用户名: 密码: 验证码:
有限元与蒙特卡罗方法耦合的退火过程模拟模型及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料科学和计算机技术的发展,材料的制备科学正从传统的正向研究向逆向研究过渡:从材料组分、微观结构出发,借助计算机模拟预测材料性质,以便生成满足使用要求的功能材料。金属材料的微观组织是在冶炼、铸造、成形加工、热处理工艺过程中形成的,而成形加工及热处理对其最终微观组织结构及其性能起着至关重要的作用。实际生产中,金属材料的塑性变形在宏观及介观尺度上都是不均匀的,这种不均匀性引起材料内部变形储能的不均匀分布,从而导致了退火过程中变形材料内部再结晶动力学的不一致,使退火后材料各部位的组织及性能有较大差异。
     对金属材料的塑性变形过程进行有限元(Finite Element Method,FEM)分析,可以获得变形过程中金属流动及应力应变等详细信息;利用Monte Carlo(MC)方法对变形金属材料的退火过程进行计算机模拟研究,可以定量、连续、动态地观察、检测在实验室中所观察不到或检测不到的现象,更好地认识退火过程中组织演变规律及其内在机理,获得退火组织的特征参数,实现退火过程介观组织设计及其性能预报,为退火工艺优化和高性能材料设计与开发打下坚实的基础。因此,通过FEM与MC方法的耦合,既可以全面了解外界变形条件引起的材料宏观尺度上储能的非均匀分布及其相应的再结晶动力学与平均晶粒尺寸变化,又可以深入研究内部组织结构差异导致的材料介观尺度上储能的非均匀分布及其相应的再结晶动力学与拓扑组织演变过程,具有重要的理论意义和实用价值。
     MC方法是以概率和统计学理论为基础的一种数值计算方法。它将所求解问题转换成事件概率模型,用计算机抽样得到这个事件出现的概率,并用它作为问题的解。Monte Carlo Potts模型(简称MC Potts模型)具有可分析复杂组织与可视化仿真的能力,本文以MC Potts模型为模拟工具,基于现有实验及理论基础依次建立了FEM与MC方法的耦合模型、介观储能密度分布模型及回复模型,完成了对退火过程模拟模型的改进;结合相关退火模拟关键技术,编写了冷变形材料等温退火过程组织模拟程序;通过超低碳高强度烘烤硬化钢板与工业纯铝板的实验研究对模型及其程序进行了验证。
     首先,本论文分析了现有变形材料退火模型中的储能分布模型,特别是RSRP储能分布模型的不足,从多晶体塑性变形过程中应力、位错密度及储能密度之间的关系出发,解决了以下几个关键问题:①状态变量的转换:有限元模型中流变应力转换为储能密度,②数据的移植:转换得到的储能密度移植为MC模拟区域内的平均储能密度,③介观初始储能场及相应模拟能量场的构建,④形核模型的建立,并据此建立了FEM与MC方法的耦合模型,实现了由宏观应力场向介观储能场的转换,初步解决了冷变形材料宏观及介观尺度上储能的非均匀分布问题。基于FEM与MC的耦合模型,编制了冷变形金属材料等温退火过程模拟程序。
     以冷轧纯铝板为研究对象,模拟了轧件中靠近表层的储能极大区与靠近心部的储能极小区的再结晶过程,并将模拟结果与实验结果进行了对比。研究发现:①新建的耦合模型能够较好地模拟轧件各部位储能的不同引起的再结晶动力学及再结晶完成时微观组织的差异:储能较高的区域再结晶速度较快、再结晶完成时平均晶粒尺寸较小,储能较低的区域再结晶速度较慢、再结晶完成时平均晶粒尺寸较大,反映的规律与实验观察结果及现有再结晶理论相一致,即退火后轧件表层的晶粒尺寸比心部的更加细小;变形程度越大,再结晶速度越快。②再结晶动力学模拟统计结果与其微观组织直观模拟结果反映的规律相同,且这些结果与现有再结晶理论及实验结果基本一致,不仅表明了再结晶微观组织模拟结果的必然性,而且验证了本文所采用的有限元-再结晶耦合模型的合理性。
     然后,本论文深入研究了多晶体塑性变形时各种介观及微观结构对位错运动及分布,进而对储能密度分布的影响,并根据其影响机制提出了合理假设并建立了相关的模型。①从Kocks复合模型出发,建立了冷变形材料中储能在不同尺寸晶粒间的分布模型,初步解决了不同晶粒间储能的分布问题;②从晶界对位错运动的作用机制出发,基于Mughrabi的剪切应力分布模型,结合应力、位错密度及储能的关系建立了晶界附近储能的分布模型;③综合考虑了高层错能及低层错能金属材料中胞状组织、孪晶乃至微带、变形带等各种局部缺陷对位错密度分布的影响,提出了局部缺陷引起储能升高的储能分布假设。基于以上模型与合理假设,建立了一个新的介观尺度储能密度分布模型。
     以冷轧纯铁素体钢板为例,研究了所建模型在退火过程中的应用。①基于不同储能密度分布模型研究了同一平均储能密度下的再结晶退火过程,分析了不同储能分布模型对再结晶微观组织演变及其动力学的影响。研究表明,新模型考虑了较大变形条件下晶粒内部储能的局部升高,所模拟的新晶核分布能更真实地反映变形金属材料再结晶形核机制;新模型模拟的再结晶速度在开始时刻较小,随着再结晶晶核的大量出现,在再结晶中段迅速升高,并在再结晶后期由于新晶粒的相互接触而减慢,更能反映出再结晶动力学的“S”型曲线关系及对数分析曲线的线性关系。②基于新建介观储能密度分布模型,模拟了变形量和再结晶温度对微观组织演变及再结晶动力学的影响。结果表明:随着变形量的增大,晶粒内部缺陷的增多,再结晶形核方式由晶界形核逐渐向晶内形核过渡,形核率急剧增加,再结晶速度显著提高,再结晶完成时晶粒得到明显细化,Avrami指数n值减小;再结晶温度可以显著提高形核率,提高再结晶速度,缩短再结晶时间,但对n值及再结晶完成时的微观组织结构影响较小。反映的规律与现有再结晶理论及实验结果相一致,证明了该模型的合理性。
     随后,本论文分析了现有再结晶模型不能反映回复过程的原因,基于相关实验研究确立了新的初始亚晶平均取向差-应变关系;考虑了回复过程中的储能密度降低现象,提出了“储能密度的降低是亚晶长大过程驱动力”的新观点,并据此建立了回复过程中的实时模型;提出了“亚晶异常长大形核模型中临界形核尺寸随储能密度的降低而增大”的观点。在亚晶异常长大形核模型及以上改进的基础上,建立了一个具有明确物理基础的回复模型。
