用户名: 密码: 验证码:
薄壁管数控弯曲成形过程失稳起皱及成形极限的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄壁管数控弯曲精密成形技术是管弯曲成形技术向先进塑性加工技术发展的必然趋势。然而这是一个多因素耦合交互作用下易发生失稳起皱的复杂非稳态物理过程。特别对于大口径、薄壁管小半径弯曲成形过程,失稳起皱成为稳定成形的瓶颈问题。因此失稳起皱及成形极限是这一先进加工技术研究与发展中迫切需要解决的关键问题。为此,本文采用有限元数值模拟和理论解析及实验研究相结合的方法,对该过程中的失稳起皱及成形极限进行了深入系统的研究,取得了如下成果:
     (1)改进了薄壁管数控弯曲起皱数值预测系统TBWS-3D:修正了薄壁管数控弯曲成形失稳起皱预测模型,使预测结果更加准确:改善了绝对-相对自由度壳单元边界条件的处理方法,使有限元模拟结果更符合实际;针对不同情况,丰富了弯曲过程中摩擦和压块侧推速度等边界条件的处理方法,使得系统深入地研究成形参数对失稳起皱的影响成为可能;将面向对象技术引入有限元程序的编制,基于VC++平台开发了有限元起皱预测系统TBWS-3D,从而可以方便地嵌入起皱预测等成形质量控制模块,并易于实现上述提出的改进算法。
     (2)采用改进的起皱数值预测系统TBWS-3D,系统深入地研究并揭示了薄壁管数控弯曲成形过程中成形参数对失稳起皱的影响规律。从而为成形过程参数优化及成形极限的确定奠定坚实的理论基础。
     (3)摩擦和模具间隙对失稳起皱的影响规律表明:随着管坯与防皱块及管坯与芯棒间摩擦系数的增大,起皱因子有减小,有利于防止起皱的发生;随着管坯与弯曲模及管坯与压块间摩擦系数的提高,起皱因子增大,但幅度并不大,对管坯起皱的影响较小;随着管坯与防皱块间隙的增大,起皱因子逐渐增大;当模具间隙大于0.5mm时,失稳起皱趋势急剧增大。即管坯与防皱块间隙对管坯失稳起皱的影响很大。
     (4)影响失稳起皱的主要因素有:相对管径、弯曲半径、硬化指数、芯棒的伸出长度、管坯与防皱块间摩擦、管坯与芯棒间摩擦、管坯与防皱块间隙等。基于虚拟正交试验,获得成形参数对失稳起皱影响的显著性大小依次为:相对管径、弯曲半径、硬化指数、管坯与防皱块间隙、管坯与防皱块间摩擦、管坯与
    
    西北工业大学硕士学位论文
    芯棒间摩擦、管材与弯曲模摩擦等。
     (5)结合薄壁管数控弯曲过程的成形特点,定义了基于失稳起皱的薄壁管数
    控弯曲成形极限的概念;基于起皱预测系统TBWS一3D,提出了成形极限的搜索
    算法,得到了不同工艺参数下的成形极限,建立了初步的成形极限库:通过成
    形参数对失稳起皱影响规律的研究,获得了提高成形极限的方法;在此基础上
    提出了基于成形极限与数值模拟的参数确定与优化方案,使薄壁管数控弯曲过
    程成形的参数快速确定与优化成为可能。最后对今后的进一步研究方向进行了
    探讨。
     本研究对提高薄壁弯管制品的质量、缩短产品开发周期、降低生产成本、
    充分发挥数控弯管设备的优势,从而实现薄壁管数控弯曲精密成形具有重要意
    义,同时也丰富了薄壁件塑性成形失稳起皱理论。
NC precision bending process of thin-walled tube is showing an inevitable tendency to improve and develop tube bending process into advanced plastic forming technology. However, it is a complex astable process with coupling interactive multi-factor effects and wrinkling phenomenon as a compress instability often occurring , when the process parameters are inappropriate, especially for tubes with large diameter and thin wall-thickness. Thus, the wrinkling and forming limit have become one difficult and key problem urgently to be resolved in the R&D of the process. In this dissertation, a systematical and thorough investigation on the wrinkling and the forming limit of the process has been carried out by using rigid-plastic FEM simulation combining with analytical and experiment methods. The main achievements of the project made are as following:
    (1) Some of the key techniques related to the 3D rigid-plastic FEM simulation and wrinkling prediction of thin-walled tube NC bending process have been studied and improved methods and algorithms have been proposed: The instability predicting model has been improved which make prediction results more precise. Shell element with absolute-relative degree of freedom and corresponding setting method of velocity boundary conditions make the simulation results more efficiently and more accurately. Frictions on four areas in the forming process and side pushing velocity have been added in to the finite element equations, which makes FEM model more correspond the reality. Based on OOP ( Object-Oriented Programming ) theory, one numerical wrinkling prediction system TBWS-3D for visual NC Tube Bending have been reconstructed successfully with VC++. The validity of system has been verified by experimentation and comparison with data in the literature.
