136-140.
    [106]简方梁.大型站房结构动力响应分析研究[D].上海:同济大学博士学位论文,2012.
    [107]张楠,夏禾,程潜,等.制动力作用下车辆一车站结构耦合系统分析[J].振动与冲击,2011, 30(2):138-143.
    [108]Xia H, Gao F, Wu X, et al. Running train induced vibrations and noises of elevated railway structures and their influences on environment[J]. Frontiers of Architecture and Civil Engineering in China,2009,3(1):9-17.
    [109]Cheng Q, Zhang N, Xia H. Train-induced Structural Vibrations of Elevated Railway Station [A]. ISEV2009, Beijing,2009:178-183.
    [110]赵俊.铁路高架车站车桥动力响应分析[D].北京:北京交通大学硕十学位论文,2007.
    [111]乔晓琳.铁路高架车站动力分析方法的研究[D].北京:北京交通大学硕十学位论文,2009.
    [112]赵阳阳.京沪高速铁路南京南站的动力特性分析[D].北京:北京交通大学硕士学位论文,2012.
    [113]赵阳阳,郭薇薇,高世芒等.新建铁路南京南站站房结构的动力特性分析[J].铁道建筑,2011,(9):137-140.
    [114]盛平,王轶,张楠,等.大型站桥合一客站建筑的舒适度研究[J].建筑结构,2009(12):43-45.
    [115]Flyba L. Quasi-static distribution of braking and starting forces in rails and bridge [J]. Rail International,1974,5(11):698-716.
    [116]Flyba L. Response of a beam to a rolling mass in the presence of adhesion [J]. Acta Technica CSAV,1974,19 (6):673-687.
    [117]Kishan H, Traill-Nash R W.A modal method for calculation of highway bridge response with vehicle braking [J]. Institution of Engineers (Australia) Civ Eng Trans,1977 (1).
    [118]Gupta R K, Traill-Nash R W. Bridge dynamic loading due to road surface irregularities and braking of vehicle[J]. Earthquake Engineering & Structural Dynamics,1980,8(2):83-96.
    [119]Mulcahy N L. Bridge response with tractor-trailer vehicle loading[J]. Earthquake engineering & structural dynamics,1983,11(5):649-665.
    [120]Krylov V V. Generation of ground vibrations by accelerating and braking road vehicles[J]. Acta Acustica united with Acustica,1996,82(4):642-649.
    [121]Toth J, Ruge P. Spectral assessment of mesh adaptations for the analysis of the dynamical longitudinal behavior of railway bridges[J]. Archive of Applied Mechanics,2001,71(6-7): 453-462.
    [122]Yang Y B, Wu Y S. A versatile element for analyzing vehicle-bridge interaction response[J]. Engineering structures,2001,23(5):452-469.
    [123]Berghuvud A. Freight car curving performance in braked conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,2002,216(1): 23-29.
    [124]Haiyan H, Qiang H. Three dimensional modeling and dynamic analysis of four-wheel-steering vehicles[J]. Acta Mechanica Sinica,2003,19(1):79-88.
    [125]Law S S, Zhu X Q. Bridge dynamic responses due to road surface roughness and braking of vehicle[J]. Journal of Sound and Vibration,2005,282(3):805-830.
    [126]Ju S H, Lin H T, Hsueh C C, et al. A simple finite element model for vibration analyses induced by moving vehicles[J]. International journal for numerical methods in engineering,2006, 68(12):1232-1256.
    [127]Ju S H, Lin H T. A finite element model of vehicle-bridge interaction considering braking and acceleration[J]. Journal of sound and vibration,2007,303(1):46-57.
    [128]黄政源.列卓主要频率验证及刹卓分析模型建立[D].台南:国立成功大学硕士学位论文,2007.
    [129]卜一之.高速铁路桥梁纵向力传递机理研究[D].成都:西南交通大学博士学位论文,1998.
    [130]卜一之,张进.高速铁路简支梁桥纵向力计算分析[J].桥梁建设,1996(2):53-56.
    [131]卜一之.张进.高速铁路桥梁纵向力研究[J].西南交通大学学报,1996,5.
    [132]卜一之,张进.高速铁路桥梁有效制动力初探[J].四川建筑,1996,2:006.
    [133]蔡成标.高速铁路特大桥上无缝线路纵向附加力计算[J].西南交通大学学报,2003,38(5):609-614.
    [134]蔡成标,翟婉明,王其昌.无缝道岔钢轨纵向力与位移的研究[J].铁道学报,1997,19(1):83-88.
    [135]黄小明,蔡成标.客运专线大跨度混凝土桥桥上无缝线路纵向附加力分析[J].铁道建筑,2006.12:81-83.
