用户名: 密码: 验证码:
叶片精锻变形—传热—组织演变耦合的三维有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶片是航空工业中一类量大面广的重要零件之一。叶片精锻过程是一个受诸多因素影响的复杂变形过程,在叶片精锻过程中变形、传热和微观组织演变之间存在着复杂的交互作用。微观组织在很大程度上决定了叶片的质量和宏观机械性能,预测和控制叶片的微观组织,对提高叶片的综合机械性能具有重要的现实意义。为此本文采用能反映微观组织演变对材料流动应力影响的本构关系和Yada形式的微观组织预测模型,实现TC4钛合金叶片精锻过程的有限元变形—传热—微观组织演变耦合分析,为合理确定叶片精锻工艺和控制叶片质量提供依据。本文的主要研究内容和结果如下:
     对TC4钛合金叶片精锻过程的有限元变形—传热—微观组织演变耦合分析的关键技术问题处理方法进行了研究,在此基础上,以本实验室开发的3D-CTM系统为平台,发展了叶片精锻过程的三维刚粘塑性有限元变形—传热—微观组织演变耦合分析系统3D-CDHTM(3-Dimensional Coupled Analysis of Deformation-Heat
     Transfer-Microstructure Evolution)。
     利用3D-CDHTM系统对TC4钛合金单榫头叶片精锻过程进行了三维有限元模拟分析,获得了不同变形阶段下典型截面的网格图和等效应力、等效应变、等效应变速率、温度场的等值线分布图,从而揭示了单榫头叶片精锻成形规律。
     对TC4钛合金叶片在不同变形温度、变形速度、模具温度和摩擦条件下精锻成形时的微观组织(晶粒尺寸和体积分数)进行了预测,全面系统地分析了不同变形工艺参数对微观组织的影响。并分析了不同变形工艺参数对载荷—行程曲线的影响。
A blade is one of the most important mechanical components in aviation industry. Precision forging process of blade is a complex process with multi-factor effects. There's complicated relationship between deformation, heat transfer and microstructure evolution in blade forging process. Quality and macro-mechanical properties of parts largely depends on microstructure. It is important to predict and control the microstructure of the blade for improving over-all mechanical properties. Therefore, in this paper, coupling analysis of deformation-heat transfer-microstructure evolution based on finite element method in TC4 blade precision forging process is carried out, using constitutive equation reflecting microstructure evolution influence on flow stress and Yada prediction model of microstructure evolution, and serve on the determination of process parameters and control of blade quality. A brief introduction to the project and its main results are as follows:
    The key technical problems of coupled FEM deformation-heat transfer -microstructure evolution in TC4 blade precision forging process are studied. Based on the developed 3D-CTM system, 3D-CDHTM (3-Dimensional Coupled Analysis of 3-Deformation-Heat Transfer-microstructure evolution) is developed.
    By using the 3D-CDHTM system, FEM analysis of precision forging process of TC4 blade with tenon was carried out. And the results have been obtained for deformed mesh, equivalent stress field, equivalent strain field, equivalent strain rate, temperature field at various deformation degrees of typical sections and the laws of the blade precision forging is revealed.
    Microstructure (grain size and volume fraction) of TC4 blade are predicted under various deformation temperature, velocity, die temperature and friction factor and the influence of deformation parameters on microstructure is studied and analyzed thoroughly and systematical. Meanwhile, the influence of various deformation parameters on load-stroke curve is analyzed.