    (2) By using improved wrinkling system TBWS-3D, a systematical and thorough investigation into influence of forming parameters on wrinkling onset has been carried out and influence laws are obtained, which may be helpful to the parameters design and determination of forming limit.
    (3) Influence law of friction factor and clearance between tube and die on wrinkling initiation is obtained. The results show: with the friction factors between tube and mandrel and the one between tube and wiper die turn bigger, the wrinkling factor may become lower to some extent. With the other friction factors between tube
    
    
    and pushing die, as well as between tube and bend die increase, the wrinkling factor rises a little. Namely the friction factor between these dies have little influence on the wrinkling onset, when clearance between tube and wiper die rises, the wrinkling factor increases; the wrinkling factor increases sharply, when clearance is larger than 0.5mm.
    (4) The main parameters are gained: relative diameter, bending radius, hardening exponent, mandrel extension length, friction factor between tube and wiper die, friction factor between tube and mandrel, clearance between tube and wiper die. Based on a virtual orthogonal experiment, information regarding the relative importance of every processing variables for wrinkling onset has been investigated. The results are listed according to relative importance for wrinkling: relative diameter, relative bending radius, hardening exponent, clearance between tube and wiper die, friction factor between tube and wiper die, friction factor between tube and mandrel, friction factor between tube and bend die.
    (5) According to analysis of forming characteristics of thin-walled tube bending, concept of forming limit for the process has been put forward. A searching algorithm of forming limit by using developed FEM wrinkling system TBWS-3D as virtual experiment has been brought forward. Employing the algorithm, wrinkling limit under various process conditions can be obtained conveniently and quickly, and one primary forming limit data base has been established. Influence law of main forming parameters on wrinkling limit has been investigated thoroughly. Thus measures to improve the wrinkling limi
引文
1 杨合,林艳,孙志超.面向21世纪的先进塑性加工技术与管成形研究发展.见:中国科学协会第二届学术年会文集,北京:科学技术出版社,2000:745~746
    2 M. Murata, S. Yamamoto, etal. Development of Bending CNC Machine for Circular Tube. Proceeding of the fourth conference on technology of plasticity. International Academic Publisher: Beijing, 1993(Ⅰ): 435~440
    3 《航空制造工程手册》总编委会.航空制造工程手册.飞机板金工艺.北京:航空工业出版社,1992
    4 余同希,章亮炽.塑性弯曲理论及其应用.北京:科学出版社,1992
    5 崔令江.薄板冲压成形中的剪应力起皱的研究.哈尔滨工业大学,1989
    6 K. Yoshida. Purposes and Features of the Yoshida Wrinkling Test. J. of the JSTP, 1983, 24(272): 901~908
    7 B. D. Reddy. An Experimental Study of the Plastic Buckling of Circular Cylinders in Tube Bending: Int. J. Solids. Struct., 1979, 15:669~683
    8 K. Matsuno. Recent Research and Development in Metal Forming in Japan. J. of Mats. Proc. Tech., 1997, 66:1~3
    9 L. Hill. A General Theory of Uniqueness and Stability in Elastic-plastic Solids. J. of Mech. Phys. Solids, 1958, 6:236~249
    10 J.W. Hutchinson. Plastic wrinkling. Adv. Appl. Mech., 1974, 14:67~144