     将该回复模型与再结晶的MC Potts模型相结合,建立了一个回复-再结晶模型,并据此对冷轧纯铁素体钢板的退火过程进行了模拟。结果表明:①新模型合理考虑了变形量对初始亚晶取向差的影响机制,实现了再结晶过程孕育期的模拟;考虑了退火过程中的储能降低,减缓了再结晶动力学,使模拟结果与实际更为相符。②变形量一定时,退火温度越高,孕育期越短,再结晶速度越快,温度一定时,变形量越大,孕育期越短,再结晶速度越快。上述模拟结果可由现有再结晶理论和实际退火规律得到证实。
     最后,为了验证本文建立的基于FEM与MC方法耦合的回复-再结晶模型的合理性及其应用效果,实验研究了冷轧ELC-BH钢板及1060工业纯铝板的退火过程,并与本文所建模型的相应模拟结果进行了对比,结果表明:①本文所建模型能较准确地模拟两种材料的冷轧组织(特别是大变形量时的冷轧组织)、再结晶形核位置、再结晶完成时的微观组织及随后的晶粒长大组织;②模拟的再结晶分数曲线接近于S形曲线,与退火实验的预测结果及相关再结晶理论一致,③实现了退火过程中孕育期的模拟,且反映的冷轧压下率与退火温度对孕育期及再结晶动力学的影响规律与实验结果一致:压下率越大,孕育期越短且随后的再结晶过程速度也越快。以上结果验证了本文所建FEM与MC方法的耦合模型、介观储能密度分布模型与回复模型的合理性,能较好地模拟实际变形材料的退火过程。
With the development of material science and computer technology, science of material preparation is changing from traditional design to reverse manner. By the aid of computer, material properties can be predicted based on its components and microstructure, and the optimum manufacturing techniques can be selected to derive some functional materials which can meet the needs of actual production. The microstructure of metallic materials is formed during the process of smelting, casting, forming and heat treating, in which forming and heat treating are critical to materials' microstructure and properties. However, the inhomogeneous pre-deformation induces the inhomogeneous distribution of the stored energy, which, as the driving force for recrystallization, leads to different recrystallization kinetics and different properties of the annealed materials.
     With the aid of finite element model (FEM), the process of plastic deformation of metallic materials can be simulated effectively, and the detailed information (such as the distribution of stress and strain) can be obtained. Meanwhile, by the simulation of annealing process of deformed materials, the information which is not easily observed in experiments can be reproduced quantitatively, continuously and dynamically. This method is helpful for better understanding of microstructure evolution and its inner mechanism, controlling the characteristic parameters of annealed microstructure and forecasting the properties of materials. In this way a solid foundation can be laid for optimizing annealing process and developing high performance materials. Therefore, the macroscopic and mesoscopic inhomogeneous distribution of stored energy, microstructure evolution and the corresponding recrystallization kinetics can be studied comprehensively and thoroughly with the coupling model of FEM and MC method, which is of great theoretical and practical value.
