用户名: 密码: 验证码:
光催化氧化技术对垃圾渗滤液深度处理的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进一步降低生化处理后垃圾渗滤液中有机污染物浓度,提高出水水质,本研究分别采用光催化氧化、TiO_2/O_3/UV、O_3/UV、O_3工艺对经生化处理后的垃圾渗滤液进行深度处理小试,探讨了垃圾渗滤液中有机污染物降解的影响因素及其降解机理。
     以ZnO_作为光催化剂,利用光催化氧化技术处理垃圾渗滤液,试验设计及结果分析都用响应曲面法,得到COD去除率最大值39%时的反应条件为:催化剂投加量为9g/L,反应时间75min,初始CO_D浓度为440mg/L;UV254去除率到达最大值42.4%时的反应条件为:催化剂投加量为9.37g/L,反应时间120min,初始CO_D浓度为771mg/L。光催化氧化与臭氧结合可以大大提高降解效率,COD去除率可以提高20%~30%,UV254去除率以提高40%~60%。
     利用TiO_2/O_3/UV工艺处理垃圾渗滤液,TiO_2的最佳投加量为0.5g/L;最佳反应时间为2.0h;臭氧浓度16.8mg/L;垃圾渗滤液初始浓度在430mg/L以下,不调pH值时可以得到理想的处理效果。此外,该工艺还可以大幅提高垃圾渗滤液的可生化性。
     TiO_2/O_3/UV、O_3/UV、O_3三种工艺处理垃圾渗滤液进行对比,试验结果表明: TiO_2/O_3/UV工艺在垃圾渗滤液初始COD浓度为433mg/L左右,臭氧浓度16.8mg/L的条件下,降解有机物的速率明显高于其他两种工艺;三种工艺达到同样的处理效果,所需的反应时间TiO_2/O_3/UVTo improve the effluent quality and reduce pollutant concentration in landfill leachate, the processes of photocatalytic oxidation, TiO_2/O_3/UV, O_3/UV and O_3 were used to treat the effluent treated by biological processes. The effects of initial COD concentration, dose of photocatalyst, concentration of ozone and reaction time were evaluated.
     In the photocatalytic experiment, ZnO was chosen as the photocatalyst, response surface methodology was used to design the experiment and interpret the result. The COD removal was up to 39% under the conditions that photocatalyst was 9g/L, and reaction time was 75min, as well as initial COD concentration of landfill leachate was 440mg/L. The UV254 removal was up to 42.4% under the conditions that photocatalyst was 9.37g/L, and reaction time was 120min, as well as initial COD concentration was 771mg/L. The COD removal could be increased to 20%~30% and UV_(254) removal could be increased to 40%~60% with photacatalysis and ozone.
     During TiO_2/O_3/UV process, the result indicated that the process was effective under the conditions that the dose of TiO_2 0.5g/L, the reaction time 2.0h, the concentration of ozone 16.8mg/L, the initial COD concentration less than 430mg/L, and pH neutral. In additon, the process could improve the biodegradability of landfill leachate obviously.
     Comparing the processes of TiO_2/O_3/UV, O_3/UV and O_3, it was found that TiO_2/O_3/UV was more effective than others in degrading organic matters under the conditions that the initial COD concentration of landfill leachate was 433mg/L and the concentration of ozone was 16.8mg/L. The result also indicated that the reaction time was different (TiO_2/O_3/UV
引文
[1]闫志明, 普红平, 黄小凤. 垃圾渗滤液的特征及其处理工艺述评. 昆明理工大学学报(理工版), 2003, 28(3): 128~132.
    [2]喻晓, 张甲耀. 垃圾渗滤液污染特性及其处理技术研究和应用趋势. 环境科学与技术, 2002, 25(25): 42~46.
    [3]郑铁鑫. 城市垃圾处理场对地下水的污染. 环境科学, 1999, 10(3): 89~92.
    [4]赵由才, 龙燕, 张华. 生活垃圾卫生填埋技术. 北京: 化学工业出版社, 2004, 146~148.
    [5]王宝贞, 王琳. 城市固体废弃物渗滤液处理与处置. 北京: 化学工业出版社, 2005, 8~9.
    [6]张兰英, 张德安. 垃圾渗滤液中有机污染物的污染及去除. 中国环境科学, 1998, 18(2): 184~188.
    [7]A. M. Martin. Biologiacal degradation of wastes (first edition). London: Elsevier Applied Science, 1991.
    [8]Martin. Craig D. Performance of a constructed wetland leachate treatment system at the Chunchula Landfill, Mobile County, Alabana. Water Science and Technology, 1999, 40(3): 67~74.
    [9]申秀英, 许晓路等. 垃圾填埋沥滤水的活性污泥法处理. 中国给水排水, 1995, 11(3): 37~40.
    [10]汪慧贞, 固体垃圾填埋场渗滤水的处理. 给水排水, 1988, 5: 36~38.
