用户名: 密码: 验证码:
节水型回转冲击钻具结构设计与钻进机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是人类赖以生存和发展的重要资源之一,是不可缺少、不可代替的特殊物质。中国属于严重缺水国家,已经被联合国列为13个贫水国家之一。西北许多地区缺水现象十分严重,有的地方甚至连人畜饮水问题都很难解决。缺水已经成为制约这些地区经济发展的致命瓶颈。保护和节约水资源是中国政府面临的一项紧迫任务。
     传统的钻进工艺为了排粉、冷却需要消耗大量地表水,尤其钻遇漏失地层时更是如此。近年来,随着国家地质大调查战略的实施,地勘行业快速复苏,钻探工作量剧增,尤其是西部大开发必须投入大量钻探工作量。在西部干旱缺水地区打钻,为一台钻机配两辆送水车从远方拉水的现象司空见惯,钻机为等水而停工的现象时有发生。不仅大大降低了钻探效率,而且大幅度提高了钻探成本。据野外队介绍,在有些交通不便的缺水地区钻一个200~300m的小口径钻孔,仅运水的费用就高达15万元,如果周围地区都严重干旱或冬季水管冻结,采用传统钻探工艺则根本无法完成。若能在这些干旱缺水地区实现节水钻探,既可以节约大量宝贵的地表水,同时可大大降低钻探成本,缓解“工程型”水资源短缺的问题。
     回转冲击钻进是在普通回转钻进(硬质合金或金刚石钻头)基础上,叠加一个高频低脉冲载荷的钻进方法,它区别于传统的冲击回转钻进方法,不必采用专门的冲击钻头,可在中硬左右地层中取得高效、优质、低耗的钻进效果。而节水型回转冲击能在大幅度提高钻探效率的同时,大量节约或基本不消耗宝贵的地表水,降低钻探成本,为干旱缺水地区钻进大量遇到的中硬左右地层打开了一条技术创新的思路。按照这种创新思维,论文的主要目标是研制一套适用于干旱缺水地区的节水、快速、安全的回转冲击配套钻具及其钻进工艺方法。设计的回转冲击钻具包括见到地层水之前使用的风动球体冲击器以及见到地层水之后使用的节水型液动冲击器。
     论文选题是在国家大力倡导“节约型”社会以及实施国家地质大调查战略的背景下提出的,是一种创新技术,具有前沿性和急需性。该技术能在很大程度上缓解干旱地区“工程型缺水”的问题,是我们专业响应党中央建设“节约型”、“环境友好型”和“创新型”社会号召的具体体现,具有重要的环境价值、经济价值和广泛的推广应用前景。
     全文共分七章,各章的主要研究内容概述如下:
     第一章、阐述了论文选题的来源、研究目的、研究的重大意义及国内外研究现状,同时概括了论文的主要研究内容及研究所采用的技术路线。
     第二章、首先介绍了回转冲击钻进与传统的冲击回转钻进方法的异同点及其适应性,结合目前我国实施地质大调查工作中大量遇到中硬岩石的实际钻进需要,强调了实现回转冲击钻进的重大意义;对回转冲击钻进的机理展开了详细研讨,主要包括:岩石在动载作用下的力学性质(硬度、强度、弹塑性、研磨性和比功)、冲击力对回转状态下切削具的作用、冲击应力波的产生及传递特性,并由此概括出了回转冲击钻进的实质和特点;最后引出并简单介绍了论文设计研究的两种节水型回转冲击钻具——节水型液动冲击器和球体冲击器。
     第三章、首先对组成节水型液动冲击器系统的主要部件:地表单缸柱塞泵、节水型液动冲击器以及排气阀的结构进行了深入剖析,并在此基础上详尽阐述了节水型液动冲击器系统的工作原理;详细分析了球体冲击器的结构和工作原理。
     第四章、在深入研究冲击器设计理论的基础上,提出了设计冲击器时主要性能参数的确立依据,包括:冲击功的确定依据、冲击频率的确定依据、冲击速度的确定依据以及冲击功的传递效率等问题,为节水型液动冲击器及球体冲击器的设计打下理论基础;基于理论研究成果和课题总目标,提出了节水型液动冲击器系统的设计目标、原则、思路及步骤;对节水型液动冲击器的主要结构、性能参数以及关键零部件进行了详细的设计与计算;对球体冲击器的关键零件——铁砧及传递扭矩的下接头进行了详细设计。
     第五章、概述了开展节水型液动冲击器及球体冲击器试验研究的目的及其必要性;详细介绍了节水型液动冲击器系统泵压和冲锤位移等参数的测试技术方法,对所得曲线进行了分析,算出了冲击器的冲击频率及冲击速度;根据位移曲线中的单个周期,利用傅里叶级数算出了冲击器的近似单次冲击功;在地表完成了不同口径节水型液动冲击器用于孔底局部循环的排量测试,指出了地表所测排量略大于冲击器在孔内实际排量的现状,并分析了其原因;全面介绍了节水型液动冲击器在山西黄土高原的野外试验情况,对存在的问题进行了深刻剖析,提出了解决方案,并得出节水型液动冲击器能够大大节约地表水、降低钻探成本和提高钻探效率的结论:冲击频率是决定球体冲击器钻探效率的最重要特征参数,而冲击频率又取决于压缩空气的压力和流量,因此,确定冲击频率与空气压力及流量之间的关系至关重要,在球体冲击器台架试验的基础上,笔者运用数理统计分析方法确定了冲击频率与空气压力及流量的经验方程,并将实验数据与经验方程的计算值进行了比较;结果表明,实验值与计算值吻合程度很好,从而得到球体冲击器将显著提高钻探效率的结论。