     MC method is a numerical calculation technique based on probability and statistics theories. Firstly, a probability model of special events associating to the investigated subject is established; secondly, a computer sampling plan is determined; finally, by means of the sampling plan, the occurrence frequencies of the events are derived as solutions of the subject investigated. In present thesis, Monte Carlo Potts model is used as the simulating tool to analyze complicated microstructure and to visualize the process of the emulation. A new coupling model of FEM with MC method, a new mesoscopic stored energy density distribution model and a new recovery model are constructed based on the experimental and theoretical researches. According to the new models and the corresponding key technologies, a computer program is compiled to simulate the isothermal annealing process of cold worked materials. Finally, the experimental results of extra-low carbon and high strength bake-hardening steel plate (ELC-BH steel plate) and industrial pure aluminum plate are used to certificate the rationality of the models.
     Firstly, the limitations of previous stored energy distribution models, especially the RSRP model, are well analyzed. According to the relationship among stress, dislocation density and stored energy density in poly-crystal undergoing plastic deformation, the coupling model of FEM with Monte Carlo method is built through the translating of the state variables between forming simulation and annealing simulation, the mapping of the data from FEM to MC nodes, the establishing of inhomogeneous stored energy distribution in mesoscale and the constructing of a appropriate nucleation model. Then the macroscopic and mesoscopic inhomogeneous stored energy distributions in cold working materials are derived. A simulated program of isothermal annealing process of cold working metallic materials is compiled based on the coupling model.
     Taken the cold rolled industrial pure aluminum plate as an example, the recrystallization process of both the maximum and the minimum stored energy regions of the blank are simulated with the simulated program, and the rational simulated results are derived: 1) The variation in recrystallization kinetics and microstructures in vary parts of the blank resulted from the difference in stored energy is simulated effectively. The region with higher stored energy, which is close to the surface of the blank, possesses faster recrystallization kinetics and smaller average recrystallized grain size. 2) The statistical results of recrystallization kinetics accord with the intuitive results of microstructure evolution in the simulation; meanwhile, the simulated results are consistent with the experimental and theoretical ones, which certificate the rationality of the new structured coupling model.
     Secondly, the mechanism of various mesoscopic structures' effect on the distribution of dislocations and stored energy density is deeply studied, and several models and hypotheses are constructed based on the experimental and theoretical researches. 1) Based on Kocks composite model, the problem of stored energy distribution among grains is then preliminarily solved by the foundation of a new model about grain size dependent stored energy distribution. 2) Starting from the action mechanism of grain boundaries on the dislocations, the changing rule of stored energy along with the distance to grain boundary is established based on Mughrabi's shearing stress distribution model. 3) A hypothesis is established considering the effect of various kinds of local defects (e.g. cell structure, twins, microbands or shearbands et al) on the dislocation distribution in different materials. Based on the models and the hypothesis above, a new mesoscopic stored energy distribution model is constructed.
     Taken the cold rolled pure ferrite steel plate as an example, the application of the mesoscopic stored energy distribution model in annealing simulation is deeply studied. 1) The recrystallization process is simulated under different stored energy distribution models. It can be seen from the simulated results, on the one hand, the new model can simulate the recrystallization process, especially the nucleation process, more efficiently because of the consideration of local defects inside grains on the condition of large deformation; on the other hand, the sigmoid relation of recrystallization volume fraction curve and the linear relation of its logarithm analysis curve are derived as expected. 2) With the new model, the effect of rolling reduction and annealing temperature on the microstructure evolution and the recrystallization kinetics are discussed. And the results are reasonable: with the increase of rolling reduction, the defects inside grains multiply rapidly, which leads to the transition from boundary nucleation to core nucleation and then the refinement of recrystallized grains; the annealing temperature can speed up recrystallization kinetics but has little effect on Avrami index and the size of recrystallized grains.
     Thirdly, the limitations of the previous nucleation model, which can not reflect the recovery process, are further studied. A new relationship between initial subgrain mean misorientation and strain is constructed based on experimental results. The reducing of stored energy during recovery is well considered, and a new viewpoint is proposed that the reduction of stored energy during recovery is the main driving force of the subgrain growth; based on the new viewpoint, a converse model from Monte Carlo step to real time during recovery is constructed. A new viewpoint is proposed that the critical size of recrystallization nucleus increases with the inducing of stored energy during recovery in subgrain abnormal growth nucleation model. Then, a recovery model is built on the basis of subgrain abnormal growth nucleation model and the modification mentioned above.