    [11]U. Welander, T. Henrysson, T. Welander. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Wat. Res. 1998, 32(5): 1564~1570.
    [12]W. A. J. Van Benthum, B. P. Derissen, M. C. M. Van Loodsrecht, et al. Nitrogen removal using nitrifying biofilm frowth and denitrifying suspended growth in a biofilm airlift suspension reactor coupled with a chemostat. Wat. Res. 1998, 32(7): 2009~2018.
    [13]T. H. Hoilijoki, R. H. Kettunen, J. A. Rintala. Nitrification of anaerobically pretreated municipal landfill leachate at low temperature. Wat. Res. 2000, 34(5): 1435~1446.
    [14]岑运华. 固体废弃物填埋场的浸出水处理. 环境保护, 1991, 4: 21~22.
    [15]敬洪波. 垃圾卫生填埋场渗滤液循环回喷处理. 四川建筑, 2003, 23(2): 65~66.
    [16]周吉林. 垃圾填埋场渗滤水的处理技术. 环境污染与防治, 2001, 23(4): 187~189.
    [17]杨霞等. 城市生活垃圾填埋场渗滤液处理工艺研究. 环境工程, 2000, 18(5): 12~14.
    [18]Roldan. M. D, Blasco. R, Caballero. F. J. Degradation of p-nitrophenol by the Phototrophic bacterium Rhodobacter capsulatus. Arch Microbiol, 1998, 169: 36~42.
    [19]梁宇宁, 黄智等. Cu_2O光催化降解水中对硝基苯酚的研究. 环境污染与防治, 2003, 4(10): 36~39.
    [20]孟楠, 张爱茜, 吴海锁等. TiO_2与Cu_2O光催化降解对硝基苯酚比较研究. 环境化学, 2005, 24(6): 659~661.
    [21]Chang ChengNan, MA YingShi, FANG GuoCheng, et a1. Decolorizing of lignin wastewater using the photochemical UV/TiO_2 process. Chemosphere, 2004, 56(10): 1011~1023.
    [22]Saien J., Ardjmand, R. R., Iloukhani, H. Photocatalytic decomposition of sodium dodecyl benzene sulfonate under aqueous media in the presence of TiO_2. Physics and Chemistry of Liquids, 2003, 41(5): 519~531.
    [23]白杨. H2O2在苯酚降解过程中的作用研究. 化学通报, 2004, 67(2): 154~157.
    [24]许涛, 宋国勇. 难降解有机废水的高级氧化技术. 辽宁城乡环境科技, 2005, 25(3): 44~46.
    [25]朱亦仁, 张振超, 解恒参等. 光催化氧化法处理石灰法草浆造纸废水. 化工环保, 2005, 25(4): 288~290.
    [26]陈爱因, 孙红文. 臭氧深度氧化法处理 2, 4 一二氯苯氧乙酸农药废水. 环境污染与防治, 2005, 27(9): 676~678.
    [27]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37~38.
    [28]Bekbolet, M., Uyguner. Application of oxidative removal of NOM to drinking water and formation of disinfection by-products Desalination, 2005, 176(1~3): 155~166.
    [29]Meng YaoBin, Huang XiaYang, Qun HaoQian, Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane Desalination. 2005, 181(1~3): 121~133.
    [30]Sahoo, C., Gupta, A. K. and Pal, Anjali. Photocatalytic degradation of Methyl Red dye in aqueous solutions under UV irradiation using Ag+doped TiO_2 desalination, 2005, 181(1-3): 91~100.
    [31]陈益宾, 王绪绪, 付贤智等. 偶氮染料刚果红在水中的光催化降解过程. 催化学报, 2005, 26(1): 27~42.
    [32]杨运平, 唐金晶, 方芳等. UV/TiO_2/Fenton光催化氧化垃圾渗滤液的研究. 中国给水排水, 2006, 22(7): 34~37.
    [33]赵珊, 王静, 池勇志等. 光催化氧化法处理垃圾渗滤液特性研究. 天津城市建设学院学报, 2006, 12(1): 43~46.
    [34]吴钦钦, 刘振鸿. 垃圾渗滤液的高级氧化处理工艺. 广州化工, 2005, 33(5): 71~73.
    [35]Sung Pill Cho, Sung ChangHong, Suk-In Hong. Study of the end point of photocatalytic degradation of landfill leachate containing refractory matter. Chemical Engineering Journal, 2004, 3(98): 245~253.
    [36]黄报远, 金腊华, 卢显妍等. 臭氧化对垃圾填埋场后期渗滤液的预处理研究. 环境污染治理技术与设备, 2006, 7(4): 103~106.
    [37]冯旭东. 垃圾渗滤液生物处理出水臭氧氧化的研究. 环境污染与防治, 2005, 27(5): 387~388.
    [38]王凯雄. 水化学. 北京: 化学工业出版社, 2001: 248~254.
