用户名: 密码: 验证码:
板带不均匀压下面内弯曲过程失稳起皱与参数优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板带不均匀压下面内弯曲成形方法,利用材料不均匀塑性变形,可充分挖掘材料变形潜力,是一种能够发展成为集省能、柔性、高效、精密、绿色于一体的先进塑性加工技术。本文围绕失稳起皱和工艺参数优化这两个需要迫切解决的问题,采用实验研究、理论解析和数值模拟相结合的方法,对这一成形过程展开了深入的研究,得出了如下主要结果:
     (1)研究发现了轧制正应力和切向正应力的分布规律:在接触面上,轧制正应力和切向正应力沿宽度方向从外缘向内缘近似呈线性减小趋势,并分别在最外缘和最内缘达到最大和最小值;沿轧制方向,随着变形量的增大呈先轻微增大后逐渐减小的趋势,轧制出口处达到最小值,甚至出现拉应力:在纵向截面,轧制正应力与切向正应力沿轧制方向随着变形量增大呈先轻微增大后减小的趋势,沿厚度方向变化不大。研究揭示了实际加载楔角、接触变形区宽度、材料性能参数和摩擦因子对总功率、总轧制力、平均轧制力以及轧制力距的影响规律:实际加载楔角、接触变形区宽度和强化系数对力能参数的影响都是近似线性增大的趋势;硬化指数增大则力能参数轻微减小;摩擦因子对力能参数的影响不明显。
     (2)揭示了板带不均匀压下面内弯曲成形过程基于能量原理的失稳起皱机理,提出了统一的描述内外缘起皱波形的函数,采用变分法推导了服从该波形函数的内外缘起皱能,建立了统一的起皱预测准则;将新建立的统一的起皱预测准则引入到数值模拟系统IBS中,数值预测结果与实验结果的吻合较好;分析了成形过程各参数对起皱的影响规律:随着接触变形区宽度的逐渐增大,先是发生外缘起皱,然后发生内缘起皱,进而才出现稳定成形;随着实际加载楔角的增大,先是发生内缘起皱,然后发生稳定成形,进而出现外缘起皱;硬化指数和强化系数增大,易于稳定成形;摩擦因子对起皱的影响不明显;而且接触变形区宽度对起皱的影响最大。
     (3)确定了工艺参数优化的优化目标、设计变量、约束条件,建立了工艺参数优化的数学模型;提出了采用复合形法与黄金分割法相结合的优化方案,开发了工艺参数优化系统,采用实验方法对工艺参数优化系统的可靠性进行了验
    
    西北工业大学工学硕士学位论文
    证。该研究为板带面内弯曲成形过程优化工艺参数确定和成形过程精确控制打
    下了基础。
     本文的研究成果不仅可以进一步完善板带不均匀压下面内弯曲理论与丰富
    薄壁件的失稳起皱理论,而且可以为这一先进塑性加工技术的推广应用提供理
    论基础,也可以为其它先进塑性加工技术研究和开发提供新思路。
In-plane bending process of strip metal under unequal compressing, making use of the unequal deformation, can be developed into an advanced precision forming process with good flexibility, precision, high efficiency, low consumption, high forming limit and environmental friendly. The instability wrinkling and the parameter optimization are the key problems urgently to be solved in the research and development of the process. In this dissertation, a systematical and thorough investigation on the wrinkling and the parameter optimization of the process has been carried out by using rigid-plastic FEM simulation in conjunction with theoretical analysis and experiment. The new achievements made are as follows:
    (1) The normal and shear stress distribution is researched with the finite element code. The results are as the following: the normal and shear stress linearly diminish from external to internal on the interface between the part and the roller, and respectively reach minimum and maximum at the external and internal; the normal and shear stress slightly rise with the increase of deformation along the rolling direction, and reach the minimum at the exit; the normal and shear stress slightly rise with the increase of deformation along the rolling direction, whereas keep constant along the thickness direction of the lengthwise section, then the effect of the forming parameter such as the compress width, the loading wedge angle, the strain-hardening exponent, the strength coefficient and the friction factor on the total power, total rolling force, moment and average rolling force is analyzed. The results are as the following: energetic parameters rises linearly with the compress width, the loading wedge angle and
     the strength coefficient increases; energetic parameter decrease as the strain-hardening exponent increasing and the effect of the friction factor on energetic parameter may be ignored.