    11 J. W. Hutchison, K.W. Neale. Wrinkling of Curved Thin Sheet Metal. Plastic Stability. Presses ponts et Chaussees. Paris. 1976
    12 N. Triantafyllidis, A. Needleman. An Analysis of Wrinkling in the Swfit Cup Test. J. of Eng. Mats. Tech., 1980, 102:241~248
    13 P. Tugcu. Plate Wrinkling in the Plastic Range. Int. J. of Mech. Sci., 1991, 33(1): 1~11
    14 P. Tugcu. On Plastic Wrinkling Predictions. Int. J. of Mech. Sci., 1991, 33(7): 529~539
    15 F. Abdelmajid, T. Yoshihiro, S. Akio. Theoretical Investigation of Buckling Behavior of Axisymmetric Elastic-Plastic Membrane Shells Subjected to Axisymmetric Forming. Adv. Tech. Plast., 1984, 1:611~616
    
    
    16 L. C. Zhang, T. X. Tong, R. Wang. Investigation of Sheet Metal Forming by Bending—Part Ⅱ. Plastic Wrinkling of Circular Sheets Pressed by Cylindrical Punches. Int. J. Mech. Sci., 1989, 4(31): 301~308
    17 M. Kawka, L. Olejnik, A. Rosochowski, etal. Simulation of Wrinkling in Sheet Metal Forming. J. of Mats. Proc. Tech., 2001(109): 283~289
    18 J.B. Kim, J. W. Yoon, D. Y. Yang, etal. Investigation into Wrinkling Behavior in the Elliptical Cup Deep Drawing Process by Finite Element Analysis Using Bifurcation Theory. J. of Mats. Proc. Tech., 2001(111): 170~174
    19 S. Kyriakides, G. T. Ju, Bifurcation and Localization Instabilities in Cylindrical Shells under Bending Ⅱ Predictions. Int. J. Solids Struct., 1992, 29(9): 1143~1171
    20 S.Kyriakides, G. T. Ju, Bifurcation and Localization Instabilities in Cylindrical Shells under Bending Ⅰ Experiments. Int. J. Solids Struct., 1992, 29(9): 1117~1142
    21 R. Peek. Wrinkling of Tubes in Bending from Finite Strain Three-dimensional Continuum Theory. Int. J. Solids Struct., 2002(39): 709~723
    22 R. Peek. Axisymmetric Wrinkling of Cylinders with Finite Strain. J. Eng. Mech., 2000, 26(5):455~461
    23 N. Triantafyllidis. Bifurcation Phenomena in Pure Bending. J. Mech. Phys. Solids, 1980, 28:221~245
    24 S.C. Batterman. Tangent Modulus Theory for Cylindrical Shells: buckling under increasing load. Int. J. Solids. Struct., 1967, 3:501~512
    25 B.W. Senior. Flange Wrinkling in Deep-drawing Operations. J. of Mech. Phys. Solids, 1956, 4:235~246
    26 梁炳文,胡世光.板料成形塑性理论.北京:机械工业出版社,1987
    27 J.Endo, T. Murota, K. Cato, etal. Theoretical Prediction on Non-axisymmetric Buckling Tube Nosing. Adv. Tech. Plast., 11:1347~1353
    28 吉田正敏,藤原昭文.中空矩形断面形材曲加工量予测.塑性加工,1997,38(440):29~34
    29 P. Frode, W. Torgeir, etal. A Design Method for Rectangle Hollow Section in Bending. J. of Mats Proc. Tech., 2001, 113:699~704
    
    
    30 L.Y. Li, K. Roger. Nonlinear Bending Response and Buckling of Ring-stiffened Cylindrical Shells under Pure Bending. Int. J. Solids Struc., 2002:765~781
    31 P. Seide, V. I. Weingarten. On the Buckling of Circular Cylindrical Shell under Pure Bending. J. of Appl. Mech., 1961:112~116
    32 B. F. Tatting, Z. Vasiliev. The Brazier Effect for Finite Length Composite Cylinders under Pure Bending. Int. J. Solids Struc., 1997:1419~1440
    33 J. Cao. Prediction of Plastic Wrinkling Using the Energy Method. Transactions of ASME, 1999(66): 646~652
    34 X.Wang, J. Cao. On the Prediction of Side Wall Wrinkling in Sheet Metal Forming Processes. Int. J. Mech. Sci., 2000, 42(12): 2369~2394
    35 X.Wang, J. Cao. Wrinkling Limit in Tube Bending. Transaction of the ASME, 2001(123): 430~435
    36 鲜飞军.板带不均匀压下面内弯曲过程失稳起皱及成形极限的研究.西北工业大学博士学位论文,2001