     Based on the recovery model and the recrystallization MC Potts model, a recovery-recrystallization model is constructed, with which, the annealing process of cold rolled pure ferrite steel plate is simulated efficiently, and the expectable simulated results are attained. 1) Recovery process is simulated successfully with the new model, which reflects the appropriate relationship between strain and initial subgrain mean misorientation; the reducing of stored energy slows down the recrystallization kinetics, which assures the simulated results accord with the experimental ones better. 2) The rise of the temperature results in the shortening of the incubation time; similarly, under a certain temperature, the increase of the rolling reduction leads to the shortening of the incubation time. The simulated results can be verified by the existing theoretical and experimental results.
     To certificate the rationality and the application effect of the model constructed in present thesis, annealing processes of ELC-BH steel plate and industrial pure aluminum (1060) plate are investigated in detailed. The comparison of experimental and simulated results indicates that: 1) the initial microstructure (especially with a large deformation), the nucleation sites, recrystallized microstructure and the subsequent grain growth microstructure can be simulated with the model constructed in present thesis; 2) the sigmoid relation of recrystallization volume fraction curve is derived, which is consistent with the experimental results; 3) the recovery process is simulated successfully, and the simulated influential rules of rolling reduction and annealing temperature on incubation time and recrystallization kinetics are consistent with the experimental ones: the increase of rolling reduction shortens incubation time and speeds up recrystallization velocity. The results mentioned above certificate the rationality of the coupling model of FEM and MC method, the mesoscopic stored energy density distribution model and the recovery model constructed in present thesis.
引文
[1]孙多春,姜恩永,刘晖.材料科学的发展趋势—材料设计[J].金属功能材料,1994,1(2):1-6
    [2]熊家迥.材料设计[M].天津:天津大学出版社,2000:1-2
    [3]毛卫民,赵新兵.金属的再结晶和晶粒长大[M].北京:冶金工业出版社,1994:36,16,64,45,71
    [4]C.M.Sellars,J.A.Whiteman.Recrystallization and Grain Growth in Hot Rolling[J].Materials Science,1979,13(33):187-194
    [5]H.Yada,T.Senuma.Resistance to Hot Deformation of Steels[J].Journal of Japan Society of Technology Plasticity,1986,27:34-44
    [6]Y.Saito.Modelling of Microstructural Evolution in Thermomechanical Processing of Structural Steels[J],Materials Science and Engineering,1997,A233(1-2):134-145
    [7]雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M].北京:机械工业出版社,1989:33-34
    [8]K.W.Mahin,K.Hanson,J.W.J.Morris.Computer simulation of homogeneous nucleation and growth processes[J].Nuclear Metallurgy,Metallurgical Society of AIME,1976,20(1):39-50
    [9]H.J.Frost,C.V.Thompson,C.L.Howe,J.Whang.Two dimensional computer simulation of capillarity-driven grain growth:preliminary results[J].Scripta Metallurgica,1988,22(1):65-70
    [10]H.J.Frost,C.V.Thompson.The effect of nucleation conditions on the topology and geometry of two-dimensional grain structures[J].Acta Metallurgica,1987,35(2):529-540
    [11]C.V.Thompson,H.J.Frost.The relative rates of secondary and normal grain growth[J].Acta Metallurgica,1987,35(4):887-890
    [12]D.J.Jensen.Simulation of recrystallization microstructure and texture:effects of preferential growth[J].Metallurgical and Materials Transaction A:Physical Metallurgy and Materials Science,1997,28A(1):15-25
    [13]D.L.Jensen.Modeling of microstructure development during recrystallization[J].Scripta Metallurgica et Materialia,1992,27(11):1551-1556
    [14]H.E.Vatne,T.Furu,R.Φrsund,E.Nes.Modelling recrystallization after hot deformation of aluminum[J].Acta Materialia,1996,44(11):4463-4473
    [15]V.Y.Novikov,I.S.Gavrikov.Influence of heterogeneous nucleation on microstructure and kinetics of primary recrystallization[J].Acta Metallurgica et Materialia,1995,43(3):973-976
    [16]I.S.Gavrikov,V.Y.Novikov.The effect of the initial grain size on the kinetics and microstructure of primary recrystallization:computer simulation[J].Physics of Metals and Metallography, 1994, 77(4): 348-352