    [39]G. Ohlenbusch, S. Hesse, F. H. Frimmel. Effects of ozone treatment on the soil organic matter on contaminated sites. Chemosphere, 1998, 37(8): 1557~1569.
    [40]Nigel Graham, Wei Chu, Catherine Lau. Observations of 2,4,6-trichlorophenol degradation by ozone. Chemosphere, 2003, 51(4): 237~243.
    [41]雷乐成, 汪大翚. 水处理高级氧化技术. 北京: 化学工业出版社, 2001: 231~233.
    [42]童少平, 褚有群, 马淳安等. O_3/UV降解水中的乙酸和硝基苯. 中国环境科学, 2005, 25(3): 366~369.
    [43]李兵宇, 刘万生, 赵伟荣等. O_3/UV与生化组合处理印染废水. 印染, 2005, 31(13): 34~37.
    [44]孙丽颖, 周集体, 吕红等. 光催化-臭氧氧化降解H酸的研究. 环境污染治理技术与设备, 2006, 7(1): 118~121.
    [45]胡军, 周集体, 张爱丽等. 光催化-臭氧联用技术降解苯胺研究. 大连理工大学学报, 2005, 45(1): 26~31.
    [46]Vittorio Ragaini, Elena Selli, Claudia Letizia Bianchi, et al. Sono- photocatalytic degradation of 2-chlorophenolin water: kinetic and energetic comparison with othert echniques. Ultrasonics Sonochemistry, 2001, 8(3): 251~258.
    [47]李来胜, 祝万鹏, 张彭义等. TiO_2薄膜光催化臭氧化邻苯酚. 催化学报, 2003, 24(3): 163~168.
    [48]Sandra Gomes de Moraes, Renato Sanches Freire, Nelson Duran. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere, 2000, 40(4): 369~373.
    [49]C. Gottschalk, M. Jekel, A. Kornmiiller, et al. 水和废水臭氧氧化. 北京: 中国建筑工业出版社, 2004: 9~13.
    [50]金洛楠. 光催化氧化和光电催化氧化技术处理垃圾渗滤液的试验研究. 硕士学位论文, 天津大学, 2006.
    [51]Haarstrick A. Kut O.M., Heinzle E. TiO_2 assisted degradation of environmental relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environmental Science and Technology, 1996, 30(3): 817~824.
    [52]国家环保局《水和废水监测分析方法》编委会, 水和废水监测分析方法(第三版). 北京: 中国环境科学出版社, 1989.
    [53]孙德智, 于秀娟, 冯玉杰. 环境工程中的高级氧化技术. 北京: 化学工业出版社, 2002: 214~215.
    [54]Montgomery D. C. Design and analysis of experiments (fifth edition). New York: John Wiley&Sons, Inc., 2001.
    [55]Box G. E. P., Wilson K. B. On the Experimental Attainment of Optimum onditions. Journal of the Royal Statistical Society B, 1951, 13: 1~45.
    [56]Demail A. L., Solomon N. A. Manual of industrial microbiology and biotechnology. Washington DC: Amercian Society of Microbiology. 1986.
    [57]McDaniel L. E., Bailey E. G., Ethiraj S., et al. Application Response Surface Optimization Techniques to Polyene Macrolide fermentation studies in shake flask. Dev Ind Microbiol. 1976, 17: 90~91.
    [58]Douglas C. Montgomery. Design and Anal Ysis of Experments (third edition), 1991, 591.
    [59]童少平. 臭氧及相关高级氧化技术降解有机污染物的研究. 博士后学位论文, 浙江大学, 2004: 12~13.
    [60]Lea J., Adesina A. A. The Photo-oxidative Degradation of Sodium Dodecyl auplphate in aerated aqueous TiO_2 suspension. J. Photochem. Photobio A. 1998, 118:111~122.
    [61]唐森本, 王欢畅, 葛碧洲等. 环境有机污染化学. 北京: 冶金工业出版社, 1997.
    [62]Ki-Hoon Kang, Hyun Sang Shin, Heekyung Park. Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Wat. Res. 2002, 36 : 4023~4032.
    [63]王占生, 刘文君. 微污染水源饮用水处理. 北京: 中国建筑工业出版社, 1999.
    [64] J. Hoigne, H. Bader. Rate constants of reactions of ozone with organic and in organic compounds in water-I. Non-dissociating organic compounds.Wat. Res. 1983, 17: 173~183.
    [65]徐新华, 赵伟荣. 水和废水的臭氧处理. 北京: 化学工业出版社, 2003.
    [66]Masten S. J., J. Hoigne. Comparison of ozone and hydroxyl radical-induced oxidation of chlorinated hydrocarbons in water. Ozone Sci.Eng, 1992, 14:197-214.
    [67]李明波. 光化学氧化法处理垃圾渗滤液研究. 硕士学位论文, 西安建筑科技大学, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700