用户名: 密码: 验证码:
山岭隧道衬砌结构震害机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道工程是交通系统的重要组成部分,按其埋深主要分为浅埋隧道和山岭隧道(深埋)。以往的经验认为山岭隧道不容易出现震害,因此相关的研究很少。2008年汶川8.0级特大地震造成了震中附近的多座公路隧道受损严重,震后修复十分困难。目前隧道衬砌结构震害机理成为学科发展的一个难点,严重制约了山岭隧道的抗震设计。本文以阐明山岭隧道二次衬砌在地震作用下的力学模式和震害机理为目标,采用理论分析、振动台地震模拟实验以及有限元地震反应分析等方法开展系统研究,取得主要成果如下。
     1)通过实地调查,详细描绘了都江堰至映秀高速公路沿线山岭隧道的地震受损情况。统计结果显示,不良地质区间内无筋混凝土二次衬砌的震害比例最大。
     2)用等效模拟法,探讨了衬砌拱顶背后存在空洞、地震波入射角度不同、地层条件突变的情况下隧道结构的受震机制。指出了在地震作用下,衬砌拱顶背后存在空洞易导致拱顶区域向上脱开并发生整体式坍塌。
     3)以龙溪隧道为原型,用振动台地震模拟实验研究了山岭隧道浅埋段内二次衬砌的地震响应规律。模型试验再现了实际隧道的震害现象,地震输入的加速度峰值不同,衬砌关键部位的地震响应敏感程度亦不相同;试验验证了混凝土衬砌结构的极限压应变数值在450με左右。
     4)对竖向地震作用下无筋混凝土衬砌和钢筋混凝土衬砌进行了振动台对比试验。试验验证了无筋混凝土二次衬砌在地震时容易形成立即崩塌的极限破坏模式。此外,本次试验首次证明了强烈的竖向地震作用是引发隧道衬砌的拱墙至拱脚外侧出现斜向开裂的主要原因。由此建议,位于软弱破碎地层内的衬砌应在其横断面内双向布设最小配筋率为0.2%的受弯钢筋以提高结构延性,为隧道抗震设计提供了依据。
     5)用有限元法分析了山岭隧道纵向的地震响应。计算结果表明,在软硬地层交界处由地震引起隧道结构的纵向拉应力峰值远高于混凝土结构的极限抗拉强度,解释了隧道衬砌产生环向开裂的震害机理。
Tunnel engineering is an important part of transportation system. Accordingto its buried depth, tunnel can be divided into shallow-buried urban tunnel anddeep-buried mountain tunnel. It is widely accepted from past experiences thatmountain tunnels are considered to have higher seismic stability, therefore, thefollowing studies are limited. In the2008Wenchuan earthquke (M8.0), more than10mountain tunnels in service around the epicenter had been damaged seriouslyto need complicated repair and reinforcement. At present, the seismic-damagedmechanism on lining structure of mountain tunnel during earthquake has becamea difficult point in the discipline development. It restricted the quake-proof designof mountain tunnel structures. This paper aims at clarifying the seismic responseand damage-causing mechanism of secondary lining in deep-tunnels underearthquake. This is achieved by means of theoretical analysis methods andshaking table tests, as well as advanced numerical simulations with the systematicresearch. The results from the study were acquired as follows:
     1) According to the data from the on-site investigation,the modes ofearthquake damage to mountain tunnels located between Dujiangyan and Yingxiuhave been described in detail. It was found that the damage proportion ofsecondary lining in unreinforced concrete tunnels located in the poor geologicalconditions were large.
     2) By the equivalent simulation method, the attention was specifically onthe seismic damage mechanism of deep tunnels under earthquake when therewere voids behind the lining of tunnel crown or when the incident angle ofseismic wave are different, as well as when the tunnel was buried in differentground rigidity. From the numerical analyses, it was found that the voids abovethe lining have negative effect on the aseismic performance. Further more, it waslikely that the tunnel crown were raised up or wholly collapsed under earthquake.
     3) The analysis was applied to a real case, the Longxi tunnel located inSichuan. With poor geological conditions, a model experiment on the shakingtable was conducted to clarify the damage mechanism and assess tunnel aseismicperformance. It was revealed that actual earthquake damage was able to bereproduced by the model test, in which the seismic response sensitivity for thekey parts of lining changed under different loading conditions. Based on the testresults, the ultimate compressive strain in the C25concrete lining structure mayreach at450με.