引文
1 张志文.叶片锻造.西安:西安交通大学出版社,1987
    2 王金友,葛志明,周彦邦.航空用钛合金.上海科学技术出版社,1985
    3 (苏).A.尼克里斯基等著.陈石卿,焦明山译.钛合金的模锻与挤压.国防工业出版社,1982
    4 赵树萍,吕双坤.钛合金在航空航天领域中的应用.钛工业进展,2002,(6):18~21
    5 李文平.钛合金的应用现状及发展前景.轻金属,2002,(5):53~55
    6 曾凡昌,王俊杰,章怡宁,夏绍玉.国外航空钛合金的发展应用及其特点分析.材料工程,1997,(10):3~6
    7 郭鸿镇.合金钢与有色合金锻造.西北工业大学出版社,1999
    8 锻压技术手册编委会.锻压技术手册.国防工业出版社,1988
    9 吕炎.锻件组织性能控制.国防工业出版社,1988
    10 魏志坚.TC11钛合金压气机盘等温锻造工艺研究.机械工人,2003,(3):45~48
    11 王乐安.航空工业中的锻压技术及其发展.锻压技术,1994,(1):57~61
    12 粟祜.叶片精锻.国防工业出版社,1984
    13 全荣,陈尔昌.国外叶片锻造技术概况.航空工艺技术,1994,(4):6~9
    14 胡亚明,车路长.精锻成形技术现状及发展,锻压机械,1996,(3):6~9
    15 张翼明.法国SNECMA公司叶片加工技术.航空工艺技术,1998,(2)21~23
    16 L. B. Aksenov, N. R. Chitkara, W. Johmson. Pressure and Deformation in the Plane Strain Pressing of Chitkara Section Bar to Form Turbine Blade. International Journal of Mechanical Sciences, 1975, 17:681~691
    17 N. Akgerman, T. Altan. Application of CAD/CAM in Forging Turbine and Compressor Blades. ASEM Journal of Engineering for Power, 1976, 56:290~296
    18 N. Rebelo, H. Rydstad, G. Schroder. Simulation of Material Flow in Closed-Die Forging by Model Techniques and Rigid-plastic FEM. Industrial forging process, Swansea UK:Pineridge Press, 1982:237~246
    19 佐藤安彦,山本和人,木原茂文.流锻造用锻造金型设计.塑性加工,1996,37(425):659~662
    20 N. L. Dung, O. Mahrenholtz. Progress in the Analysis of Unsteady Metal-forming Processes Using the FEM. Industrial forging process, Swansea UK:Pineridge Press, 1982:187~196
    
    
    21 B. S. Kang, N. S. King, S. Kobayashi. Computer-aided Perform Design In Forging of an Airfoil Section Blade. International Journal of Machine Tools and Manufacture, 1990,30(1):43~52
    22 A. Morita, S. Hattori, K. Tani. Near Net Shape Forging of Titanium Alloy Turbine Blade. ISIJ International, 1991,31(8):827~833
    23 B. Solstni, K. Mattiasson, A. Samuelsson. Implicit and Dynamic Explicit Solutions of blade Blade Forging using the Finite Element Method. Journal Materials Processing Technology, 1994,45:69~74
    24 松下 富春.锻造加工数值適用.塑性加工,1992,33(11):1262~1267
    25 J. H, Argyris, J. S. Doltsinis, J. Luginsland Three-dimensional Thermomechanical Analysis of Metal Forming Processes. Int. Simulation of Metal Forming Processes by the Finite Element Method, Proceedings of the International Workshop, Berlin: Springer Press, 1986:125~169
    26 D. Y. Yang, N. K. Lee, J. H. Yoon. A Three-dimensional Simulation for Isothermal Turbine Blade Forging by the Rigid-viscoplastic Finite Element Method, Journal of Materials Engineering and Performance, 1993, 2(1): 119~124