    37 林艳 薄壁管数控弯曲成形过程失稳起皱的数值模拟研究.西北工业大学博士学位论文,2003
    38 林艳,杨合,李恒,詹梅.薄壁管数控弯曲过程中失稳起皱的主要影响因素.航空学报,2003(5):456—461
    39 J. Wang, X. Wu, P. F. Thomson, A. Flitman. A Neural Networks Approach to Investigating the Geometrical Influence on Wrinkling in Sheet Metal Forming[J]. J. of Mats. Proc. Tech., 2000, 105(3): 215~220
    40 Z.Jin, S.Luo, X. F. Daniell. KBS-aided Design of Tube Bending Processes. Eng. Appl. of arti, intell., 2001, 14:599~606
    41 梁炳文,胡世光.弹塑性稳定理论.北京:国防工业出版社,1983
    42 钟志华,李光耀.薄板冲压成形过程的计算机仿真与应用,北京:北京理工大学出版社,1998
    43 杨济发,张子公.金属塑性成形研究方法综述.金属成形工艺,1990(2):55-59
    44 A.E. Tekkaya. State-of-the-art of Simulation of Sheet Metal Forming. J. of Mats. Proc. Tech., 2000, 103:14~22
    45 邝国能.工程实用边界单元法,北京:中国铁道出版社,1989
    
    
    46 A.Ahmetoglu, G. Kinzel, T. Altan. Computer Simulation for Tool and Process Design in Sheet Forming. J. of Mats. Proc. Tech., 1994, 46:421~441
    47 L.Taylor, J.Cao, A. P. Karafillis, etal. Numerical Simulation of Sheet Metal Forming. J. of Mats. Proc. Tech., 1995, 50:168~179
    48 A.Makiniuchi. Sheet Metal Forming Simulation in Industry. J. of Mats. Proc. Tech., 1996, 60:19~26
    49 J. O.Hallquist, B.Wainscoff, K. Schweizerhof. Simulation of Thin-sheet Metal Forming Using LS-DYNA3D on Parallel Computers. J. of Mats. Proc. Tech., 1995, 50:144~157
    50 D. Zhou, R. H.Wagoner. Development and Application of Sheet-forming Simulation. J.l of Mats. Proc. Tech., 1995, 50:1~6
    51 T. R. Hou, E. Nakamachi. Evaluation of the Dynamic Explicit Finite Element Method in Sheet Metal Forming Simulation. J. of Mats. Proc. Tech., 1995, 50:180~196
    52 A. M. Prior. Applications of Implicit and Explicit Finite Element Techniques to Metal Forming. J. of Mats. Proc. Tech., 1994, 45:649~656
    53 M.Knoerr, J.Lee, T. Altan. Application of the 2D Finite Element Method to Simulation of Various Forming Processes. J. of Mats. Proc. Tech., 1992, 33: 31~55
    54 P. V. Marcal, I.D King. Elastic-plastic Analysis of Two-dimensional Stress System by the Finite Element Method. Int. J. Mech. Sci., 1967, 9:143~155
    55 Y. Yamada, N. Yoshimura, T. Sakurai. Plastic Stress-strain Matrix and its Application for the Solutions of Elastic-plastic Problems by the Finite Element Method. Int. J. Mech. Sci., 1967, 10:343~354
    56 G. J. Li and S. Kobayashi. Rigid-plastic Finite Element Analysis of Plane Strain Rolling. Trans. ASME, J. Eng. Ind., 1982:104~115
    57 S. Kobayashi. A Review on the Finite Element Method and Metal Forming Process Modeling. J. Appl. Metal working, 1982, 2:163~170
    58 G.J. Li and S. Kobayashi. Spread Analysis in Rolling by the Rigid Plastic Finite Element Method. in: J. F. T. and I. Pittman. Eds. Numerical Methods in Industrial Forming Processes, Swansea, UK, Pineridge Press, 1982:777~786
    
    
    59 S. I. Oh, J. J. Pak, S. Kobayashi and T. Altan. Application of FEM Modeling to Simulate Metal Flow in Forging a Titanium Alloy Engine Disk. Trans. ASME. J. Eng. Ind. 1983: 105~251
    60 J. X. Sun and S. Kobayashi. Analysis of Block Compression with Simplified Three-dimensional Element. Adv. Tech. Plasticity-Proc. 1st ICTP. TOKYO, 1984, 2:1027~1034
    61 S. Kobayashi. The Role of Finite Element Method in Metal Forming Technology. Adv. Tech. Plasticity-Proc. 1st ICTP. TOKYO, 1984, 2:1035~1040
