用户名: 密码: 验证码:
粉末锻造成形致密规律及过程模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉末锻造是将传统的粉末冶金工艺和精密模锻相结合发展起来的一种新型高性能精密塑性成形技术。论文运用理论研究、物理模型实验、有限元数值模拟等相结合的方法,系统地研究了粉末锻造(冷锻)成形规律、致密化机制。
     在粉末多孔材料塑性成形理论研究方面,论文分析了各种粉末烧结材料的屈服准则,重点研究和比较了基于粉末冷锻的多孔体屈服准则,并运用其推导了粉末锻造成形的变形力和密度计算表达式,进行了定量分析和讨论。
     基于粉末锻造成形致密理论的研究,论文采用物理实验方法,通过对还原铁粉预成形坯的镦粗、复压、闭式模锻等实验研究,确定了粉末冷锻镦粗成形断裂极限准则,绘制了成形极限应变曲线。分析了不同初始相对密度、不同高径比、不同摩擦因子等对粉末锻造镦粗断裂极限应变的影响,确定了锻造镦粗成形极限工艺参数,据此可以进行粉末锻造预成形坯和模具尺寸的优化设计。根据物理实验结果的微观金相分析,进一步研究了粉末锻造塑性成形的密度分布规律。
     论文导出了粉末多孔体刚塑性有限元屈服准则及其本构方程,建立了可压缩系数和相对密度的关系式。运用MARC有限元软件,对粉末锻造镦粗、闭式模锻的成形过程进行了数值模拟,分析了不同初始相对密度、高径比、摩擦因子等对粉末锻造成形规律和致密机制的影响,并将其结果与实验结果进行了比较。
     论文所得到的研究结论对于拓展和深化粉末冶金材料精密塑性成形理论,促进粉末锻造精密塑性成形技术的应用和计算机模拟优化技术的发展具有重要意义。
Powder forging (P/F) is a new-style and high-performance plastic forming technology which combines conventional powder metallurgy (P/M) with precision forging techniques. The paper has systemically studied the deformation law and the densification mechanism during powder forging process (especially cold forging) based on the combined methods of theoretical study, experimental testing and numerical simulation.
    In theoretical study field of plastic forming for porous metal materials, the yield cfiterions for compressible P/M materials are systemically studied and those for compressible P/M materials based on cold-forging are analyzed and compared especially. Then the calculation formulae of deforming force, the density of workpiece and sizes for upsetting, repressing, and closed die forging are deduced. They are analyzed and discussed quantificationally at the same time.
    Based on the study of the deformation law and densification mechanism of powder forging, the experimental research method is adopted in this paper. According to experimental results of upsetting and closed die forging of deoxidize Fe porous materials, the local strain limit criterion for the cracking on surface has been achieved. The effect of different initial relative density( 0), the relative height(H/D) and the factional factor(m) on cracking strain limit of upsetting deformation is farther discussed. Meanwhile, based on the experimental results, the limit process parameters have been confirmed for the cracking limitation. After that, the sizes design of mould and that of sintered porous materials green can be optimized. And according to microcosmic analysis of experimental workpieces, the law of density distribution of powder forging is researched, too.
    At the same time, the yield criterion and constitutive equations for the compressible rigid plastic finite element method have been deduced and the formula representing relationship between g, the coefficient of material
    
    
    volume compressibility method of rigid plastic finite method, and , the relative density of powder materials, has been established and researched. The MARC finite element method is used to simulate the deformation process of a cylindrical upsetting and closed die forging of porous metal materials, and influence on its deformation law and densification mechanism brought by different initial relative density, the relative height and the frictional factor is analyzed then. The numerical results are compared with those of experiments at last.
    Therefore, the results obtained in this paper may enrich the precision plastic forming theory, promote the applications of P/F technology and improve the development of numerical simulation for powder metallurgy. This is of significant.
引文
[1]徐润泽.粉末冶金结构材料学.中南工业大学出版社,2002
    [2]松山芳治,三谷裕康,铃木寿.粉末冶金学.科学出版社,1978
    [3]夏巨湛,韩凤麟,赵以平.中国模具设计大典—V4锻模与粉末冶金模具设计.江西科学技术出版社,2003
    [4]吴全兴.日本粉末冶金技术中长期展望和战略.稀有金属快报,2002,(5):5~6
    [5]印红羽,张华诚.粉末冶金模具设计手册.机械工业出版社,2002,第2版
    [6]Lenel F V.PM,Principles and Application,MPIF, Princeton,New York, 1980
    [7]German. R M. Powder Injection Molding. MPIF, Princeton,NJ,1990
    [8]韩凤麟.2000年中国粉末冶金零件工业进展.粉末冶金工业,2002,12(1):7~10
    [9]中国机械通用零部件:工业协会粉末冶金专业协会.粉末冶金零件使用手册.兵器工业出版社,1996
    [10]梁华.粉末锻造现状.粉末冶金技术,1992.143-145
    [11]李念辛,李森蓉.我国铁基粉末冶金锻造技术的发展.粉末冶金技术,1996,14(1):58~62
    [12]王强.我国粉末锻造工艺发展中的若干问题。湖南机械,1981,10(1):13~15
    [13]李念辛.粉末冶金锻造模具设计.粉末冶金技术,1987,(3):11~14
    [14]Sergeys F J.U.S.Pat.3,755,204,1973
    [15]Cassidy D J,Esper M,Ronnie D J.Ger.DT2,349,472,1974
    [16]Bagley R D.U.S.Pat.3,790,654,1974
    [17]Kiefer W et al.U.S.Pat 4,588,540,1986
    [18]Auriol A et al.U.S.Pat.4,724,078,1988
    [19]黄培云.粉末冶金原理.冶金工业出版社,1982
    [20]张连洪,王祖唐.粉末冶金多孔可缩材料塑性理论研究的进展.金属成形工艺,1989,(4):55~60
    [21]Kuhn H A, Downey C L.DeMrmatlon. Characteristic and Plasticity Theory of Sintered Ponder Materials. Int.J.Powder Met.1971,7(1):15~25
    [22]Green R.J.Int.J.Mech Sci, 1972,114:215
    [23]人根粉体粉末冶金.1973,20(5):142
    [24]汪俊等.粉末金属压制过程建模方法(1)-金属塑性力学方法.金属成形工艺,2000,18(2):34~38
    [25]汪俊等.粉末金属压制过程建模方法(2)—广义塑性力学方法和内蕴时间方法.金属成形工艺,2000,18(3):24~26
    [26]Park JJ.Constitutive Relations to Predict Plastic Deformations of Porous Metals in Compaction.Int.J.Mech.Sci,1995,37(7):709~719
    [27]Shima S.Joumal of the JSTP. 1986,27(309):1125
    