    (2) The mechanism of instability wrinkling in the process based on minimum energy principle is revealed, uniform mathematic description of the wrinkling wave on the strip of in-plane bending is established, the internal and external energy is deduced by energy method, and a uniform criteria of internal and external wrinkling is established; then how to combine the criteria with the FEM simulation system to make the numerical prediction of wrinkling into reality is also resolved in the paper. The effects of the forming parameters on the deforming result are analyzed by the uniform predict criteria. The results show as follows: as the compress width increase, external wrinkling first come into being, then internal winkling do, and finally in-plane bend occur; the loading wedge angle increase, internal winkling first come into being, then
    
    
    in-plane bend do, and finally external wrinkling occur; in-plane bend is possible to occur with a increase of the strain-hardening exponent and the strength coefficient; and the effect of the friction factor may be ignored.
    (3) The thinking of the parameter optimization in the process is bought forward; and then the optimization objective, design variable, constraint condition and the mathematical model of the parameter optimization are proposed, the scheme of complex method combined with the fibonacci method for the process is proposed, the parameter optimization code is developed. The experiments carried out show that the developed code is reliable. The result can lay a basis for the forming parameters rapidly and exactly being decided and regulated.
    The achievements of this study are important to further developing the unequal deformation theory, and the plastic wrinkling theory of thin-wall component. Furthermore, it lays a theoretical foundation for generalization and industrialization of this process, also offers a new idea to the R&D of the advanced plastic processing technologies.
引文
1 杨合,鲜飞军.先进塑性成形加工技术发展中的几个重要基础问题.中国机械工程学会第三届全国青年学术会议论文集.北京:机械工业出版社,1998:41~44
    2 董湘怀,黄树槐,李志刚等.塑性加工技术的发展趋势.中国机械工程,2001,11(9)
    3 李德群.塑性加工技术发展状况及趋势.航空制造技术,2000.3(第八届国际模具技术和设备展专辑)
    4 张士宏.塑性加工技术的科学化与中国塑性加工技术的发展.科技前沿与学术评论,23,5
    5 俞新陆.21世纪塑性加工面临的挑战——对几个问题的看法.塑性工程学报,1994,3(3)
    6 鲜飞军,杨合.不均匀压下面内弯曲成形技术的研究进展.中国机械工程,2000,12
    7 罗守靖,杨合,霍文灿.锥辊轧制理论研究的进展.钢铁研究学报,1994,6(3):89~95
    8 H. Murakami, O. Yamada, M. Takasaki. Edge-wise roll bending of shaped metals. In: Kobayashi M ed. Proceeding of 3rd International Conference on ROMP. Kyoto. 1984. Kyoto: 1984. 145~154
    9 O. Yamada, H. Murakami, M. Takasaki. A new method for bending of shaped beams by conical bending-studies on in-plane bending by wedge rolling Ⅲ. Journal of the JSTP, 1989, 30(340): 665~670
    10 O. Yamada, H. Murakami, M. Takasaki. Influence of changes in position of entry guide and roll shape of wedge roll on bending accuracy-studies on in-plane bending by wedge rolling I. Journal of the JSTP, 1987, 28(313): 194~199
    11 O. Yamada, H. Murakami, M. Takasaki. Influence of back tension on strain distribution and forming limit-studies on in-plane bending by wedge rolling Ⅱ. Journal of the JSTP, 1989, 30(336): 37~42