     4) A dynamic compared experiment of reinforced concrete lining and plainconcrete lining were carried out on the shaking table. It’s essentially to verify theultimate response of unreinforced concrete lining is prone to collapse suddenlyduring the strong motion. Moreover, it has been experimentally and analyticallyconfirmed that the inclined crack between sidewall and foot of the lining linkedto the strong vertical component of earthquake motion. Subsequently, to improve the structural ductility along the tunnel’s transversal direction requires setting aminimum bending reinforcement ratio of2%which is useful for the quake-proofdesign of mountain tunnel structures.
     5) A numerical simulation was conducted to clarify the seismic responsemechanism of mountain tunnel along its lognitudinal direction. The results of theanalyses are shown that under earthquake the longitudinal peak tensile stress oftunnel was much higher than the ultimate tensile strength of concrete structurewhen the tunnel located at the junction between hard and soft strtum. It hasinterpreted the seismic damage-causing mechanism of ring cracks on thesecondary lining.
引文
[1]陈贵红,李海清.国道213线都江堰至汶川段隧道震害调查与分析[J].西南公路,2008,4:114-119.
    [2]陈惠发A.F.萨里普.混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004.
    [3]陈乐生,庄卫林,赵河清,万振江.汶川地震公路震害调查(隧道)[M].北京:人民交通出版社,2012.
    [4]陈乐生,庄卫林,赵河清,万振江.汶川地震公路震害调查[M].北京:人民交通出版社,2012.
    [5]陈卫忠,伍国军,贾善坡.ABAQUS在隧道及地下工程中的应用[M].北京:中国水利水电出版社,2010.
    [6]陈卫忠,朱维申,王宝林,任伟中.节理岩体中洞室围岩大变形数值模拟及模型试验研究[J].岩石力学与工程学报,1998,17(3):223-229.
    [7]陈正勋,黄灿辉.山岳隧道受震之破坏型态及其机制初探[J].第五届海峡两岸隧道与地下工程学术与技术研讨会,2006:1-10.
    [8]成都理工大学.都汶公路龙溪隧道地应力测试研究报告[R].2007.
    [9]陈晗.动静结合法在钢桁架损伤诊断中的应用研究[D].中国地震局工程力学研究所,2008.
    [10]费康,张建伟.ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [11]高波,王峥峥,袁松,申玉生.汶川地震公路隧道震害启示[J].西南交通大学学报,2009,44(3):336-341.
    [12]谷拴成,朱彬,杨鹏.地下结构地震反应非线性分析[J].地下空间与工程学报,2006,2(5):748-752.
    [13]郭迅.汶川大地震震害特点与成因分析[J].地震工程与工程振动,2009,29(6):74-87.
    [14] GB50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
    [15] H.H.福季耶娃.地震区地下结构物支护的计算[M].北京:煤炭工业出版社,1986.
    [16]何福,郭迅,李保宽.牛栏江大桥模态测试及数值模拟[J].土木工程学报,2012,45(1):117-120.
    [17]皇民,刘马群,王安华,郭廷喜.隧道地震破坏的主要形式及影响因素分析[J].交通科技与经济,2010,1(5):60-62.
    [18]黄思凝.隧道地震破坏的主要形式及影响因素分析[D].中国地震局工程力学研究所,2011.
    [19]洪勇,谢耀峰,周月慧,张圣平.水平荷载单桩的三维有限元分析[J].水道港口,2007,28(1):48-53.
    [20] JGJ/T70-2009,建筑砂浆基本性能试验方法标准[S].北京:中国建筑工业出版社,2009.
    [21]李春林,李天斌,陈礼伟,翟小平.龙溪隧道左线试验段围岩大变形成因机制分析[J].现代隧道技术,2009,46(5):46-50.
    [22]李春林,李天斌,陈强,王希宝.龙溪隧道初期支护监控量测技术初步研究[J].地质灾害与环境保护,2007,18(4):85-90.
    [23]李德寅,王邦楣,林亚超.结构模型实验[M].北京:科学出版社,1996.
    [24]李刚,钟启凯,尚守平.平面SH波入射下深埋圆形组合衬砌洞室的动力反应分析[J].湖南大学学报,2010,37(1):17-22.
    [25]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报,2008,04(1):10-19.
    [26]李其.龙溪隧道高瓦斯施工预防与实践[J].山西建筑,2010,36(1):330-331.
    [27]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报,2008,16(6):742-750.
    [28]李育枢.山岭隧道地震动力响应及减震措施研究-以国道318线黄草坪隧道为例[D]同济大学博士论文,2006.