    [136]黄小明.客运专线桥上无缝线路附加力有限元分析[D].成都:西南交通大学硕士学位论文,2006.
    [137]马大炜,钱立新.高速铁路桥梁制动载荷研究[J].铁道学报,2000,22(5):116-120.
    [138]程海涛,钱立新.长大货物列车制动时纵向动力学模型及求解方法初探[J].铁道车辆,1998,36(11):10-12.
    [139]程海涛.长大货物列车制动动力学及车辆柔性动力学研究[D].北京:中国铁道科学研究院博士学位论文,1999.
    [140]程海涛,侯霄.制动工况下车辆的动力学分析[J].铁道车辆,2000,38(9):1-6.
    [141]程海涛,宋立.旅客列车纵向冲动问题计算分析[J].中国铁道科学,2002,23(1):77-85.
    [142]程海涛,钱立新.长大货物列车制动时纵向动力学模型及求解方法初探[J].铁道车辆,1998,36(11):10-12.
    [143]杨梦蛟,邢建鑫.轨道结构与桥梁共同作用力学计算模型的研究[J].中国铁道科学,2001,22(3):57-62.
    [144]杨梦蛟.混凝土桥面轨道纵向位移阻力的研究[J].中国铁道科学,2001,22(6):91-94.
    [145]阴存欣,潘家英,庄军生.铁路桥梁纵向附加力的静动力非线性分析与仿真研究[J].中国铁道科学,2000,22(5):133-137.
    [146]阴存欣.铁路桥梁在列车纵向制动作用下的动力反应分析[J].中国铁道科学,2000,21(2):8-18.
    [147]阴存欣.铁路桥梁纵向附加力的静动力非线性分析与仿真研究[D].北京:铁道科学研究院博士学位论文,2000.
    [148]李宏年,夏禾,韩仁海.铁路桥梁轨面制动力实用时程曲线研究[J].铁道学报,1995,17(3):121-126.
    [149]李宏年,冯东.铁路桥梁轨面制动力的动态研究[J].铁道学报,1994,16(3):112-117.
    [150]李宏年,朱唏,于新杰.PC简支梁铁路桥制动力有效系数的研究[J].土木工程学报,2000,33(3):22-26.
    [151]李宏年,朱晞,季文玉.PC简支梁铁路桥承受制动力的动力分析[J].铁道学报,2000,22(4):64-67.
    [152]李宏年.列车制动力荷载及对桥梁作用机理的研究[D].北京:北方交通大学博十学位论文,2001.
    [153]田文野,李宏年.铁路简支梁桥墩承受列车制动力的研究[J].中国安全科学学报,2002,12(6):21-24.
    [154]王锐锋,李宏年.铁路桥梁列车制动力荷载研究[J[.北方交通大学学报,2003,27(1):63-67.
    [155]李延枢,李宏年,雷俊卿.制动力作用下线—桥结构动力分析的二次离散方法[J].铁道标准设计,2004,1:014.
    [156]李延枢.简支钢桁梁桥的列乍制动分析[D].北京:北方交通大学硕十学位论文,2004.
    [157]李延枢,李宏年,雷俊卿.制动力作用下线-桥结构动力分析的二次离散方法[J].铁道标准设计,2004,1:014.
    [158]陈丹华.有碴桥而简支梁铁路桥承受列乍制动力的静动力分析[D].北京:北方交通大学硕士学位论文,1999.
    [159]陈丹华,刘建村.列车制动荷载的离散分析及应用[J].华东交通大学学报,2005,22(4):34-38,48.
    [160]雷俊卿,李宏年,冯东.铁路桥梁列车制动力的试验研究与计算分析[J].工程力学,2006,23(3):134-140.
    [161]雷俊卿,田文野,李宏年等.铁路简支梁桥桥台承受列车制动力的计算分析[J].中国安全科学学报,2005,15(11):91-95.
    [162]徐庆元,陈秀方.连续梁桥上无缝线路附加力研究[J].中国铁道科学,2003,24(3).
    [163]徐庆元,陈秀方.小阻扣件桥上无缝线路附加力[J].变通运输工程学报,2003,3(1):25-30.
    [164]徐庆元.高速铁路桥上无缝线路纵向附加力三维有限元静力与动力分析研究[D].长沙:中南大学博士学位论文,2005.
    [165]徐庆元,陈秀方,李树德.高速铁路桥上无缝线路纵向附加力研究[J].中国铁道科学,2006,27(3):8-12.
    [166]闫斌,戴公连.高速铁路斜拉桥上无缝线路纵向力研究[J].铁道学报,2012,34(3):83-87.
