用户名: 密码: 验证码:
微生物酶法活化葡萄皮渣膳食纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量研究证明,许多慢性病如糖尿病、动脉硬化等与食物中摄入的膳食纤维含量较少有关,因此有必要开发安全高效的膳食纤维产品。葡萄皮渣是葡萄加工的副产品,最近的研究显示,葡萄皮渣中含有大量纤维素,是一种很好的膳食纤维来源,但至今都未得到很好的利用。
     米曲霉、黑曲霉、绿色木霉是已知产纤维素酶的菌种中应用较广泛的三种菌种,本研究应用刚果红平板初筛和DNS法复筛两种方法,对三种菌种产纤维素酶活力进行了比较,得到一株产纤维素酶活力较高菌株――绿色木霉,通对绿色木霉菌株培养条件的优化,进一步提高了其纤维素酶活力。在此基础上,对绿色木霉粗酶液应用于生产高活性葡萄皮渣膳食纤维的关键技术进行了探讨,此外,为改善其感官品质对其进行了脱色方法和条件的研究,为提高葡萄加工副产品的附加值和综合利用资源提供了理论依据,并为果渣的开发利用提供了指导作用。
     通过试验得到了以下结果和结论:
     1.采用刚果红筛选培养基筛选和DNS法测定酶活两种方法结合,得到一株适用于葡萄皮渣膳食纤维生产的菌株—绿色木霉。
     2.以绿色木霉菌株为实验材料,采用液体发酵方法,对其产纤维素酶条件进行了研究。结果表明:初始pH5.5的条件下,接种量为5%,六层纱布封口,32℃培养120 h,该菌株产酶效率高,外切β-1,4葡聚糖酶(C1酶)活可达0.391 IU/ml,内切β-1,4葡聚糖酶(Cx酶)活可1.387 IU/ml,这将为膳食纤维的生物改性提供理论参考依据。
     3.将绿色木霉在最佳产酶条件下培养,取粗酶液酶解葡萄皮渣。采用四因子二次旋转组合设计(CORD),对微生物酶法活化葡萄皮渣膳食纤维工艺进行了优化研究。分析活化温度(X1)、活化时间(X2)、酶添加量(X3)、活化pH(X4)四个变量对产品中可溶性膳食纤维含量的影响,在此基础上由试验数据推导出描述四个指标的二次回归模型,并对变量进行响应面分析(RSM),得出最佳活化葡萄皮渣膳食纤维工艺条件为:活化温度50℃;活化时间38min;酶添加量为18.41 ml;活化pH为7.682,通过验证实验得到活性膳食纤维得率达到55%。其中溶性膳食纤维膨胀力达到4.5 ml/g,持水力达到11.05 g/g,结合水力达到:3.06 g/g
     4.分别运用了过氧化氢、亚硫酸钠、次氯酸钠作为脱色剂,实验结果表明:采用H2O2对葡萄皮渣不溶性膳食纤维进行脱色,效果显著,最适宜的脱色条件为:H2O2浓度为3%、脱色时间为5.5 h、脱色温度为45℃、pH值为10
A large number of research shows that such chronic diseases as diabetes and arteriosclerosis etc. are concerned with the deficiency of dietary fibers in food.So it is very necessary to develop safe, functional food of high quality and dietary fibers. Grape skin residue is by-product of grape wine processing ,The recent researches indicate that there are rich of cellulose in grape peel,is a good resource of dietary fibers. But it hasn't been made good use of so far.
     In this paper, a mildew with relatively high cellulase activity was isolated,By primary screened with Congo red cellulose identification culture medium and subtle screened with DNS method from three mildew of produce cellulose enzyme,after the best conditions of the ferment of the Strain Trichoderma viride,as a result that enhanced its vitality of cellulose enzyme.Studies on the key technology of use Trichoderma viride original liquid enzyme on produce high activity of grape skin residue dietary fiber based on the experimental,to provide the technics evidences for utilizing the grape resource comprehensively and increasing the added value of the grape deep-processing product. This study was also to provide the instruction for exploring the residue of fruits.and through the experimentation of whiten so that improve its character of appearance.
     The main results and conclusions were as follows:
     1.A high cellulase-producing strain—Trichoderma viride was obtained by primary screened with Congo red cellulose identification culture medium and subtle screened with DNS method from three mildew of produce cellulose enzyme.