     第六章、在分析试验中出现的主要问题的基础上,阐述了改进设计、完善成果的重要性;提出了具体的改进设计方案或构思;总结归纳了节水型回转冲击钻进过程中可能出现的一些问题及其排除办法。
     第七章、结论与展望,总结了全文的主要创新与研究成果,强调了节水型回转冲击钻进新机具及其新工艺不仅简便实用、易于推广,而且具有重要的环境价值,同时也指出了课题研究过程中存在的不足之处,对进一步的研究工作提出了一些建议。
     综观全文,论文的主要创新点及研究成果如下:
     主要创新点:
     1、结合我国许多地区水资源严重短缺的现状以及国家实施地质大调查战略的背景,创造性地提出了“节水钻探”和“回转冲击钻进”结合起来的新思维;
     2、设计出的节水型液动冲击器系统,其工作原理跳出了传统液动冲击器要消耗大量地表水的原理模式,在基本不消耗地表水的情况下便能实现回转冲击钻进,达到节约地表水、降低成本、提高钻探效率的目的;
     3、设计的球体冲击器构思新颖,克服了同类产品冲击功传递效率低的弊端、且结构简单、经久耐用,可大幅度提高钻探效率、降低钻探成本。
     主要研究成果:
     1、从“节水钻探”和“回转冲击钻进”相结合的新思路出发,研制了一套适用于干旱缺水地区的节水型回转冲击配套钻具及其钻进工艺方法,包括见到地层水之前使用的球体冲击器及见到地层水之后使用的节水型液动冲击器系统。
     2、在研究回转冲击钻进破岩机理的基础上,对球体冲击器及节水型液动冲击器系统的主要结构、关键部件及性能参数进行了理论设计与计算,使得两种冲击器的设计更具科学性、合理性。
     3、利用台架试验对球体冲击器及节水型液动冲击器的重要性能参数进行实验研究,为改进冲击器的设计、提高冲击器的性能提供了可靠的依据。用二元线性回归分析方法处理实验数据,建立了球体冲击器重要参数——冲击频率与压缩空气压力及流量的数学模型(经验方程),并得到了验证。
     4、笔者投入大量精力参加并组织了球体冲击器及节水型液动冲击器的多次野外试验研究,实践表明:节水型液动冲击器可在节约地表水10~20倍的同时,明显提高钻探效率,节约钻探成本:球体冲击器结构简单、工作性能稳定,可大幅度提高缺水地区开孔时的钻效。
     5、认真总结了笔者三年多来从事节水钻探科研的成果与教训,对存在的主要问题进行了分析,提出了改进设计的方案或思路。
     笔者展望,我国的矿产资源和水资源短缺问题不可能在近年内得到根本解决,因此我国今后在西北(甚至南方)干旱缺水地区的钻探工作量将越来越多,我们必须努力开发节约地表水的钻进方法。本文是笔者三年多来在导师指导下从事节水钻探研究工作的总结,希望能为这一简便实用的新技术在国内推广应用起到借鉴与促进作用。笔者今后将与其它同行一起继续致力于该技术的进一步完善。
Water is one of vital resource for human survive and development, which is indispensable and irreplaceable. China is a state of water serious shortage, and was listed at 13 water deficit counties by United Nations. Water deficiency is very serious in many areas of northwest of China, even there is no water to drink for human and domestic animals in some areas, water shortage has become major factor that prevents economic development. Protecting and saving water resource is an urgent mission that China government confronted with.