    27 R. Cho, N. K. Lee, D. Y.. Yang. A Three-dimensional Simulation for Non-isothermal Forging of a Steam Turbine Blade by the Thermoviscoplastic Finite Element Method. Journal of Engineering Manufacture, 1993, 207(1):265~273
    28 Z. M. Hu, J. W. Brooks, T. A. Dean. Experimental and Theoretical analysis of deformation and microstructural evolution in the hot-die forging of titanium alloy aerofoil sections. Journal of Materials Processing Technology, 1999,88:251~265
    29 J. W. Brooks, T. A. Dean, Z. M. Hu, E. Wey. Three-dimensional finite element modeling of a titanium aluminide aerofoil forging. Journal of Materials Processing Technology, 1998,80:149~155
    30 Z. M. Hu, J.W. Brooks, T.A. Dean. The Interfacial Heat Transfer Coefficient in Hot Die Forging of Titanium Alloy. Proceedings of the Institution of Mechanical Engineers, part C, 1998,212(6):485~496
    31 Z. M. Hu, J. W. Brooks, T. A. Dean. Three-Dimensional Finite Element Modelling of Forging of a Titanium Alloy Aerofoil Sectioned Blade. Manufactring Science and Engineering Transaction ASME, 1999,121:366~371
    
    
    32 Z. M. Hu, T. A. Dean. Aspects of Forging of Titanium Alloys and the Production of Blade Forms. Journal of Materials Processing Technology, 2001,111:10~19
    33 Y. S. Na, J. T. Yeom, N. K. Park, J. Y. Lee. Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator. Journal of Materials Processing Technology, 2003
    34 X. Lu, R. Balendra. Temperature-Related Errors on Aerofoil Section of Turbine Blade. Journal of Materials Processing Technology,2001,115:240~244
    35 连建民等.叶片精锻过程刚粘塑性有限元模拟,航空部第621研究所,1986.1
    36 薛克敏,刘英伟,王真,吕炎.叶片成形反向模拟中关键问题的处理.金属学报,1997,33(10):1115~1120
    37 朱谨,张志文.叶片锻造过程的模拟计算.锻压技术,1997,(1):2~6
    38 赵国群.锻造过程的正反向数值模拟.上海交通大学博士学位论文.1991
    39 米小珍,郑大梁等.涡轮叶片锻造成形过程的计算机模拟.大连铁道学院学报,1998,19(4):83~86
    40 詹梅.面向带阻尼台叶片精锻过程的三维有限元数值模拟研究.西北工业大学博士学位论文.2000
    41 刘郁丽.叶片精锻成形规律的三维有限元分析.西北工业大学博士学位论文.2001
    42 薛善坤.叶片锻造过程的数值模拟研究.西北工业大学硕士学位论文.2001
    43 蔡旺.叶片精锻过程三维热力耦合有限元模拟.西北工业大学硕士学位论文.2002
    44 刘芳.铝合金转子等温精密成形工艺的数值模拟与组织预测.哈尔滨工业大学博士学位论文.2003
    45 沈健,唐京辉,谢水生.AI-Zn-Mg合金的热变形组织演化.金属学报,2000,36(10):1033~1036
    46 C. M. Sellars, J. A. Whiteman. Recrystallization and grain growth in hot rolling. Metal Science, 1979,13 (3): 187~194
    47 C. M. Sellars. Modelling microstructural development during hot rolling. Materials Science and Technology, 1990,6:1072~1081
    48 H. Yada, T. Senuma. Resistance to hot deformation of steel. J. Jpn. Soc. Tech. Plasticity. 1988.27:33~44
    49 脇田淳一,高橋学,河野治等.低炭素鋼组織变化予测.铁鋼,1996,82(7):67~72
    
    
    50 刘雪梅,组织演变模型及其在钛合金高温变形中的应用.西北工业大学硕士学位论文.1999