    [29]梁建文,张浩,Vincent W Lee.平面P波入射下地下洞室群动应力集中问题解析解[J].岩土工程学报,2004,26(6):815-819.
    [30]廖振鹏.工程波动理论导论[M].北京:科学出版社,2005.
    [31]刘殿魁,史守峡.界面上圆形衬砌结构对平面SH波散射[J].力学学报,2002,34(5):796-803.
    [32]刘海京,夏才初,郑佳艳,蔡永昌.存在衬砌背后空洞的隧道计算模型研究及应用[J].重庆大学学报,2007,30(3):119-122.
    [33]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报,2006,28(9):1070-1075.
    [34]骆文海.日本铁路隧道的抗震设计和加固(访日考察报告)[J].铁道工程学报,1998:584-592.
    [35]潘昌实.隧道及地下结构物抗震问题的研究概况[J].世界隧道,1996,(5):7-16.
    [36]钱七虎,何川,晏启祥.隧道工程动力响应特性与汶川地震隧道震害分析及启示[J].汶川大地震工程震害调查分析与研究,2009:608-618.
    [37]日本土木学会.盾构隧道的抗震研究及算例[M].北京:中国建筑工业出版社,2009.
    [38]邵根大,骆文海.强地震作用下铁路隧道衬砌耐震性的研究[J].中国铁道科学,1992,12(2):92-108.
    [39]申玉生,高波,王峥峥.强震区山岭隧道振动台模型试验破坏形态分析[J].工程力学,2009,26:71-76.
    [40]孙有为,李平,薄景山,刘博,齐文浩.汶川特大地震龙溪隧道震害与原因浅析[J].世界地震工程,2010,26:187-191.
    [41]四川省高速公路网规划(2008-2030).
    [42]四川省交通厅公路规划勘察设计研究院.国道317、213线都江堰至汶川公路高速路地震灾后恢复重建方案设计汇报材料[R].成都:四川省交通厅公路规划勘察设计院,2008.
    [43]四川省交通厅公路规划勘察设计研究院.国道317、213线都江堰至汶川公路两阶段施工图设计材料[R].成都:四川省交通厅公路规划勘察设计研究院,2008.
    [44]四川省煤田地质工程勘察设计研究院.都(江堰)汶(川)路龙洞子隧道工程地质勘察报告[R].成都:四川省煤田地质工程勘察设计研究院,2002.
    [45]四川省煤田地质工程勘察设计研究院.都(江堰)汶(川)路龙溪隧道工程地质勘察报告[R].成都:四川省煤田地质工程勘察设计研究院,2002.
    [46]四川省煤田地质工程勘察设计研究院.都(江堰)汶(川)路烧火坪隧道工程地质勘察报告[R].成都:四川省煤田地质工程勘察设计研究院,2002.
    [47]四川省煤田地质工程勘察设计研究院.都(江堰)汶(川)路紫坪铺隧道工程地质勘察报告[R].成都:四川省煤田地质工程勘察设计研究院,2005.
    [48]王金昌,陈开页.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [49]王金昌,陈开页.ABAQUS在土木工程中的应用[M].杭州:浙江大学出版社,2006.
    [50]王文礼,苏灼谨,林峻弘等.台湾集集大地震山岳隧道受损情形之探讨[J].现代隧道技术,2001,38(2):52-60.
    [51]王秀英,刘维宁,张弥.地下结构震害类型及机理研究[J].中国安全科学学报,2003,13(11):55-58.
    [52]王友恭,李有恒.岩石隧道二次衬砌之耐震设计考量初探[J].第四届海峡两岸隧道与地下工程学术与技术研讨会,2004.
    [53]王峥峥,张哲,高波,申玉生.山岭隧道洞口震害因素分析与抗震风险模糊综合评价[J].中南大学学报,2012,43(3):1122-1130.
    [54]王峥峥.跨断层隧道结构非线性地震损伤反应分析[D].成都:西南交通大学,2009.
    [55]徐磊,叶志才,任青文等.基于ABAQUS的粘弹性动力人工边界精确自动施加[J].三峡大学学报,2010,32(1):20-23.
    [56]徐有邻,顾祥林.混凝土结构工程裂缝的判断与处理[M].北京:中国建筑工业出版社,2010.
    [57]周月慧,洪勇,颜静.水平荷载下单桩的三维有限元模拟与参数分析[J].中外公路,2007,27(3):50-54.