    [17] I. S. Gavrikov, V. Y. Novikov. Influence of initial grain size on kinetics of primary recrystallization[J]. Fizika Metallov i Metallovedenie, 1994, 77(4): 29-35
    [18] T. O. Saetre, O. Hunderi, E. Nes. Computer simulation of primary recrystallization microstructure: the effects of nucleation and growth kietics[J]. Acta Metallurgica, 1986, 34(6): 981-987
    [19] T. Furu, R. (?)rsund, E. Nes. Subgrain growth in heavily deformed aluminium - experimental investigation and modeling treatment[J]. Acta Metallurgica et Materialia, 1995, 43(6): 2209-2232
    [20] Price C W. Use of Kolmogorov-Johnson-Mehl-Avrami kinetics in recrystallization of metals and crystallization of metallic glasses[J]. Acta Metallurgica, 1990, 38(5): 727-738
    [21] C. W. Price. Simulations of grain impingement and recrystallization kinetics[J]. Acta Metallurgica, 1987, 35(6): 1377-1390
    [22] C. W. Price. Analysis of models for grain-impingement compensation and their effect on recrystallization kinetics[J]. Acta Metallurgica, 1991,39(8): 1807-1816
    [23] K. Kawasaki, T. Nagai, K. Nakashima. Vertex models for two-dimensional grain growth[J]. philosophical Magazine B: Physics of Condensed Matter, Electronic, Optical and Magnetic Properties, 1989,60(3): 339-421
    [24] F. J. Humphreys. Network model for recovery and recrystallization[J]. Scripta Metallurgica et Materialia, 1992,27(11): 1557-1562
    [25] H. W. Hesselbarth, I. R. Goebel. Simulation of recrystallization by cellular automata[J]. Acta Metallurgica at Materialia, 1991, 39(9): 2135-2143
    [26] E. Steck, H. W. Hesselbarth. Simulation of dislocation pattern formation by cellular automata[A]. The Third International Symposium on Plasticity and Its Current Applications. 1991: 175
    [27] V. Marx, G. Gottsten. Simulation of the texture evolution of aluminum alloys during primary static recrystallization using a cellular automaton approach[A]. Materials Research Society Symposium - Proceedings, 1998, 529:107-112
    [28] V. Marx, F. R. Reher, G. Gottsten. Simulation of primary recrystallization using a modified three-dimensional cellular automaton[J]. Acta Materialia, 1999, 47(4): 1219-1230
    [29] C. H. J. Devies. Effect of neighbourhood on the kinetics of a cellular automaton recrystallisation model[J]. Scripta Metallurgica et Materialia, 1995, 33(7): 1139
    [30] C. H. J. Devies. Cellular automaton simulation of microstructural evolution during deformation processing of metals[A]. Materials Research Society Symposium- Proceedings, 2000, 578:457-468
    [31] C. H. J. Devies. Growth of nuclei in a cellular automaton simulation of recrystallization[J]. Scripta Materialia, 1997, 36(1): 35-40
    [32] D. Raabe, L. Hantcherli. Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminum[J].Modelling and Simulation in Materials Science and Engineering,2000,8(4):445-462
    [33]D.Raabe,L.Hantcherli.2D cellular automaton simulation of the recrystallization texture of an if sheet steel under consideration of Zener pinning[J].Computational Materials Science,2005,34(4):299-313
    [34]D.Raabe.Introduction of a scalable three-dimensional cellular automaton with a probabilistic switching rule for the discrete mesoscale simulation of recrystallization phenomena[J].Philosophical Magazine A,1999,79(10):2339-2358
    [35]D.Raabe.Simulation of spherulite growth during polymer crystallization by use of a cellular automaton[A].Materials Science Forum,2004,467-470(1):603-608
    [36]D.Raabe.Discrete mesoscale simulation of recrystallization microstructure and texture using a stochastic cellular automation approach[A].Materials Science Forum,1998,273-275:169-174
    [37]D.Raabe,N.Chen.Recrystallization in deformed and heat treated PET polymer sheets[A].Materials Science Forum,2004,467-470(1):551-556
    [38]A.D.Rollett,D.Raabe.A hybrid model for mesoscopic simulation of recrystallization[J].Computational Materials Science,2001,21(1):69-78
    [39]L.Zhang,C.B.Zhang,X.H.Liu,G.D.Wang,Y.Wang.Modeling recrystallization of austenite for C-Mn steels during hot deformation by cellular automaton[J].Journal of Materials Science and Technology,2002,18(2):163-166
    [40]H.Xiao,B.R.Liu.Simulation of dynamic recrystallization using extended cellular automaton method[J].Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering,2005,41(2):148-152