    12 O. Yamada, H. Murakami, M. Takasaki. Controlling system of inner diameter of helix by back tension control-studies on in-plane bending by wedge rolling Ⅳ. Journal of the JSTP, 1990, 31(354): 913~917
    13 K. Nakamura, H. Asao, S. Watanabe. Effects of working conditions on in-plane bending-study on intermittent partial forging I. Journal of the JSTP, 1989, 30(340):
    
    651~657
    14 S. Watanabe, M. Midorikawa, T. Kurokawa. Deformation behavior in in-plane roll bending-an experimental study on in-plane bending technology I. Journal of the JSTP, 1994, 35 (407): 1394~1399
    15 T. Yokoyama, H. Nagashima. In-plane bending of aluminum plate by flattening. Joumal of the JSTP, 1998, 39(448): 483~487
    16 罗守靖,霍文灿.锥辊轧制理论.机械工业出版社,2000
    17 S. J. Luo, H. Yang, W. C. Huo. Effect of the choice and adjustment of the technical parameters on the cold rolling of spiral flight. Journal of Materials Processing Technology, 1993, 39: 327~336
    18 雷军.不均匀压缩下金属板带面内弯曲成形的研究.西北工业大学硕士学位论文.1996
    19 杨合.锥辊异面冷辗轧成形的几何模型.应用科学学报.1995,13(4):379~386
    20 杨合,肖红生,雷军.板带金属不均匀压下面内弯曲成形机理的研究.塑性工程学报,1997,4(3):52~58
    21 肖红生.不均匀压下金属板带面内精密弯曲及数值模拟.西北工业大学硕士学位论文.1997
    22 鲜飞军,杨合,肖红生.不均匀压缩下金属板带面内弯曲成形的试验研究.中国机械工程,1998,9(6):56~58
    23 鲜飞军.板带不均匀压下面内弯曲成形规律的研究.西北工业大学硕士学位论文.1999
    24 H. Yang, F. J. Xian, Y. L. Liu. A coordination model of the in-plane bending of strip metal under unequal compression. Journal of Materials Processing Technology, 2001, 114: 103~108
    25 H. Yang, F. J. Xian, H. S. Xiao. Instable modes of in-plane bending of strip metal under unequal compressing. Journal of Materials Processing Technology, 2000, 99: 197-201
    26 F. J. Xian, H. Yang, H. S. Xiao. Finite element analysis of effects of parameters on in-plane benging process of strip metal. Journal of Materials Processing Technology, 2000, 102: 78~83
    27 鲜飞军,杨合.不均匀压下面内弯曲成形过程的有限元模拟研究.机械工程学报,2000,36(7):69~73
    28 鲜飞军.板带不均匀压下面内弯曲过程失稳起皱及成形极限的研究.西北工业大学博士学位论文.2001
    29 唐汉玲.板带不均匀压下面内弯曲成形过程内缘起皱与成形极限的研究.西北工业大学硕士学位论文.2003
    
    
    30 鲜飞军,杨合.不均匀压下板带面内弯曲模拟装置加载辊缝变化模型.重型机械,2000,6:41~45
    31 M. Ahmetoglu, T. Altan. Tube hydroforming state-of-the-arts and future trends. In: Advances in sheet metal stamping. Detroit. 1999. Warrendale: Society of automotive engineers incorporated, 1999: 1~9
    32 J. W. Geckeler. Plastiche knicken der wandung von hohlzylindern und einige andern faltungserscheinungen. Angewandte Mathematik una Mechannik, 1928, 8: 341~352
    33 K. Yoshida. Purposes and features of the Yoshida wrinkling test. Journal of the JSTP, 1983, 24(272): 901~908
    34 崔令江.薄板冲压成形中的剪应力起皱的研究.哈尔滨工业大学博士学位论文.1989
    35 B. W. Senior. Flange wrinkling in deep-drawing operations. Journal of the Mechanics and Physics of Solids, 1956, 4: 235~246
    36 T. X. Yu, W. Johnson. The wrinkling of annular plates in relation to the deep-drawing process. International Journal of Mechanical Science, 1982, 24(3): 175~188
    37 S. Yossifon, J. Tirsoh. On suppression of plastic wrinkling in hydroforming processes. International Journal of Mechanical Science, 1984, 26(6-8): 389~402