     A large amount of water will be consumed for discharge cuttings and cool drilling tools when drilling with traditional technology, especially drill in thirsty formations. In recent years, with execution of geological survey strategy and resuscitation of geology industry of China, work capacity of drilling increases greatly, especially, a large quantity of drilling work should be completed in the course of development of western regions. When drill in draughty water scarce areas, it is often happen that one drilling machine equipped with two water tanks for carry water from faraway places, also it is often happen that operators stop work wait for water. Not only drilling efficiency will be reduced greatly, but also drilling cost will be raised by big percentages. According to introduce of fellow trade, drill a 200 to 300 meters slim hole, only the cost of carrying water can reach RMB 150 thousands, even in some water-scarce areas, drilling mission can't be accomplished at all adopting traditional drilling technology due to bad communication conditions and so on. If we can take water- saving drilling technology when drill in these water-scare areas, apparently, a large amount of surface water will be saved, and drilling cost will be reduced greatly, also the problem of engineering water shortage will be released.
     Rotary percussion drilling is a kind of drilling technology that overprints high frequency and low energy pulses load on rotary drilling hard-melt alloy bits or diamond bits, it is different from traditional percussion rotary drilling technology and need not use special percussion bit, it is a type of efficient, high quality, low cost drilling method, notable results can be achieved when drill with the methodespecially in mid-hard formations. Moreover, when drill with water-saving rotary percussion device, drilling efficiency would be improved highly, a large amount of surface water would be saved, drilling cost would be reduced greatly, and it opens a new technique innovative idea. Under the innovative idea, the main goal of the paper is to develop a set of water-saving, quick, safe rotary percussion self-contained drilling tools and technique used in water-scare areas. Designed rotary percussion drilling tools include pneumatic steel ball percussion device be used see before formation water and water-saving hydraulic percussion device be used see after formation water.
     The topic of dissertation discussed was put forward under the background of nation strongly advocated saving society and the implementation of the strategy for national geological survey, which is in urgent and front need, and also is an innovative technology. Promoted application of the technology can release to a large extent the problem of "engineering" water resource shortage, it is concrete embodiment that our major in respond to the Party Central Committee's call of establish "saving", "environmental protection", and "innovative" society.
     The paper is divided seven chapter, main study contents of each chapter are as follows:
     The first chapter in detail elaborates topic origin, research goal, significance and domestic and foreign research present situation, also main research contents and technical route that research used are introduced.
     The second chapter begins with analyzing the similarities, differences and applicability between rotary percussion drilling and traditional percussion rotary drilling, in connection with the actual situation of drill mid-hard rocks encountered in implementation of the strategy for state geological urvey, put emphasis on the great significance of rotary percussion drilling. Carry out detail study on mechanism of rotary percussion drilling, includes mechanical properties of rocks under dynamic load, action of impacting force on rotary cutter, generation and transmission characteristics of impact stress wave, then summarized essence and characteristics of percussion rotary drilling by which. Finally, leaded out and gave an outline of the two kinds of water-saving percussion device that designed and studied in the paper.
     The third chapter carries out a detailed analysis on structures of critical pieces that compos system of water-saving hydraulic percussion device at first, then elaborates on the principle of water-saving hydraulic percussion device. Finally, the structure and working principle of steel ball percussion device were analyzed detailedly.
     The forth chapter goes into designed theory of percussion devices, and based on which puts forward determining basis of main performance parameters, includes determining basis of percussion energy, determining basis of blow frequency, determining basis of impact velocity and transfer efficiency of percussion energy, lays a theoretical foundation for the design of water-saving hydraulic percussion device and steel ball percussion device. Design goal, principle, train of thought and design steps of system of water-saving hydraulic percussion device are put forward according to the final goal of the thesis. Primary structures, performance parameters and critical components of the water-saving hydraulic percussion are detailed designed and calculated. The anvil of critical component of steel ball percussion device and lower clutch that mainly used to transfer torque was detailed designed in the chapter.