     2.Take the Trichoderma viride as the experimental material,liquid fermentation was used to study the production of specific cellulase. The optimum cultivating condition was as below ,initial pH 5.5,the quantity of inoculation was 5%,6 layer gauze seal,temperature 32°C, fermentation for 120h. The enzyme activity of Cellobiohydrolase exo-1,4-β-D-Glucanase was 0.391IU/ml, The enzyme activity of Endo-β-1,4-glucanase was 1.387IU/ml,This paper provided some technics bases for the modification of high quality dietary fibre.
     3.The Trichoderma viride was fermented in optimal liquid state ,Then further purification of original liquid enzyme by centrifuging. A central composite rotatable design (CORD) was adopted to optimize the technology of Centrifugal original enzyme degradating experiment of grape skin residue. Analyzed the temperature (X1),hydrolysis time(X2), massration(X3), optimal pH(X4)via soluble dietary fibre content.Based on the experimental date, the quadratic regression model of four indexes were deduced, then variables were analyzed with response surface methodology (RSM).,the optimal technical conditions were obtained as follows: the temperature (X1)was 50℃,hydrolysis time(X2)was 38min ,massration(X3)was 18.41ml,optimal pH(X4)was 7.682,the result of soluble dietary fibre content of Verification test was 55%. swelling capacity was 4.5 ml/g; the water holding capacity of dietary fiber was11.05 g/g;1and yield reached 3.06 g/g.
     4.There was better effect in decoloring IDF with H2O2,the suitable conditions for decoloring IDF were: H2O2 concentration 3%, time 5.5h, temperature 45℃.
引文
[1]孙星衍,孙冯翼,主编.神农本草经[M].北京:人民卫生出版社,1963:52
    [2] Folts JD. Potential health benefits from the flavonoids in grape products on vascular disease[J].Adv Exp Med Biol, 2002,505:95-111
    [3] lwasaki Y, Matsui T, Arakawa Y, The protective and hormonal effects of proanthocyanidin against gastric mucosal injury in Wistar rats[J].Gastroenterol, 2004,39(9):831-7
    [4] Yu H, Zhao X, Xu G, et al. Effect of grape seed extracts on blood lipids in rabbits model with hyperlipidemia[J].Wei Sheng Yan Jiu,2002,31(2):114-6
    [5]Feng R, He W, Hirotomo O. Experimental studies on antioxidation of extracts from several plants used as both medicines and foods in vitro[J].Zhong Yao Cai, 2000,23(11):690-3
    [6]Miura D, Miura Y, Yagasaki K. Hypolipidemic action of dietary res-veratrol, a phytoalexin in grapes and red wine, in hepatoma-bearing rats[J].Life Sci, 2003,1;73(11):1393-400
    [7]Bombardelli E, Cristomi A, Di Pierro F. Botanical derivatives for the prostate[J]. Fitoterapia, 2000,1:S8一 21
    [8]侯斌峰.以葡萄皮渣为原料制备软胶囊及其降脂护肝作用的初步探讨[G].硕士论文,新疆医科大学,2006.4
    [9]杨 纲,伍晓汀等.膳食纤维在肠内营养中应用的系统评价[J].中国临床营养杂志.2004(9):164
    [10]郑建仙.功能性食品,第一卷[M].北京:轻工业出版社,1999: 1–6
    [11]金英姿.膳食纤维的功能及其在食品中的应用研究[J]. 新疆石油教育学院学报.2004,2(46):16–17
    [12]郑建仙,高孔荣.论膳食纤维[J].食品发酵工业.1994 (4):71
    [13]高璟瑜.配制型膳食纤维素溶胶结构及传质特性的研究[G].硕士论文,中国农业大学 2005,5:3–4
    [14] 张爱霞,陆淳,马明.膳食纤维与人体健康[J].中国食物与营养.2005,3:53-54
    [15]周建勇.膳食纤维定义的历史回顾(1953 -1999 ) [J].国外医学卫生学分册.2001,1 (28):26-28