    38 S. Yossifon, J. Tirsoh. Wrinkling prevention by lateral fluid pressure in deep-drawing. International Journal of Mechanical Science, 1985, 27(3): 177~185
    39 胡世光.板料冷压成形原理.国防工业出版社,1979
    40 高凯祁,杜颂,胡世光.轴对称零件拉深过程中的最小无皱压边力.塑性工程学报,1997,4(4):30~37
    41 余同希,章亮炽.塑性弯曲理论及其应用.科学出版社,1992
    42 梁炳文,胡世光.弹塑性稳定理论.国防工业出版社,1983
    43 J. X. Lei, Y. L. Kang. Prediction and control of both wrinkling and fracture limits on cylindrical cup multi-deep-drawing. Chinese Journal of Mechanical Engineering, 1999, 12(4): 288~296
    44 J. Cao, M. C. Boyce. Wrinkling behavior of rectangular plates under lateral constraint. International Journal of Solids and Structure, 1997, 34(2): 153~176
    45 J. Cao, M. C. Boyce. A predictive tool for delaying wrinkling and tearing failures in sheet metal forming. Journal of Engineering Materials and Technology, 1997, 119: 354~365
    46 J. Cao, X. Wang. An analytical model for plate wrinkling under tri-axial loading and its application. International Journal of Mechanical Science, 2000, 42: 617~633
    47 X. Wang, J. Cao. On the prediction of side-wall wrinkling in sheet metal forming
    
    processes. International Journal of Mechanical Science, 2000, 42: 2369~2394
    48 M. Yoshida, A. Fujiwara. Prediction of wrinkling and strain of rectangular aluminum tubes in draw bending. Joumal of the JSTP, 1997, 38(9): 29~34
    49 L. Hill. A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 1958, 6: 236~24950 J. W. Hutchinson. Plastic wrinkling. Advances in Applied mechanics, 1974, 14: 67~144
    51 P. Tugcu. On plastic wrinkling predictions. International Joumal of Mechanical Science, 1991, 33(7): 529~539
    52 P. Tugcu. Plate wrinkling in the plastic range. International Journal of Mechanical Science, 1991, 33(1): 1~11
    53 C. T. Wang, G. Kinzel, T. Altan. Wrinkling criterion for an anisotropic shell with compound curvatures in sheet forming. International Journal of Mechanical Science, 1994, 36(10): 945~960
    54 A. Zghal, A. Shindo, Y. Tomita. Instability phenomena in the pure bending of shape steels. In: Advanced Technology of Plasticity 1984. Tokyo: The Japan Society for Technology of Plasticity and the Japan Society of Precision Engineering, 1984. 303~308
    55 A. Fatnassi, Y. Tomita, A. Shindo. Non-axisymmetfic wrinkling behavior of elastic-plastic circular tubes subjected to a nosing operation. International Journal of Mechanical Science, 1985, 27(10): 643~651
    56 Y. Tomita, A. Shindo. Onset and growth of wrinkling in thin square plates subjected to diagonal tension. International Journal of Mechanical Science, 1988, 30(12): 921~931
    57 K. W. Neale, P. Tugcu. A numerical analysis of wrinkle formation tendencies in sheet metals. International Journal for Numerical Methods in Engineering, 1990, 30: 1595~1608
    58 N. Triantafyllidis. Puckering instability phenomena in the hemispherical cup test. Journal of the Mechanics and Physics of Solids, 1985, 33(2): 117~139
    59 Y. Tomita. Simulations of plastic instabilities in solid mechanics. Applied Mechanical Reviews, 1994, 47(6): 171~205
    60 柳玉起,胡平,郭威等.板材成形局部塑性失稳与起皱的数值模拟.中国机械工程学报,1997,33(2):88~92
    61 胡平,柳玉起,李运兴.板材成形缺陷及其数值仿真.应用基础与工程科学学报,1999,7(1):39~54