     The fifth chapter summarizes purpose, importance and necessity of experimental investigation upon water-saving hydraulic percussion device and steel ball percussion device, also introduces in detail technical methods of test pump pressure and displacement of block stamp of water-saving hydraulic percussion system, then draws some correlation curves and analyses it. Blow frequency and impact velocity are worked out based on displacement curve. Approximate percussion energy was figured out utilizes Fourier series according to single period of displacement curve, flow of water-saving hydraulic percussion device with differ diameters were tested, and analyzed the causes that actual flow large than tested flow. Field tests on the water-saving hydraulic percussion were introduced overall, the problems occurred in the tests were exploded profoundly, and set forth solutions, finally, draws the conclusion that a large amount of surface water will be saved, drilling cost will be reduced greatly and drilling efficiency will be enhanced. Analyzed blow frequency is one of the most important feature parameters that decide drilling efficiency of steel ball percussion device, and blow frequency depends on pressure and flow of compressed air, so it is very important to define relation between blow frequency and pressure, flow of compressed air. How to establish function of blow frequency and pressure, flow of compressed air using dual linear regression analysis of mathematical statistics was introduced. Bench tests were Carried out on steel ball percussion device, and major parameters in working process were recorded, then draw the test results that drilling efficiency would be raised greatly drill with steel ball percussion device. Function of blow frequency and pressure, flow of compressed air was set up. Compared experimental data with data calculated according to the function, and draw the conclusion that experimental data is very close to calculated data.
     The sixth chapter elaborates the importance of improve design and perfect achievement on the basis of analyzing main matters occurred in tests, and put forward schemes and conceptions of improve design, Also the matters and it remove measures possibly occurred in the tests were summarized.
     The seventh chapter is conclusions and prospects, sums up the innovative ideas and research findings of the paper, puts emphasis on the new drilling tools and new technology of water-saving rotary percussion drilling, which has important environmental value, convenient, and easy to be popularized, at the same time, imperfections existed in study process of the paper were pointed out, and some suggestions were offered for further research.
     Taking a general view of the paper, major innovative ideas and returns are as follows:
     The main innovative ideas are as follows:
     1. The paper put forward the new idea that combine water-saving drilling with rotary percussion drilling creatively according to the present situation of water resource lack seriously and the background of implementation of state geological survey strategy.
     2. The working principle of new designed system of water-saving hydraulic percussion device completely different from traditional hydraulic percussion device, the system can carry out rotary percussion drilling on the condition that no surface water be consumed, and achieve the purposes that saving surface water, cutting cost and improving drilling efficiency.
     3. The design conception of steel ball percussion device is very novel, the percussion device is durable, with a simple structure, at the same time drilling efficiency would be improved highly and drilling cost would be reduced greatly when drill with the steel ball percussion device.
     The main returns are as follows:
     1. A set of water-saving, quick and safe rotary percussion self-contained drilling tools and drilling technique used in drought water scarce areas were developed under the new idea combine water-saving drilling with rotary percussion drilling, which includes pneumatic steel ball percussion device used see before formation water and water-saving hydraulic percussion device used see after formation water.
     2. The major structures, critical components and performance parameters of steel ball percussion device and hydraulic percussion device were designed and calculated on the basis of study on rock broken mechanism of rotary percussion drilling, which make it is more scientific and reasonable of design of the two percussion devices.
     3. The important performance parameters of steel ball percussion device and hydraulic percussion device were studied on bench tests, which can provide reliable references for study and improve design of percussion devices and enhance performance of percussion devices. The mathematic model (experience equation) of blow frequency one of the most important performance parameters between pressure, flow of compressed air was established according to dual linear regression analysis of mathematic statistics based on data tested in experimental investigations.
     4. The author put a lot of energy on attending and organizing several field test researches on steel ball percussion device and water-saving hydraulic percussion device, the practice indicates: 10~20 times surface water would be saved, at the same time drilling efficiency would be improved highly and drilling costs would be saved greatly when drill with water-saving hydraulic percussion device. Working performance of steel ball percussion device is stable, and drilling efficiency can be enhanced highly.
     5. The paper summarized the achievements and lessons that author engaged in water-saving drilling technology more than 3 years, and analyzed major problems exist in research, also put forward schemes and ideas that improve design.
     The author prospected that scarcity of mineral resources and water resources of China could not be solved completely, so the amount of drilling work in draughty water scarce areas in northwest (even in south) of China would be more and more, we should develop new drilling methods which can save surface water. The paper is a sum of author's study on water-saving drilling technology under instruct of tutor more than 3 years, author hope it could used for reference and promote popularization and application of the new technology.
引文
[1] 李顺.淡水危机与节水技术[M].北京:化学工业出版社,2002.
    [2] 高前兆,李小雁,苏德荣.水资源危机[M].北京:化学工业出版社,2002.
    [3] 叶锦昭,卢如秀.世界水资源概论[M].北京:科学出版社,1993.
    [4] 霍有光.策解中国水问题[M].西安:陕西人民出版社,2000.