    [16]周建勇.膳食纤维测定方法的历史及现状(1969-1999) [J].安徽预防医学杂志.2001(6):10–14
    [17]Fugencio Saura-Calixto et al.In Vitro Determination of the Indigestible Fraction inFoods:An Alternative to Dietary Fibre Analysis.Algric.Food Chem.2000.48:3342-3347
    [18]宋力强.膳食纤维的功能及开发研究[J].山东食品科技.2001(11):24–26
    [19]孙斌.膳食纤维对人体营养状况的影响[J].医学文选.2001 (8): 529–530
    [20]Deshaies Y, Begin F, Savoie L, et al. Attennation of the mealinduced increase in plasm a lipids and adipose tissue liporotein lipase by guar gem in rats. J Nure,1992. 122: 1318
    [21]Harold MR, et al. The relation of dietary fiber from wheat bran with diabetics on insulin, J Am Dietassoe,1985. 85: 1455
    [22]Anderson J W, et al. Lower fiber and high protein in diet relative to incidence of diabetic in natives of America. Am J din Nutr, 1997. 66: 1470
    [23]Leclere C J. Champ M, Bocllot J, et al. Role of viscous guar gums in lowering the gly- cemic response after a solid meal. Am J CL in Nutr,1994. 59: 914-921
    [24]Wolever TMS, et al. Lower fiber and high protein in diet relative to incidence of diabetic in natives of America. Am J din Nutr, 1997. 66: 1470
    [25]Klurfeld D M. J Am Dietassie,1987. 87: 1172
    [26]Aldoori WH, et al. A prospective study of dietary types and symptomatic diverticular disease in men. J Nutr,1998. 128(4): 714
    [27]欧仁益等.膳食纤维研究进展[J].粮食与饲料工业.1997 (2): 39–40
    [28]邵晓芬,王凤玲,刑坚强.米糠与麦麸膳食纤维的制备研究[J].食品与发酵工业.2000, 4: 25–28
    [39]石桂春.玉米膳食纤维的组成、特性和功能及在食品加工中的用[J].食品研究与开发.2001(12): 53–54
    [30]肖秀芝.膳食纤维的功能及开发研究[J].山西食品工业.2003 (12) :11–13
    [31]国外膳食纤维的研究现状[J].食品文摘.2002(5): 16
    [32]徐广超.豆渣可溶性膳食纤维的制备及功能性的研究[G].硕士论文,江南大学 2005(6)
    [33]马霞.膳食纤维及其生理作用[J].食品研究与开发.2001,8
    [34]吴杰等.魔芋精粉与几种常用膳食纤维降脂效果及机理探讨[J].营养学报.1993.15 (2): 168
    [35]王常青等.豆渣纤维的降脂作用及对血液流变学影响的研究[J].营养学报.1996. 18 (2 ): 168
    [36]王亚伟等.膳食纤维在糖尿病人食品中的应用[J].河南职工医学学报.2001.13(3): 278–279
    [37]任君等.膳食纤维食品[J].粮油食品科技.2001,2: 44
    [38]朱焱,谭占鳌,史亚君. 魔芋葡甘聚糖硫酸酯的制备及其体外抗凝血活性研究[J].武汉理工大学学报信息与管理工程版.2005,27(1):150-153
    [39]贺昱.改性甜菜纤维素-植物蛋白可食性复合膜成膜工艺及性质研究[G].硕士论文,新疆农业大学2005.6
    [40] R .E .A .Leitz, etal. Correlates of the Stages of Change in Adherence to the Dietary Guidelines. Journal of the American Dietetic Association, 1999,99(9):44
    [41]欧阳玲花,冯健雄等.化学法和绿色木霉(Trichoderm aviride)发酵法提取柠檬皮膳食纤维的研究[J].食品科学.2008,2:222–224
    [42] Prosky L, et al controlling Dietary Fiber in Food Products[M].Van Nostrand Reinhold, New York 1992
    [43]金茂国,等.挤压豆渣膳食纤维理化性质影响[J].粮食与饲料工业.1996,(1):35-38
    [44]钱建业,等.酸碱挤压联合作用对膳食纤维组成的影响[J].西部粮油科技.1997,(2) :26–29
    [45]李来好.海藻膳食纤维的提取、毒理和功能特性的研究[G].硕士论文,中国海洋大学,2005.6
    [46]E. Margareta G.-L. Nyman,S.J.Maria Svanberg.Modification of physicochemical properties of dietary fiber in carrots by mono-and divalent cations[J].Food Chemistry,2002,76:273-280
    [47]郑建仙,耿立萍.蔗渣膳食纤维挤压改性的研究(I)—挤压蒸煮对蔗渣膳食纤维组成的研究[J].中国粮油学报,1997 12(4): 44–48
    [48]Camire ME, Dougherty MP. Raisin dietary fiber composition and in vitro bile Acid binding.Journal of Agricultural and Food Chemistry, 2003,51(3)834–837
    [49]陈五岭,陈邦.香菇膳食纤维挤压改性的研究[J].现代化工,2000,20(9):45-46,48.