    [58]衣华伟.底商多层砌体结构抗倒塌加固方法研究[D].中国地震局工程力学研究所,2011.
    [59]于媛媛,郭迅,高波,王宁伟,杨伟松.山岭隧道二次衬砌环向裂缝的震害机理[J].沈阳建筑大学学报(自然科学版),2013,29(1):86-92.
    [60]张敏政.地震模拟实验中相似律应用的若干问题[J].地震工程与工程振动,1997,17(2):52-58.
    [61]郑清,高波,申玉生.山岭隧道震害调查及修复技术研究[J].石家庄铁道大学学报,2010,23(4):46-52.
    [62]郑永来,杨林德,李文艺.地下结构抗震[M].上海:同济大学出版社,2011.
    [63]郑永来,杨林德,李文艺等.地下结构抗震[M].上海:同济大学出版社,2011.
    [64]郑永来,杨林德.地下结构震害与抗震对策[J].工程抗震,1999,(4):23-28.
    [65]中国地震局震害防御司.汶川8.0级地震未校正加速度记录[M].北京:地震出版社,2008.
    [66]中华人民共和国国家标准.地下铁道设计规范(GB50157-92)[S].北京:中国计划出版社,1999.
    [67]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社,2010.
    [68]中华人民共和国国家标准.铁路工程抗震设计规范(GB50111-2006)[S].北京:中国铁道出版社,2006.
    [69]中华人民共和国行业标准.公路工程抗震设计规范(JTG004-89)[S].北京:人民交通出版社,2003.
    [70]周德培.强震区隧道洞口段的动力特性研究[J].地震工程与工程振动,1998,18(1):124-130.
    [71]周思孟.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版,1998.
    [72]朱小明,刘明.断层角度对隧道纵向稳定性影响的数值模拟[J].徐州建筑职业技术学院学报,2007,7(4):17-19.
    [73]曾勇华.拱墙悬臂现浇施工控制模型试验研究[D].成都:西南交通大学,2007.
    [74]朱以文,菜元奇,徐晗.ABAUQS与岩土工程分析[M].北京:中国图书出版社,2005.
    [75]庄茁,张帆,岑松等.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005.
    [76]庄茁.ABAQUS非线性有限元分析实例在[M].北京:科学出版社,2005.
    [77]朝倉俊弘,小島芳之等.小土被りトンネルにおける地震時挙動に関する研究[J].トンネル工学論文集,2007,17:209-214.
    [78]大塚久哲.最新地中﹒基礎構造の耐震設計[M].日本:九州大学出版社,2006.
    [79]日本JH東京建设局.東京外環自動車道·掘割構造物設計·施工指針(案)[M].2001.
    [80]日本道路協会.道路橋示方書·同解说(ⅴ耐震設計编)[M].日本東京都:丸善株式会社,2007.
    [81]日本道路協会.日本首都高速道路-トンネル構造物設計要領(開削工法耐震設計編)[M].日本東京都:丸善株式会社,1999.
    [82]日本鉄道総合技術研究所.铁道構造物等設計標準·同解说(都市部山岳工法トンネル)[M].日本東京都:丸善株式会社,2002.
    [83]日本鉄道総合技術研究所.铁道構造物等設計標準·同解说(耐震設計)[M].日本東京都:丸善株式会社,1999.
    [84]日下敦,真下英人,水川雅之,森本智.地震による山岳トンネルの被害発生メカニズムに関する基礎的研究[J].トンネル工学報告集,2008,18:15-21.
    [85]田村重四郎,加藤勝行.地震時における地盤とトンネルの挙動について[J].土木学会第34回年次学術講演会講演概要集,1979,179:356-357.
    [86]小山幸則,朝倉俊弘,佐藤豊.兵庫県南部地震による山岳トンネルの被害と復旧[J].トンネルと地下,1996,27(3):51-61.
    [87] Asakura T, Kojima Y. Study on the damage mechanism of mountain tunnel underearthquake and improvement of earthquake resistance [R].Japan Kyoto:RailwayTechnical Research Institute,2006.
    [88] Asakura T, Sato Y. Damage to mountain tunnels in hazard area [J]. Soils andFoundations, Special Issue on Geotechnical Aspects of January171995Hyogoken-Nanbu Earthquake,1996:301-310.
    [89] Barton N. Effects of Rock Mass deformation on Tunnel Performance in SeismicRegions [J]. Mechanics and Rock Engineering,1984,4(3):89-99.