    [5] 宋进喜,王伯铎,李怀恩.西北开发中的水资源问题及对策[J].长安大学学报。2002。22(6):108-112.
    [6] 徐恒力.水资源开发与保护[M].北京:地质出版社,2001.
    [7] 刘志明,孙友宏.干旱缺水地区深水井泡沫钻进技术研究[J].长春科技大学学报,2000,(3):299~302.
    [8] 吴景华,陈宝义.空气泡沫钻探在缺水地区复杂地层中的应用[J].勘探科学技术,1997,(4):19~23.
    [9] 常玉军,殷琨.冲击回转碎岩机理试验研究[J].探矿工程,2001,(4):62~64.
    [10] A·T·基谢列夫,韩军智译.地质勘探井的回转冲击钻进[M].北京:地质出版社.1983.
    [11] 王人杰,蒋荣庆,韩军智.液动冲击回转钻探[M].北京:地质出版社.1988.
    [12] 杨日平,汪玉如.潜孔冲击器钻进是最佳的钻进方式[J].凿岩机械气动工具,1998,(3):36~37.
    [13] 陶兴华.冲击回转钻井技术的现状及发展方向[J].钻采工艺,1996,19(1):10~13.
    [14] 贺红亮.冲击载荷下岩石的损伤特性分析[J]爆炸与冲击,1995,(03):20~23.
    [15] 谭卓英.凿岩钻头磨损机理的探讨[J]矿山机械,1993,(04):16~19.
    [16] Yang, Juhchin A. Jaganathan, Venkatraman. A new dynamic model for drilling and reaming Journal of machine[J]. Tools and Manufacture, 2002, 42: 299-311.
    [17] Zhou, Z. X., Long, T. Y. Mathematical Models and Grinding Research for Step Drill[J]. Key Engineering Materials, 2004, 258-259: 411-414.
    [18] Nunes, J. O. L. Bannwart, A. C. Mathematical Modeling of Gas Kicks in Deep Water Scenario[J]. Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference, APDT, 2002, 377-383.
    [19] Stoeck, M. Schad, H. P. Modelling of stress distributions in rock drill heads[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(4): 355-361.
    [20] U Deulsch, C Marx, H. Rischmuller. Evaluation of hammer drilling potential for KTB in super-deep drilling and deep geophysical sounding[J]. Springer-Veerlag, Heidelberg, Germany, 1995: 310~320.
    [21] Osanloo, Morteza. Ahangaran, Daryoush Kaveh. Mathematical model for drilling speed in rock penetration[J]. Structural Dynamics and Vibrations, 1994, 64(7): 257-259.
    [22] Wang, Ger-Chwang. Fuh, Kuang-Hwa. New mathematical model for multifacet drills derived by using angle-solid mode[J]l. International Journal of Machine Tools and Manufacture, 2001, 41(1): 103-132.
    [23] Yang, Juhchin A. Jaganathan, Venkatraman. A new dynamic model for drilling and reaming Journal of machine [J]. Tools and Manufacture, 2002, 42: 299-311.
    [24] Feng Q, Cheng G D. Current situation, problems and rational utilization of water resources in arid north - western China[J]. Journal of Arid Environments, 1998, 40: 373-382.
    [25] Osanloo, Morteza. Ahangaran, Daryoush Kaveh. Mathematical model for drilling speed in rock penetration[J]. Structural Dynamics and Vibrations, 1994, 64(7): 257-259.
    [26] Anon. Drilling as a cost savings tool[J]. Australian Mining. 2006, 98(10): 42~43.
    [27] Kuru, Ergun. Hydraulic optimization of foam drilling for maximum drilling rate in vertical wells[J]. SPE Drilling and Completion. 2005. 20(4): 258~267.
    [28] 单仁亮,杨永琦,赵统武.冲击凿入系统入射波形与凿入效率的研究[J].爆炸与冲击,1995,(03):36~41.
    [29] 李夕兵,古德生.岩石在不同加载波条件下能量耗散的理论探讨[J]爆炸与冲击,1994,(02):42~45.
    [30] 卢文阁,郑治川,池景军.冲击回转挤密钻头及钻进方法的研究[J].长春科技大学学报,1997,(03):13~15.
    [31] 林元华,梁政,施太和等.液动冲击回转钻井机械钻速的仿真[J].探矿工程(岩土钻掘工程),2000,(02):19~22.
    [32] 胡亚杰,段清明,田地等.液动冲击钻测试系统的设计[J].微计算机信息,2003,(02):12~15.
    [33] 吴文峰.液压冲击锤施工应用与推广[J].中国港湾建设,2003,(01):26~29.