    [50]郑建仙,耿立萍,高孔荣.蔗渣膳食纤维挤压改性的研究(II)一挤压降解机理及挤压对纤维物化性质的影响[J].中国粮油学报,1997,(12)5:51–55
    [51]孟雷,陈冠军等.纤维素酶的多型性[J].纤维素科学与技术,2002, 10(2):47-55
    [52]路鹏.纤维素分解菌复合系 MC1 的发酵特性及其调控[G].硕士论文,中国农业大学,2003 .2-3
    [53]熊慧薇.瞬时高压作用对膳食纤维改性的影响[G]. 硕士论文,南昌大学, 2006(6)
    [54]欧阳玲花.绿色木霉发酵提取柠檬皮膳食纤维及其毒理学研究[G].硕士论文,四川农业大学,2006,6
    [55]涂宗财,李金林,汪普琴等.微生物发酵法研制高活性大豆膳食纤维的研究[J].食品工业利技,2005,26(5): 9–51
    [56]邬建国,周帅,采用药用真菌液态发酵甘薯渣获得膳食纤维的发酵工艺研究[J].食品与发酵工业,2005.31(7):41–43
    [57] 李凤英,李润丰.葡萄籽中主要化学成分及其开发应用[J].河北职业技术师范学院学报,2002,6
    [58]毕海丹.酿酒葡萄皮渣中反式白黎芦醇的提取纯化及其抗氧化性的研究[G].硕士论文,东北农业大学 2006.6
    [59]赵文军,吴雪萍,王旭,葡萄籽中低聚原花青素提取条件研究[J].食品科学,2004,25(2):117–120
    [60]孙芸,谷文英.大孔吸附树脂对葡萄籽原花青素的吸附研究[J].离子交换与吸附,2003,19(6):561–563
    [61]马亚军,郎惠云.原子吸收法间接测定葡萄籽提取物中的原花青素[J].分析试验室,2004,23(8):55–57
    [62]袁春龙,任亚梅.醇溶法提取葡萄皮渣中的多酚物质[J].中国食品学报,2006,6(3):70–73
    [63]熊素英,侯旭杰.白葡萄皮中多酚物质提取工艺的研究[J].食品科技,2007,7:129–131
    [64]秦玉楠.利用葡萄皮渣提取酒石酸[J].农牧产品开发,1995, (11):14–16
    [65]张广进,赵索榕.葡萄皮做原料生产食[J].中国调味品,1990,(1):18–19
    [66]李莹,苏婷婷,王战勇葡萄加工副产品的综合利用研究[J].中国农学通报,2006,22(4)
    [67] Knowles J,Lehtovaara P,Teeri T T. Cellulases families and their genes[J].Trends in Biotechnol,1987, (5):225–261
    [68]阎伯旭,曲音波,高培基,等.真菌和细菌纤维素酶的差别及内、外切葡聚糖茸酶的底物专一性[J].生命科学,1999,11(增刊):61-64.