    
    [28]Doraivetu S M,Gegel H L,Gunasekera J S,et al. A New Yield Function for Compressible P / M Materials.Int.J. of Mech. Set, 1984,(26):9~10
    [29]任学平.粉末金属屈服准则和流动应力研究:[学位论文].哈尔滨工业大学,1989
    [30]赵仲治等.烧结体屈服准则.武汉工学院科研报告,1982
    [31]华林,赵仲治.烧结材料塑性理论及应用.机械工程学报,1992,28(4):94~102
    [32]华林,赵仲治.粉末烧结材料屈服条件.武汉汽车工业大学学报,1999,21(2):26~30
    [33]JHA A.K,KUMAR S. DYNAMIC EFFECTS DURING A HIGH-SPEED SINTER-FORGING PROCESS. Int.J.Mach.Tools Manufact. 1996, 36(10): 1109~1122
    [34]Cheng-Chao Huang, Jung-Ho Cheng. Forging simulation of sintered powder compacts under various frictional conditions. International Journal of Mechanical Sciences, 2002,44:489~507
    [35]Michel Bellet. Finite element analysis of compressible viscoplastisty using a three-field formulation. Comput. Methods Appi. Mech. Engrg. 1999,175:19~40
    [36]Kim H.S, Won C.W, Chun B.S. Plastic deformation of porous metal with an initial inhomogeneous density distribution. Journat of Materials Processing Technology,1998,74:213~237
    [37]Cho J.R, Jeong Y.S. The Al-powder forging process: its finite element analysis. Journal of Materials Processing Technology, 2001 111: 204~209
    [38]Abdel-Rahman M, El-Sheikh M.N. Workability in forging of powder metallurgy compacts.Journal of Materials Processing Technology, 1995,54:97~102
    [39]Satangi P.S, Sharma P.C, Prakash R. An elastic-plastic finite element method for the analysis of powder metal forging. Journal of Materials Processing Technology, 2003,136:80~87
    [40]LIPPMANN H, IANKOV R. Mathematical modeling of sinitering during powder forming processes. Int.J. Mech sci, 1997,39(5): 585~596
    [41]Irek C. Krezalek, K.Sivakumar. Computational simulation of powder movement during uni-axiai die compaction of metal powder. Journal of Materials Processing Technology,1995,48:421~427
    [42]汪俊,李从心,阮雪榆.粉末金属压制过程数值模拟建模方法.机械科学与技术,2000,19(3):436~438
    [43]汪俊,李从心.金属粉末体压制成形过程模型的研究.锻压机械,1996,(2):41~43
    [44]卫原平,阮雪榆.粉末烧结材料塑性变形过程的有限元分析.中国有色全属学报,1994,4(4):56~61
    [45]刘心宇,张继忠,占美燕.粉末体成形的有限无数值模拟.中南工业大学学报,1999,30(3):279~282
    [46]徐平饺.粉末烧结体镦粗致密与成形的育限元分析.四川冶金,2003,(1):14~16
    [47]H.A.库恩.A.劳利.粉末冶金工艺—新技术及其分析.冶金工业出版社,1982
    [48]华林,毛华杰,赵仲治.粉末冶金锻造变形力和密度计算.粉末冶金工业,2000.10(2):32~35
    [49]中国机械工程学会锻压分会.锻压手册.第一卷,机械工业出版,1993
    
    
    [50](美)H.H豪斯纳.粉末冶金手册.冶金工业出版社,1982
    [51]华林,赵仲治.粉末烧结材料闭式模锻充满过程实验研究.Die and Mould Technology,1999,(1):22~24
    [52]周良宇.粉末冶金的新世纪发展方向概论.粉末冶金材料科学与工程,1998,(2):123~128
    [53]魏伟.多芯线粉末挤压成形工艺及其数值模拟理论研究:[学位论文].昆明理工大学,2001
    [54]Kobayashig S, Lee C H, She S N. Analysis of Rigid-plasic Deformaion Problems by the Matrix Method. J Japan. Soc. Tech. Plasticity, 1973,14:770~776
    [55]Lee C H,Kobayashi S.New Solution to Rigid-plastic Deformation Problems Using a Matfix Method. J. Eng. For Industry, 1973,95:865~870
    [56]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用.冶金工业出版社,1990
    [57]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟.冶金工业出版社,1997
    [58]刘建生.金属塑性加工有限元模拟技术与应用.冶金工业出版社,2003
    [59]吕炎等.精密塑性体积成形技术.国防工业出版社,2003
    [60]梁清香,张根全.有限元与MARC实现.机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700