    [34] 鄢泰宁.岩土钻掘工程学[M].武汉:中国地质大学出版社.2001.
    [35] 郭绍什.钻探手册[M].武汉:中国地质大学出版社.1993.
    [36] 李世忠主编.钻探工艺学[M].北京:地质出版社,1992.
    [37] 汤凤林.岩心钻探学[M].武汉:中国地质大学出版社,1997.
    [38] 屠厚泽.岩石破碎学[M].北京:地质出版社,1990.
    [39] 梁人祝主编.钻探设备[M].北京:地质出版社,1986.
    [40] 屠厚泽.钻探工程学:钻探设备及设计原理·中册[M].武汉:中国地质大学出版社,1988.
    [41] Veenhuizen, S. D. Stang, D. L. Kelley, D. P. etc. Development and testing of downhole pump for high-pressure jet-assist drilling[J]. Drilling and Completion, 1997: 183-190.
    [42] Stjern, G. Agle, A. Local Horsrud, P. Rock mechanical knowledge improves drilling performance in fractured formations at the Heidrun field[J]. Journal of Petroleum Science and Engineering, 2003, 4: 83-96.
    [43] Armarego, E. J. A. Kang, Dechun. Computer-aided modelling of the fluting process for twist drill design and manufacture[J]. Manufacturing Technology, 1998, 47(1): 259-264.
    [44] Oldand, Dag, Gabrielsen, Glenn K. The Importance of Extended Leak-Off Test Data for Combatting Lost Circulation[J]. Proceedings of the SPE/ISRM Rock Mechanics in Petroleum Engineering Conference, 2002, 508-516.
    [45] C. P. Chugh, Manual of drilling technology, A. A. Balkema, Rotterdam, 1985.
    [46] 杨惠民.钻探设备[M].北京:地质出版社,1994.
    [47] 成大先.机械设计手册[M].北京:化学工业出版社.1993.
    [48] 吴克坚,于晓红,钱瑞明.机械设计[M].北京:高等教育出版社,2003.
    [49] 吴宗泽主编.机械设计[M].北京:高等教育出版社,2001.
    [50] 徐灏主编.机械设计手册[M].北京:机械工业出版社,2000.
    [51] 李天太,孙正义,李琪编著.实用钻井力学计算与应用[M].北京:石油工业出版社,2002.
    [52] 蔡增基,龙天渝主编.流体力学泵与风机[M].北京:中国建筑工业出版社,1999.
    [53] 荣涵锐,荣毅虹编著.机械设计CAD技术基础[M].哈尔滨:哈尔滨工业大学出社,1998.
    [54] RASIT ALTINDAG. Evaluation if drilling cuttings in prediction of penetration rate by using coarseness index and mean particle size in percussive drilling[J]. Geotechnical and Geological Engineeing 22, 2004: 417~425.
    [55] A. S. Tanaino and A. A. Lipin. STATE AND PROSPECTS OF THEPERCUSSIVE-ROTARY BLASTHOLE DRILLING IN QUARRIES[J]. Journal of mining science, Vol. 40, No. 2, 2004.
    [56] Marx V C, Gloth H, Zhao Guangzhuo. Entwicklung eines leistungsstarken hydraulisen bohrhammers[J]. FELSBA U 17 (1999)NR4, S: 296~301.
    [57] JENS M. HOVEM. Analysis and processing of received signals in boreholes[J]. Journal of ComputationalAccoustics. 2001, 9(2): 447~459.
    [58] Russell, Ken A. Improved drilling performance in a troublesome environment[J]. SPE Drilling and Completion. 2005, 20(3): 162~167.
    [59] Rach, Nina M. Worldwide drilling surges ahead[J]. Oil and Gas Journal 2005, 103(36): 39~47.
    [60] Njobuenwu, Derrick O. Effect of drilled solids on drilling rate and performance[J]. Journal of Petroleum Science and Engineering. 2007, 50(3): 271~276.
    [61] 王克雄,瞿应虎,蔡镜仑.液动冲击器测试系统的研究[J].石油大学学报,1995,19(3):34~37.
    [62] 王克雄,瞿应虎,蔡镜仑.冲击力法测试液动冲击器单次冲击功的研究.振动与冲击,1996,15(3):83~87
    [63] 夏宏南,王克雄.液动冲击器性能参数测试系统[J].江汉石油学院学报,1995,17(3):54~56.
    [64] 高建强,陈朝达.液动冲击旋转钻具存在的问题及解决途径[J].西安石油学院学报,1998,13(3):62~64.