    51 J. M. zhang, Z. Y. Gao, J. Y. zhuang, Z Y zhong. Modeling of grain size in superalloy IN718 during hot deformation. Journal of Materials Processing Technology, 1999,88:244~250
    52 G. S. Shen, S. L. Semiation, R. Shivpuri. Modeling microstructural development during the forging of Waspaloy. Metallurgical and materials transactiona A, 1995,26A(7): 1795~1803
    53 L. S. Wang, Q. X. Cao, Z. Liu. Numerical Simulation and Experimental Verifyication of Microstructure Evolution in a 3-dimensional Hot Upsetting Process. Journal of Material Processing Technology, 1996,58:331~336
    54 吉野雅彦,白樫高洋.锻造材質予测.塑性加工,1992,33(11):1285~1291
    55 根古豊,秋山雅義,黑田浩一.熱间多段加工時结晶粒粗大化举動及蓄積效果影响.塑性加工,1998,39(11):1134~1138
    56 山口基,久保田智,福井毅,大野丈博.数值·实验锻造材料结晶粒径予测技術開癸.塑性加工,2001,42(6):590~592
    57 R. Kopp. Multi-Level simulation of metal forming, processes. Advanced Technology of Plasticity, 1987,2:1229~1235
    58 李明哲,重野千年,佐久田博司,小林勝.锻造加工变形分布予测予测结果材質関係.塑性加工,1990,31(1):83~89
    59 王哲,河野亮,汤川伸树,石川孝司.非调質鋼熱間锻造结晶粒径予测.塑性加工,1999,40(5):88~92
    60 Y. S. Jang, D. C. Ko, B. M. Kim. Application of the finite element method to predict microstructure evolution in the hot forging of steel. Journal of Materials Processing Technology, 2000,101:85~94
    61 王芳,王作成,栾贻国.锻粗过程锻件组织模拟软件设计.锻压机械,2000(4):54~56
    62 李俊,李润方,游理华.热锻成型工件的微观组织模拟.塑性工程学报,1996(2):8~12
    63 王连生,曹起骧,许思广.三维热耦合刚粘塑性有限元数值模拟技术的开发和应用.塑性工程学报,1994,1(3):34~41
    
    
    64 王连生,马喜腾,曹起骧.三维热锻中动态再结晶过程的数值模拟及试验研究.机械工程学报,1996,32(6):24~29
    65 杨旗,罗子健,刘东.应用模糊数学预测变形高温合金锻件晶粒度.中国机械工程,1999,10(7):832~834
    66 刘东.难变形材料锻造过程的有限元变形—传热—组织演化耦合分析,西北工业大学博士学位论文.1998
    67 熊爱明.钛合金锻造过程变形-传热-组织演化的耦合模拟.西北工业大学博士学位论文.2003
    68 陈如欣,胡忠民.塑性有限元法及其在金属成形中的应用.重庆大学出版社,1989
    69 吕丽萍.有限元法及其在锻压工程中的应用.西北工业大学出版社,1989
    70 李尚健.金属塑性成形过程模拟.机械工业出版社,1999
    71 张凯锋,魏艳红,魏尊杰,闫牧夫.材料热加工过程的数值模拟.哈尔滨工业大学出版社,2000
    72 孔详谦.有限单元法在传热学中的应用.第三版.科学出版社,1998
    73 S. Kobayashi, S. I. Oh, T. Altan. Metal forming and the finite element method. Oxford University Press, 1989
    74 张新泉.三次因式法——一种加快刚塑性有限元迭代收敛的新算法.塑性工程学报,1996,3(2):24~32
    75 N. Redelo, S. Kobayashi. A coupled analysis of viscoplastic deformation and heat transfer. International Journal of Mechanical Sciences, 1980,22:707~718
    76 王仲仁,刘建生.大型曲轴弯曲镦锻过程的热力耦合分析.锻压机械,2001,(2):32~34
    77 张家荣,赵廷元.工程常用物质的热物理性质手册.新时代出版社,1987
    78 (苏)A.阿特罗申科,B.费多罗夫著.薛永春,王惠泉译.难变形材料的热模锻.国防工业出版社,1986
    79 R. S. Lee, H.C. Lin. Process design based on the deformation mechanism for the non-isothermal forging of Ti-6Al-4V alloy. Journal of Materials Technology, 1998,79:224~235
    80 (美)T.阿尔坦等著.陆索译.现代锻造设备、材料和工艺.国防工业出版社,1982
    81 聂蕾,TC4合金的热模锻过程设计与质量控制.西北工业大学硕士学位论文.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700