    [167]闫斌,刘从新,杜凯,等.门式墩七高速铁路连续梁桥梁轨相互作用[J].华中科技大学学报:自然科学版,2012,40(3):81-84.
    [168]闫斌,戴公连,董林育.客运专线斜拉桥梁轨相互作用设计参数[J].交通运输工程学报,2012,12(1).
    [169]张华平.高铁中小跨度连续粱桥梁轨相互作用研究[D].长沙:中南大学硕士学位论文,2010.
    [170]瞿伟廉,秦顺全,涂建维,等.武汉天兴洲公铁两用斜拉桥主粱和桥塔纵向列车制动响应智能控制的理论与关键技术[J].土木工程学报,2008(8):63-72.
    [171]瞿伟廉,刘嘉,涂建维,等.天兴洲公铁两用斜拉桥主梁纵向列车制动振动反应分析[J]. 地震工程与工程振动,2008,28(1):130-138.
    [172]李海峰.天兴洲大桥列车制动及地震反应的被动控制[D].武汉:武汉理工大学硕士学位论文,2007.
    [173]曹雪琴,朱金龙.城市轨道交通桥梁纵向制动力传递分析[J].中国铁道科学,2004,25(4):73-79.
    [174]吴亮秦,吴定俊,李奇.城市轨道交通桥梁列车制动力试验研究[J].铁道学报,2012,34(3):88-93.
    [175]饶忠.列车制动(第二版)[M].北京:中国铁道出版社,2010.
    [176]彭俊彬.动车组牵引与制动[M].中国铁道出版社,2007.
    [177]孙睿.动车组电空制动系统仿真研究[D].成都:西南交通大学硕士学位论文,2008.
    [178]赵进.动车组制动实验系统研究[D].北京:北京交通大学硕士学位论文,2008.
    [179]谷杨心.高速列车制动力再分配方法的研究[D].北京:北京交通大学硕士学位论文,2010.
    [180]马大炜.关于高速列车制动系统的思考[J].铁道车辆,2000,38(1):12-16.
    [181]孙中央.列车牵引计算实用教程[M].中国铁道出版社,2005.
    [182]黄问盈,孙中央.高速列车制动计算中值得关注的问题[J].铁道机车车辆,2006,26(1):24-26.
    [183]钱立新.350km/h高速动车组制动技术的最新进展[J].电力机车与城轨车辆,2004,27(1):1-3.
    [184]陈亮,姜岩峰,尹方,等.和谐号动车组常用制动的控制模式[J].铁道机车车辆,2011,31(5):20-23.
    [185]姚小清.高速动车组制动技术[J].铁道机车车辆,2008,28(B12):246-248.
    [186]李培曙,刘转华.高速动车组引进制动系统技术探讨[J].铁道车辆,2004,5:29-33.
    [187]魏伟,李文辉.列车空气制动系统数值仿真[J].铁道学报,2003,25(1):38-42.
    [188]马大炜.重载列车及其试验研究(续三):重载列车制动系统[J].铁道车辆,1999,37(1):20-25.
    [189]张卫民,吴萌岭,姜靖国.列车制动控制模式的发展及高速列车制动[J].上海铁道大学学报,1999,12:81-85.
    [190]吴萌岭,姜靖国.我国高速电动车组制动系统方案研究[J].铁道车辆,1999,37(4):12-15.
    [191]吴萌岭,程光华,王孝延,等.列车制动减速度控制问题的探讨[J].铁道学报,2009,31(1):94-97.
    [192]曹艳梅.列车引起的自由场地及建筑物振动的理论分析和试验研究[D].北京:北京交通大学博士学位论文,2006.
    [193]夏禾,曹艳梅.轨道交通引起的环境振动问题[J].铁道科学与工程学报,2004,1(1):44-51.
    [194]夏禾,郭薇薇,陶毕莲.直线电机轮轨交通高架结构[M].北京:中国科学技术出版社,2010.
    [195]夏禾,张楠,曹艳梅.列车对周围地面及建筑物振动影响的试验研究[J].铁道学报,2004,26(4):93-98.
    [196]姚锦宝.考虑土结构动力相互作用的轨道交通引起的环境振动及隔振措施研究[D].北京:北京交通大学博士学位论文,2010.
    [197]陈建国.高架轨道交通引起的环境振动预测与参数研究[D].北京:北京交通大学博士学位论文,2010.
    [198]魏鹏勃.城市轨道交通引起的环境振动预测与评估[D].北京:北京交通大学博士学位论文,2009.
    [199]程潜.高架轨道交通对周围环境的振动影响[D].北京:北京交通大学硕十学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700