    [90] China Earthquake Administration. The March11,2011.http://www.cea.gov.cn/manage/html/8a8587881632fa5c0116674a018300cf/_content/11_05/11/1305095291164.html
    [91] Dahl, K.K.B. A constitutive model for normal and high-strength concrete [J]. ABKReport nr. R287, Department of Structural Engineering,1992.
    [92] Dowding C, Rozen A. Damage to rock tunnel from earthquake shaking [J]. Journal ofGeotechnical Engineering ASCE,1978,104:175-191.
    [93] Hashash Y, Hook J, Schmidt B and Yao J. Seismic design and analysis of undergroundstructures [J]. Tunnelling and Underground Space Technology,2001,16(4):247-293.Http://www.scjtonline.cn/scjt.asp
    [94] Iai S. International standard (ISO) on seismic actions for designing geotechnical works,Proc. of3rd International Conference on Earthquake Engineering.2004,1:302-309.
    [95] JSCE tunnel engineering committee Niigataken Chuetsu earthquake specialsubcommittee: report by JSCE Tunnel Engineering Committee Niigataken ChuetsuEarthquake Special Subcommittee, June2005.
    [96] JSCE. Earthquake resistant design for civil engineering structures in Japan.JSCE,1988.
    [97] Kamiyama M. Stress and strain in ground during earthquake [J]. JSCE,1976,250:9-23.
    [98] Kojima Y, Yoshikawa K, Yashiro K, et al. Ground surface loading model test ondeformation behavior of tunnel lining[J].Japan Society of Civil Engineers CollectedPapers,2003,62(3):73-86.
    [99] Kuesel T R. Earthquake design criteria for subways [J]. Journal of the StructuralDivisions, ASCE,1969:95(6).
    [100] Lee V W, Karl J. Diffraction of SV wave by underground, circular, cylindrical cavities[J]. Soil Dynamics and Earthquake Engineering,1993,11(2):445-456.
    [101] Lee V W, Trifunac M D. Response of tunnels to incidant SH waves [J]. Journal ofEngineering Mechanics, ASCE,1979,105:643-659.
    [102] Mori S, Tsuchiya M. Damage to Kizawa tunnel during the2004Nigata-Ken Chuetsuearthquakes and its mechanism [J]. JSCE Journal of Earthquake Engineering,2005,9(7):26-36.
    [103] Newark N M. Problems in wave propagation in soil and rock [J]. InternationalSymposium on Wave Propagation and Dynamic Properties of Earth Materials,1968.
    [104] Pao Y H, Mow C C. Diffraction of elastic waves and dynamic stress concentrations[M]. New York: Crane Russak and Company,1964.
    [105] Report (in middle stage) on the Heisei-7Hyogo–ken Nanbu earthquake disasterinvestigation (in Japanese), Building Research Institute (BRI), Ministry ofConstruction (MOF),1995.
    [106] St John C, Zahrah T. Aseismic design of underground structures [J]. Tunnelling andunderground space technology,1987,2(2):165-197.
    [107] Towhata I (2008). Geotechnical Earthquake Engineering. Springer-Verlag BerlinHeidelberg.
    [108] Wang W L, Wang T T, Su J J, Lin C H et al. Assessment of damages in mountaintunnels due to the Taiwan Chi-Chi Earthquake [J]. Tunnelling and Underground SpaceTechnology,2001,4(16):133-150.
    [109] Yamada H, Okada M, Fujiwara Y, Yashiro K. A study on earthquake-proof of requiredperformance of mountain tunnel[J]. Proceedings of the Symposium on UndergroundSpace, JSCE,2006,11:201-208.
    [110] Yashiro K, Kojima Y, Fukazawa N, Asakura T, et al. Seismic damage mechanism ofmountain tunnels in poor geological conditions [J]. JSCE,2009,65(4):1045-1061.
    [111] Yashiro K, Kojima Y, Miyabayashi H, Saito J, et al. Applicability assessment ofseismic countermeasures for newly constructed mountain tunnels in poor geologicalconditions [J]. JSCE,2009,65(4):1062-1080.
    [112] Yashiro K, Saito J, Iura T, Takemura J. Seismic damage of mountain tunnels in Japanand case studies[J].7th International Conferenc on Urban Earthquake Engineering,2010.
    [113] Yu Yuanyuan, Guo Xun, Wang Ningwei, et al. Mechanical Analysis on SecondaryLining Damaged by Local Load under Earthquake[J]. Advanced Materials Research,2011,243/249:3639-3643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700