    [41]D.Z.Li,Q.Du,Z.Y.Hu,Y.Y.Li.Simulation of the microstructure evolution in metal forming by using cellular automaton method[J].Jinshu Xuebao/Acta Metallurgica Sinica,1999,35(11):1201-1205
    [42]何燕,张立文,牛静,裴继斌.元胞自动机法对动态再结晶过程的模拟[J].材料热处理学报,2005,26(4):120-125
    [43]何燕,张立文,牛静.CA法及其在材料介观模拟中的应用[J].金属热处理,2005,30(5):72-77
    [44]D.J.Srolovitz,G S.Grest,M.P.Anderson.Computer simulation of recrystallization-Ⅰ.homogeneous nucleation and growth[J].Acta Metallurgica,1986,34(9):1833-1845
    [45]D.J.Srolovitz,G.S.Grest,M.P.Anderson,A.D.Rollett.Computer simulation of recrystallization-Ⅱ.Heterogeneous nucleation and growth[J].Acta Metallurgica,1988,36(8):2115-2128
    [46]A.D.Rollett,D.J.Srolovitz,M.P.Anderson,R.D.Doherty.Computer simulation of recrystallization.Ⅲ.Influence of a dispersion of fine particles[J].Acta Metallurgica et Materialia, 1992,40(12): 3475-3495
    [47] M. P. Anderson, G. S. Grest, D. J. Srolovitz. Microstructural dynamics of primary and secondary recrystallization[J]. Metallurgical Soc of AIME, 1986: 77-93
    [48] R. D. Doherty, A. D. Rollett, D. J. Srolovitz. Structural Evolution During recrystallization[A]. Proceedings of the Riso International Symposium on Metallurgy and Materials Science 7th, 1986: 53-67
    [49] A. D. Rollett, D. J. Srolovitz, R. D. Doherty, M. P. Anderson. Computer simulation of recrystallization in non-uniformly deformed metals[J]. Acta Metallurgica, 1989, 37(2): 627-639
    [50] B. Radhakrishnan, G. B. Sama, T. Zacharia. Modeling the kinetics and microstructural evolution during static recrystallization-Monte Carlo simulation of recrystallization[J]. Acta Metallurgica, 1998,46(12): 4415-4433
    [51] B. Radhakrishnan, G. B. Sama, T. Zacharia. Monte Carlo simulation of deformation substructure evolution during recrystallization[J]. Scripta Materialia, 1998, 39(12):1639-1645
    [52] B. Radhakrishnan, G. B. Sama, H. Weiland, P. Baggethun. Simulations of deformation and recrystallization of single crystals of aluminium containing hard particles[J]. Modelling and Simulation in Materials Science and Engineering, 2000, 8(5): 737-750
    [53] B. Radhakrishnan, G. B. Sama, T. Zacharia. Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical processing[A]. Proceedings of the TMS Fall Meeting, 1998: 267-278
    [54] E. A. Holm, M. A. Miodownik, A. D. Rollett. On abnormal subgrain growth and the origin of recrystallization nuclei[J]. Acta Materialia, 2003, 51(9): 2701-2716
    [55] M. A. Miodownik, E. A. Holm, A. W. Godfrey, D. A. Hughes, Lesar R. Multiscale modeling of recrystallization[A]. Materials Research Society Symposium - Proceeding, 1999, 538: 157-162
    [56] E. A. Holm, K. J. Healey, C. C. Battaile. Coupled computer simulations of recrystallization in deformed polycrystals[A]. Materials Science Forum, 2004 467-470(1): 641-646
    [57] T. Huang, F. J. Humphreys. Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110} {001}[J]. Acta Materialia, 2000, 48(8): 2017-2030
    [58] F. J. Humphreys. Unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures -I. The basic model[J]. Acta Materialia, 1997, 45(12): 4231-4240
    [59] M. Ferry, F. J. Humphreys. Discontinuous subgrain growth in deformed and annealed {100}{001}aluminium single crystals[J]. Acta Materialia, 1996,44(4): 1293-1308
    [60] D. A. Hughes, A. Godfrey. Dislocation structures formed during hot and cold working[A]. Proceedings of the TMS Fall Meeting, 1998,23-36
    [61] D. A. Hughes, N. Hansen. Microstructural evolution in nickel during rolling and torsion[J]. Materials Science and Technology, 1991, 7(6): 544-553
    [62] D. A. Hughes, D. C. Chrzan, Q. Liu, N. Hansen. Scaling of misorientation angle distributions[J] Physical Review Letters, 1998, 81(21): 4664-4667
    [63] T. Bandin, D. Solas, A. L. Etter, D. Ceccaldi, R. Penelle. Simulation of primary recrystallization from TEM observations and neutron diffraction measurements[J]. Scripta Materialia, 2004, 51: 427-430
    [64] M. Ferry, P. R. Munroe. Effect of subgrain size on the static recrystallization behaviour of an aluminum-based metal-matrix composite[J]. Scripta Metallurgica et Materialia, 1995, 33(6): 857-862
    [65] F. J. Humphreys. Nucleation in recrystallization[A]. Materials Science Forum, 2004, 467-470(1): 107-116