    [69] Linder M,Mattine M L,Kontteli M,et al. Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I [J] .Protein Sci,1995,4(6):1056-1064
    [70]阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展[J].生物化学与生物物理进展,1999,26(3):233–237
    [71]杨永彬,黄谚谚,林跃鑫.纤维素酶的结构及分子多样性[J] .生命的化学,2004,24(3):211–213
    [72]孟雷,陈冠军,王怡等.纤维素酶的多形性[J].纤维素科学与技术,2002, 10 (2):47–55
    [73]彭志英.食品生物技术[M].北京:中国轻工业出版社,1999
    [74]Holtzapple M.T.,Caram H.S.,Humphrey A.E. Determining the inhibition constants in the HCH-1 model of cellulose hydrolysis[J].Biotechnol.Bioeng,1984, 26 (7):753–757
    [75]Gusakov A.V.,Sinitsyn A.P.A theoretical analysis of cellulase product inhihition:effect of cellulase binding constant, enzyme/ substrate ratio, and H-1 , 4-glucosidase activity on the inhibition pattern[J].Biotechnol. Bioeng,1992, 40:663–671
    [76]Singh A. , Hayashi K. Microbial cellulases:protein architecture, molecular properties andbiosynthesis[J].Adv.Appl, Microbiol,1995,40:41–44
    [77]王祖农.微生物学专题报告集.北京:科学出版社,1964: 235–254
    [78]Brown A.J.,Ogawa K., Wood T.M.. Studies on the preparation and regeneration of protoplasts from the cellulolytic fungus, P.pinophilum. Enzyme Microb. Technol., 1986(9): 527–532
    [79]Bhat K.M., Gaikward J.S., Manheshwari R.. Purification and characterization of an eztracellular B --glucosidase from the thermophilic fungus Sporotrichum thermophile and its influence on cellulase activity. J. Gen. Microbiol. 1993(139): 2825–2832
    [80]Davies G., Henrissat B..Structure and mechanisms of glycosyl hydrolases. Struct., 1995(3): 853- 859
    [81]Ducros V, Czizek M., Belaich A., et al.. Crystal structure of the catalytic domain of a bacterial cellulose belonging to family 5. Struct. 1995(3): 939–949
    [82]Tomme P, Chauvaux S., Beguin P, et al.. Identification of a histidyl residue in the active centre of endoglucanase D from Clostridium thermocellum. J. Biol. Chem., 1991(266): 10313–10318
    [83]Tokattidis K., Dhurjati P, Beguin P. Properties conferred on C. thermocellum endoglucanase CelC by grafting the duplicated segment of endoglucanase CeID. Protein Eng., 1993(6): 947–952
    [84]Wood T.M.. Microbial enzymes involved in the degradation of the cellulose component of plant cell walls.In: Rowett Research Institute Annual Report, 1992: 10–24
    [85]Kubicek C.P.The cellulose proteins of T.reesei:structure,multiplicity, mode of action and regulation of ormation. Adv. Biochem. Eng.,1992(45): 1–27
    [86]刘军,李进等.葡萄皮渣的综合利用[J].中外葡萄与葡萄酒.2006.3
    [87]李凤英等.从葡萄皮中提取多酚物质[J].食品与发酵工业.2005,31(4):147–149
    [88]赵新刚.洗涤用碱性纤维索酶及其产生菌的分离方法[J].微生物学通报,1999, 26(1): 63–65.
    [89]Wood P J, Fulcher R. G. Interaction of some dyes with cerealp-glucans[J]. Cereal. Chem., 1980, 55: 952-966
    [90]Wood P J. The interaction of direct dyes with water soluble substituted cellulose and cereal B-glucans[J]. Ind. Eng. Chem. Prod. Res. Dev., 1980, 19: 19–23
    [91] Wood P J. Specificity in the interaction of direct dyes with polysaccharides[J]. Carbohdr. Res., 1980, 85: 271–287
    [92]Teather R D, Wood P J. Use of Congo red-ploysaccharide interaction in enumeration and characterization of cellulolytic bacteria from the bovine rumen[J]. Applied and Environmental Microbiology, 1982, 43(4): 777–780
    [93]高榕,邓迎达.高生产效率纤维索酶菌株初筛方法的研究[J].纤维索科学与技术,2004, 12(3): 20–24.
    [94]吴丹,南昌大学硕士研究生学位论文,高产纤维素酶菌株的分离鉴定、诱变选育及产酶条件的研究2007.6。
    [95]毛湘冰. 60Co-γ 射线对揭色高温单抱菌选育及其其在牛粪发酵应用研究[G].硕士论文,湖南农业大学,2006,6
    [96]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,1998
    [97] R .E .A .Leitz, etal. Correlates of the Stages of Change in Adherence to the Dietary Guidelines. Journal of the American Dietetic Association, 1999,99(9):44
    [98]黄伟坤.食品检验与分析[M].北京:轻工业出版社,1989
    [99] 中国预防医学科学院标准处. 食品卫生国家标准汇编(1)[M].北京: 北京标准出版社,1992
    [100]郑建仙.功能性食品[M].北京:中国轻工业出版社,1995,68–72
    [101]鲁杰,石淑兰,邢效功,等.NaOH 预处理对植物纤维素酶解特性的影响[J].纤维素科学与技术,2004,12(1):1–6
    [102] 鲁杰,石淑兰,邢效功,等.NaOH 预处理对植物纤维素酶解特性的影响[J].纤维素科学与技术,2004,12(1):1–6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700