    [65] 李国华.液动冲击器功率传递理论分析及应用研究[J].石油钻探技术,2003,31(6):1~4.
    [66] 陶兴华.冲击旋转破岩特点分析[J].钻采工艺,1996,19(3):15~18.
    [67] 蒋荣庆.液动冲击器能量分析[M].北京:地质出版社,1983.
    [68] 魏海菊,岳媛媛,曲庆利.钻井用液动冲击器的参数测试系统.石油仪器,2002, 16(6):24~26.
    [69] 姜启源.数学模型(第二版)[M].北京:高等教育出版社,1993
    [70] 谭永基,蔡志杰.数学模型[M].上海:复旦大学出版社,2005.
    [71] 吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.
    [72] 张鸿雁等编.流体力学.北京:科学出版社,2004.
    [73] 罗惕乾.流体力学.北京:机械工业出版社,1999.
    [74] 李善茂等编著.Visual Basic 6.0高级编程技巧[M].北京:电子工业出版社,1999.
    [75] 张卫华,周爽等编著.中文Visual Basic 6.0编程技术[M].北京:北京航空航天大学出版社,1999.
    [76] Zhou, Z. X., Long, T. Y. Mathematical Models and Grinding Research for Step Drill[J]. Key Engineering Materials, 2004, 258-259: 411-414.
    [77] Gould, Ben D. Maxwell, Bill. FAST DRILLING WITH FOAM IN FLUID LOSS ZONE[J]. Petroleum Engineer International, 1979, 51(5): 94-100.
    [78] 张宏林等编著.Visual Basic 6.0编程实例[M].北京:人民邮电出版社,1999.
    [79] 王道义等编著.VisuN Basic 6使用详解[M].北京:机械工业出版社,1999.
    [80] 常玉军,殷琨.冲击回转碎岩机理研究.探矿工程,2001.,(4):62~64.
    [81] 张祖培,殷琨,蒋荣庆等.岩土钻掘工程新技术[M],北京:地质出版社,2003.
    [82] 刘金保.空气泡沫气动潜孔锤钻进技术在非洲的应用[J].河北建筑科学学院学报,2005,22(1):74~76.
    [83] 校月钿,张勇,蒋荣庆.泡沫潜孔锤室内实验研究[J].吉林大学学报,2002,32(3):304~306.
    [84] 石永泉.无阀潜孔锤冲击功和冲击频率的计算[J].探矿工程,1999,11(1):38~39.
    [85] 蒋荣庆,殷琨,辜华良.潜孔锤钻进有复杂地层中应用[J].地质与勘探,1999,35(6):83~87.
    [86] Hannegan, D. Managed pressure drilling in marine environments[J]. 2005 International Petroleum Technology Conference Proceedings. 2005, (6): 199~206.
    [87] Jian, Z. A type of advanced mud-hammer applied to oil drilling[J]. 2005 SPE Asia Pacific Oil and Gas Conference and Exhibition - Proceedings. 2005, 365~367.
    [88] Arul, S. The effect of vibratory drilling on hole quality in polymeric composites[J]. International Journal of Machine Tools and Manufacture. 2006. 46(3): 252~259.
    [89] 谢文卫,苏长寿,宋爱志.新型高冲击功液动潜孔锤的研究[J].探矿工程,1998,(6):31~32.
    [90] 苏长寿.液动潜孔锤技术现状及发展设想[J].探矿工程,2003,(1):28~30.
    [91] 高建强,陈朝达.液动冲击旋转钻具存在的问题及解决途径[J].西安石油学院学报,1998,13(3):62~64.
    [92] 李国华.液动冲击器功率传递理论分析及应用研究[J].石油钻探技术,2003,31(6):1~4.
    [93] 王茂森,殷琨.GC—100型低压高能潜孔锤的研制与应用[J].西部探矿工程,2000,(2):108~109.
    [94] 耿瑞伦,冯国强.液动锤技术及其应用前景[J].探矿工程,2001,(1):32~33.
    [95] 殷琨,蒋荣庆.潜孔锤反循环钻进技术及应用[J].探矿工程,1996,(5):13~15.
    [96] 殷琨,蒋荣庆.嵌岩桩潜孔锤的研究与应用[J].岩土钻凿工程,1995,(3):17~23.
    [97] 殷琨,蒋荣庆.潜孔锤反循环钻进技术及应用[J].探矿工程,1996,(5):13~15.
    [98] 孟义泉,苏长寿,谢文卫.液动潜孔钻进技术在西部特殊景观区的应用前景[J].西部景观勘查技术交流会材料,2004.