    [66] A. Godfrey, D. A. Hughes. Scaling of the spacing of deformation induced dislocation boundaries[J], Acta Materialia, 2000, 48(8): 1897-1905
    [67] P. Gerber, T. Baudin, S. Jakani, Mathon M H, Bacroix B Estimation of stored energy distribution from EBSD measurements[A]. Materials Science Forum, Proceedings of the Second Joint International Conferences on Recrystallization and Grain Growth. 2004, 467-470(1): 51-56
    [68] P. Gerber, J. Tarasiuk, D. Solas, S. Jakani, M. H. Mathon, T. Baudin. Monte Carlo modelling of recrystallization mechanisms in wire-drawn copper from EBSD data[A]. Materials Science Forum, 2004,467-470: 635-640
    [69] F. Caleyo, T. Baudin, R. Penelle. Monte Carlo simulation of recrystallization in Fe-50%Ni starting from EBSD and bulk texture measurements[J]. Scripta Materialia, 2002, 46(12): 829-835
    [70] S. H. Choi, Y S Jin. Evaluation of stored energy in cold-rolled steels from EBSD data[J]. Materials Science and Engineering, 2004, 371(1-2): 149-159
    [71] S. H. Choi, H. C. Jae. Primary recrystallization modelling for interstitial free steels[J]. Materials Science and Engineering, 2005,405(1-2): 86-101
    [72] J. Tarasiuk, P. Gerber, B. Bacroix, K. Pickos. Modeling of recrystallization using Monte Carlo method based on EBSD data[A]. Materials Science Forum, 2002, 408-412( I ): 395-400
    [73] R. Prannavenkatesan, B. Q. Li, D. P. Field, H. Weiland. A finite element model for crystal plasticity during large deformation and comparison with experimental measurements, TMS Annual Meeting[J]. Hot Deformation of Aluminum Alloys III, 2003:279-288
    [74] Y. J. Lan, N. M. Xiao, , D. Z. Li, Y. Y. Li. Mesoscale simulation of deformed austenite decomposition into ferrite by coupling a cellular automaton method with a crystal plasticity finite element model[J]. Acta Materialia, 2005, 53(4):991-1003
    [75] T. Koseki, T. Araki. Modeling of steel weld microstructure using Monte Carlo and finite difference hybrid method[A]. Materials Science Forum, 2006, 539-543(4): 4002-4007
    [76]M.Kazeminezhad,T.A.Karimi,T.A.Kiet.Utilization of the finite element and Monte Carlo model for simulation the recrystallization of inhomogeneous deformation of copper[J].Computational Materials Science,2007,38(4):765-773
    [77]D.Rabbe.Yield surface simulation for partially recrystallized aluminum polycrystals on the basis of spatially discrete data[J].Computational Materials Science,2000,19:13-26
    [78]X.Y.Song,M.Rettenmayr.Modelling study on recrystallization,recovery and their temperature dependence in inhomogeneously deformed materials[J].Materials Science and Engineering A,2002,332(1-2):153-160
    [79]X.Y.Song,M.Rettenmayr,Muller C,Exner H E.Modeling of recrystallization after inhomogeneous deformation[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32(9):2199-2206
    [80]张继祥.基于Monte Carlo方法的材料退火过程模拟模型及计算机仿真关键技术研究[D].山东大学博士毕业论文.2006:85-100
    [81]S.Ling,M.P.Anderson.Monte Carlo simulation of grain growth and recrystallization in polycrystalline materials[J].JOM,1992,44(9):30-36
    [82]B.Radhakrishnan,T.Zacharia.On the prediction of HAZ grain size using Monte Carlo simulation[A].Modeling and Control of Joining Processes,American Welding Society international conference.Orlando,FL,1993
    [83]B.Radhakrishnan,R.G.Thompson.Model for the formation and solidification of grain boundary liquid in the heat-affected zone(HAZ)of welds[J].Metallurgical Transactions A (Physical Metallurgy and Materials Science),1992,23A(6):1783-1799
    [84]J.H.Gao,R.G.Thompson.Real time temperature models for Monte Carlo simulations of normal grain growth[J].Acta Mater,1996,44(11):4565-4570
    [85]V.Marx,F.R.Reher,G.Gottstein.Simulation of primary recrystallization using a modified three-dimensional cellular automation[J].Acta Mater,1999,47(4):1219-1230
    [86]P.Mukhopadhyay,M.Loeck,G.Gottstein.A cellular operator model for the simulation of static recrystallization[J].Acta Materialia,2007,55(2):551-564
    [87]H.P.Stuwe,A.F.Padilha,F.Jr.Siciliano.Competition between recovery and recrystallization[J].Matrerials Science and Engineering,2002,A333(1-2):361-367
    [88]F.J.Humphreys.A unified theory of recovery,recrystallization and grain growth,based on the stability and growth of cellular microstructures-Ⅰ.The basic model[J].Acta Mater,1997,45(10):4231-4240