    62 C.H. Lee, S. Kobayashi. New Solutions to Rigid-plastic Deformation Problems Using a Matrix Method. Trans. ASME. J. Eng. Ind., 1973, 95:865~873
    63 O.C. Zienkiewicz, S. Nakazawa etal., Finite Element in Forming Processes. Adv. Tech. Plasticity-Proc. 1st ICTP. TOKYO, 1984, 2:104~110
    64 O.C. Zienkiewicz, Y. C. Lin and G. C. Huang. Error Estimation and Adaptivity in Flow Formulation for Forming Problems. Int. J. Num. Meth. in Eng., 1988, 25(1): 23~42
    65 O. C. Zienkiewicz, G. C. Huang and Y. C. Liu. Adaptive FEM Computation of Forming Processes-application to Porous and Non-porous Materials. Int. J. Num. Meth. in Eng.,1990, 30:1527~155
    66 S. I. Oh. Finite Element Analysis of Metal Forming Processes with Arbitrary Shaped Dies. Int. J. Mech. Sci., 1982, 24:479~487
    67 Q.C. Yang, Z. Qi and S. N. Qu. Studies on Finite Element Simulation Techniques of Metal Forming Processes. in: Z. R. Wang and He Yuxin eds. Advanced Technology of Plasticity-Proceedings of the Fourth ICTP. Beijing, Int. Acadc. Publishers, 1993, 2:1077~1081
    68 范建文.复合挤压的的数值模拟及缺陷预测.西北工业大学博士学位论文,1998
    69 赵国群,阮雪榆.轴对称锻造过程金属流动规律的有限元模拟.模具技术,1991,(5):1~8
    70 刘庆斌.模拟技术和人工神经网络在锻造过程中的应用.西北工业大学博士学位论文,1996
    71 卫原平.金属塑性成形过程的有限元数值模拟.上海交通大学博士学位论文,
    
    1995
    72 詹梅.面向带阻尼台叶片精锻过程的三维有限元数值模拟研究.西北工业大学博士学位论文,2000
    73 S. Kobayashi, S. I. Oh and T. Altan. Metal Forming and the Finite Element Method. New York Oxford: Oxford University Press, 1989
    74 P. Forde, W. Torgeir etal. Application of Numerical Simulation in the Bending of Aluminum-alloy Profiles. J. of Mats. Proc. Tech., 1996(58): 274~285
    75 胡福泰.异型管材与型材无模弯曲工艺理论及实验研究.东北重型机械学院博士学位论文:1995
    76 J. B. Yang, B.H. Jeon, and S. I. Oh. The Tube Bending Technology of a Hydroforming Process for an Automotive Part. J. of Mats. Proc. Tech.,2001(111):175~181
    77 L.H. Han, S.Y. He, Y.P. Wang, etc. Limit Moment of Local Wall Thinning in Pipe Under Bending. Int. J. of Press. Vess. Piping, 1999:539~542
    78 D. Boussaa, V. Dang and K. Labb(?), P. Tang. Finite Pure Bending of Curved Pipes. Comput. Struct., 1996, 60(6): 1003~1012
    79 R.D. Cook. Axisymmetric Finite Element Analysis for Pure Moment Loading of Curved Beams and Pipe Bends. Comput. Struct., 1989, 33(2):483~487
    80 S.C. Tang, C. C. Chun, K. S. Yeung. Collapse of Long, Noncircular, Cylindrical Shells under Pure Bending. Comput. Struct., 1985, 21 (6): 1345~1353
    81 吕丽萍,有限元法及其在锻压工程中的应用.西安:西北工业大学出版社,1989
    82 陈如欣,胡忠民.塑性有限元法及其在金属成形中的应用.重庆:重庆大学出版社,1989
    83 王勖成,邵敏.有限单元法基本原理与数值方法.北京:清华大学出版社,1998
    84 汪大年.金属塑性成形原理.北京:机械工业出版社,1995
    85 王祖唐,关廷栋,肖景容等.金属塑性成形理论.北京:机械工业出版社,1989
    86 N. Kanok, R. L.Taylor and T. J. R.Hughes. A Large Deformation Forming for Shell Analysis by the Finite Element Method. Computers & Structures, 1981(13):
    
    19~30
    87 薛明德,王和慧.闪蒸罐的应力分析与强度评定.压力容器,1999(3):24~29
    88 林艳,杨合.一种可应用于板壳成形过程模拟的绝对-相对自由度壳单元.机械科学与技术,2003(1):121~123
    89 刘鸿文.板壳理论.杭州:浙江大学出版社,1987
    90 胡世光.板料冷压成形原理.北京:国防工业出版社,1979
    91 钱能.C++程序设计教程.北京:清华大学出版社,1999
    92 王同海.管材塑性加工技术,北京:机械工业出版社,1998
    93 孙志超.管轴压精密成形过程中无模约束自由变形规律的研究.西北工业大学硕士学位论文,2000
    94 孙志超,杨合,蔡旺,林艳.一种确定管材塑性本构关系的反算法.重型机械,2000(3):43~46
    95 吴诗惇.冲压工艺学.西安:西北工业大学出版社,1987
    96 周新宇,贾德伟,李杰.运用试验设计法实现金属成形商用模拟软件的参数优化.机电产品开发与创新,2002(4):13~15
    97 李顺平,杨合.神经网络在塑性加工中的应用.航空制造工程,1998(3):27~42
    98 苑世剑,何祝斌.板料成形性理论评价与深入研究.塑性工程学报,2003(10):6~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700