    [99] Li, Qi; Zhang, Tiejun; Yu, Jiliang. Calculation and analysis of the hydraulically pushing force in rotary steerable drilling. 2004, 24(9): 68~71.
    [100] Tanajno, A. S.. Status and prospects of percussion-rotary drilling[J]. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh. 2004, (2): 82~93
    [101] Saikia, Kalyan. Exploration drilling optimisation using geostatistics [J]. Transactions of the Institutions of Mining and Metallurgy. 2006, 115(1): 13~33.
    [102] Kim, Dae-Wook. Effect of cold working on exit burr formation in drilling[J]. Transactions of the North American Manufacturing Research Institute of SME. 2006, (34): 317~324.
    [103] Liu, Yinghui. Optimal design of the coring bit cutting edge in percussive/vibratory drilling[J]. Proceedings of the ASME International Design Engineering. 2005. (5): 41~45.
    [104] Gui, M. W.. Instrumented borehole drilling for subsurface investigation[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2002, 128(4): 283~291.
    [105] 潘殿琦,蒋荣庆,殷琨.贯通式潜孔锤气力喷反钻具系统[J].探矿工程,1997,(4):32~33.
    [106] 王茂森.低压高能潜孔锤的研制[J].世界地质,2000,19(4):412-413.
    [107] 况雨春,马德坤,刘清友等.钻柱—钻头—岩石系统动态行为仿真[J].石油学报,2001,22(3):81~85.
    [108] 林元华,施太和.梁政等.冲旋钻井钻头仿真模型的建立研究[J].石油钻探技术,2004,(2):8~11.
    [109] 熊青山,彭振斌,殷琨.可视化气动潜孔锤设计软件系统开发[J].探矿工程,2003,(6):21~24.
    [110] 何清华.液压凿岩机的设计与研究[J].长沙:中南矿业学院学报,1988,(2):95~202.
    [111] 何清华,奇任贤,杨襄璧等.液压凿岩机冲击器数字仿真研究[J].中南矿业学院学报,1984,(4):109~116.
    [112] 刘来福,曾文艺.数学模型与数学建模[M].北京:北京师范大学出版社,1997.
    [113] 李伯成.微型计算机原理及接口技术[M].北京:电子工业出版社,2002.
    [114] 单成祥.传感器的理论与设计基础及其应用[M].北京:国防工业出版社,1999.
    [115] 苏铁力,关振海,孙继红等.传感器及其接口技术[M].北京:中国石化出版社,1998.
    [116] David Jung, Pierre Boutquin, John D. Conley(美),前导工作室译.Visual Basic 6开发人员手册[M].北京:机械工业出版社,2000.
    [117] 何少华,文竹青,娄涛.试验设计与数据处理[M].长沙:国防科技大学出版社,2002.
    [118] 陈方樱,徐赐文,郑更新.概率论与数理统计[M].北京:机械工业出版社,2006.
    [119] 刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社,2005.
    [120] 苏均和.试验设计[M].上海:上海财经大学出版社,2004.
    [121] 赵选民.试验设计方法[M].北京:科学出版社,2006.
    [122] Moseley, H. R. Jr. CHEMICAL COMPONENTS, FUNCTIONS, AND USES OF DRILLING FLUIDS[J]. Int Petroleum Industry Environmental Conservation Assoc, 1981: 43-52.
    [83] http://unit.cug.edu.cn/jpkc/ytzjgcx/net_course/2/dill/tigang.htm.
    [123] Feng Q, Cheng G D. Current situation, problems and rational utilization of water resources in arid north - western China[J]. Journal of Arid Environments, 1998, 40: 373-382.
    [124] http://www.chinaexplore.com.cn/nnews/e21.htm.
    [125] Armarego, E. J. A. Kang, Dechun. Computer-aided modelling of the fluting process for twist drill design and manufacture[J]. Manufacturing Technology, 1998, 47(1): 259-264.
    [126] Veenhuizen, S. D. Stang, D. L. Kelley, D. P. etc. Development and testing of downhole pump for high-pressure jet-assist drilling[J]. Drilling and Completion, 1997: 183-190.
    [127] 熊青山,代宝刚,曾勇等.冲击回转钻进中压力表的重要作用[J].西部探矿工程,2003,(10):15~18.
    [128] 周延勋.全面推广冲击回转钻进的体会[J].探矿工程(岩土钻掘工程),1991,(05):25~26.
    [129] 曾昭华,傅祥志主编.优化设计[M].北京:机械工业出版社,1992.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700