    62 柳玉起,胡平,刘军华等.方板对角拉伸分叉、鼓动与起皱.力学学报,1998,30(1):76~81
    
    
    63 李明哲,李淑慧,柳泽等.板材多点成形过程起皱现象数值模拟研究.中国机械工程,1998,9(10):34~38
    64 L. C. Zhang, T. X. Yu, R. Wang. Investigation of sheet metal forming by bending-part Ⅱ. Plastic wrinkling of circular sheets pressed by cylindrical punches. International Journal of Mechanical Science, 1989, 31(4): 301~308
    65 B. D. Reddy. An experiment study of the plastic wrinkling of circular cylinders in pure bending. International Journal of Solids and Structure, 1979, (15): 669~683
    66 E. R. Lancaster, C. R. Calladine, S. C. Palmer. Paradoxical wrinkling behaviour of a thin cylindrical shell under axial compression. International Journal of Mechanical Science, 2000, 42: 843~865
    67 D. Durban, Z. Zuckerman. Elasoplastic wrinkling of rectangular plates in biaxial compression/tension. International Journal of Mechanical Science, 1999, 41: 751~765
    68 刘鸿文.板壳理论.浙江大学出版社,1987
    69 吴连元.板壳理论.上海交通道学出版社,1989
    70 吴连元.板壳稳定性理论.华中理工大学出版社,1996
    71 R. D. Cook. Concepts and Application of Finite Element Analysis. John wily & soons, 1981
    72 龙驭球.有限元法概论.人民教育出版社,1979
    73 A. Ahmetoglu, G. Kinzel, T. Altan. Computer simulation for tool and process design in sheet forming. Journal of Materials Processing Technology, 1994, 46: 421~441
    74 L. Taylor, J. Cao, A. P. Karafillis, etal. Numerical simulations of sheet metal forming. Journal of Materials Processing Technology, 1995, 50: 168~179
    75 A. Makiniuchi. Sheet metal forming simulation in industry. Journal of Materials Processing Technology, 1996, 60: 19~26
    76 J. O. Hallquist, B. Wainscoff, K. Schweizerhof. Simulation of thin-sheet metal forming using LS-DYNA3D on parallel computers. Journal of Materials Processing Technology, 1995, 50: 144~157
    77 D. Zhou, R. H. Wagoner. Development and application of sheet-forming simulation. Journal of Materials Processing Technology, 1995, 50: 1~16
    78 T. R. Hou, E. Nakamachi. Evaluation of the dynamic explicit finite element method in sheet forming simulation. Journal of Materials Processing Technology, 1995, 50 (1): 180~196
    79 A. M. Prior. Applications of implicit and explicit finite element techniques to metal forming. Journal of Materials Processing Technology, 1994, 45: 649~656
    80 A. E. Tekkaya. State-of-the-art of simulation of sheet metal forming. Journal of Materials Processing Technology, 2000, 103: 14~22
    
    
    81 熊火轮,胡世光.板料成形中地计算机辅助技术.北京航空航天大学出版社,1994
    82 白新桂.数据分析与试验优化设计.清华大学出版社,1986
    83 S. Kobaysis, S. I. Oh, T. Altan. Metal forming and the finite-element method. New York: Oxford university press, 1989
    84 李尚健.金属塑性成形过程模拟.机械工业出版社,1999
    85 谢水生,王祖唐.金属塑性成形工步的有限元数值模拟.冶金工业出版社,1997
    86 王祖唐,关廷栋,肖景容等.金属塑性成形理论.机械工业出版社,1989
    87 吕丽萍.有限元法及其在锻压工程中的应用.西北工业大学出版社,1989
    88 王勖成,邵敏.有限单元法基本原理和数值方法(第2版).清华大学出版社,1997
    89 刘相华.刚塑性有限元及其在轧制中的应用.冶金工业出版社,1994
    90 韦鹤平.最优化技术应用.同济大学出版社,1987
    91 王国彪.机械优化设计方法微机程序与应用.机械工业出版社,1994
    92 何献忠,刘玉桐,金小海.优化技术及其应用.北京工业学院,1986
    93 刘惟信.机械最优化设计.清华大学出版社,1994
    94 刘惟倍,孟嗣宗.机械最优化设计.清华大学出版社,1986
    95 陈永会,李海虹,李志谭.复合形法解决多维非线性有约束优化问题.精密制造与自动化.2002,3(151):37~38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700