    [89]F.J.Humphreys.A unified theory of recovery,recrystallization and grain growth,based on the stability and growth of cellular mierostructures-Ⅱ.The effect of second-phase particles[J].Acta Mater,1997,45(12):5031-5039
    [90]H.S.Zurob,Y.Brechet,J.Dunlop.Quantitative criterion for recrystallization nucleation in single-phase qlloys:Prediction of critical strains and incubation times[J].Acta Materialia,2006,54(15):3983-3990
    [91]Martinz-de-Guerenu,F.Arizti,I.Gutierrez.Recovery during annealing in a cold rolled low carbon steel.Part Ⅰ—Modelling the kinetics[J].Acta Mater,2004,52(12):3657-3664
    [92]Martinz-de-Guerenu,F.Arizti,I.Gutierrez.Recovery during annealing in a cold rolled low carbon steel.Part Ⅱ-Modelling the kinetics[J].Acta Mater,2004,52(12):3665-3670
    [93]胡忠,塑性有限元模拟技术的最新进展[J].塑性工程学报,1994,9:3-12
    [94]杨觉先,金属塑性变形物理基础[M].北京:冶金工业出版社,1988:182-183
    [95]俞汉清,金属塑性成形原理[M].北京:机械工业出版社,2003:18,139
    [96]R.W.Cahn.New theory of recrystallization nuclei[J].Physical Society-Proceedings,1950,63(364A):323-336
    [97]W.G.Burgers.Prozesse der Keimbildung bei der Rekristallisation(Process of nucleation in recrystallization)[J].Zeitschrift fuer Metallkunde,1961,52(1):19-26
    [98]S.P.Bellier,R.D.Doherty.Structure of deformed aluminum and its recrystallization em dash investigations with transmission kossel diffraction[J].Acta Metallurgica,1977,25(5):521-538
    [99]M.Muraki,T.Toge,K.Sakata,T.Obara,E.Furubayashi.Formation mechanism of {111}recrystallization texture in ferritic steels[J],Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan,1999,85(10):751-757
    [100]T.Urabe,J.J.Jonas.Modeling texture change during recrystallization of an IF steel[J],ISIJ International,1994,34(5):435-442
    [101]S.S.葛列里克著,仝健民译.金属和合金的再结晶[M].北京:机械工业出版社,1985:44,72,56,40
    [102]W.A.Johnson,R.F.Mehl.Reaction kinetics in processes of nucleation and growth[A],American Institute of Mining and Metallurgical Engineers-Transactions,1939,135:416-442
    [103]M.Avrami.Kinetics of phase change.Ⅰ:general theory[J].Journal of Chemical Physics,1939,7(12):1103-1112
    [104]W.A.Anderson,R.F.Mehl.Recrystallization of aluminum in terms of rate of nucleation and rate of growth[J].Metallugia,1945,33(193):45-46
    [105]B.F.Decker,D.Harker.Activation energy for recrystallization in rolled copper[A].American Institute of Mining and Metallurgical Engineers-Journal of Metals,1950,188(6):887-890
    [106]J.W.Cahn.Kinetics of grain boundary nucleated reactions[J].Acta Metallurgica,1956,4(5):449-459
    [107]R.A.Vandermeer,P.Grodon.Edge-nucleated,growth controlled recrystallization in aluminum[J].Metallurgical Society of AIME,1959,215(4):577-588
    [108]N.H.Lin,C.P.Chang,P.W.Kao.Effect of annealing temperature on the recrystallization kinetics of commercially pure aluminum[J].Metallurgical and Materials Transactions A,7995,26A(8):2185-2187
    [109]S.H.Choi,Y.C.Yoo.Static recrystallization kinetics of 304 stainless steels[J].Journal of Materials Science,2001,36(17):4273-4278
    [110]D.Weygand,Y.Brechet,J.Lepinoux.Mechanisms and kinetics of recrystallization:A two dimensional vertex dynamics simulaton[J].Iterface Science,2001,9(3-4):311-317
    [111]S.Sangal,S.S.Sahay,A.K.Jena.Nucleation and recrystallization kinetics in boron doped Ni76A124 deformed to small strains[J].Materials Science & Engineering,1997,239-240:293-296
    [112]R.A.Vandermeer,D.Jenson.Microstructure path and temperature dependence of recrystallization in commercial aluminum[J].Acta Materialia,2001,49(11):2083-2064
    [113]W.P.Ye,R L Gall,G Saindrenan.A study of recrystallization of an IF steel by kinetics models[J].Materials Scinece & Engineering A,2002,332(1-2):41-46
    [114]C.Garcia-Mateo,B.Lopez,J.M.Rodriguez-lbabe.static recrystallization kinetics in warm worked vanadium microalloyed steels[J].Materials Scinece & Engineering A,2001,303(1-2):216-225
    [115]H.W.Luo,J.Sietsma,S.Xan Der Zwaag.Effect of inhomogeneous deformation on the recrystallization kinetics of deformed metals[J].ISIJ international,2004,44(11):1931-1936
    [116]H.W.Luo,J.Sietsma,S.Xan Der Zwaag.A metallurgical interpretation of the static recrystallization kinetics of an intercritically deformed C-Mn steel[J].Metallurgical and Materials Transections A,2004,35A(6):1889-1898
    [117]刘才.弹塑性有限元法对轧制过程的模拟[J].东北重型机械学院学报,1987,11(3):66-73
    [118]刘相华.刚塑性有限元及其在轧制种的应用[M].北京:冶金工业出版社,1994,16-24
    [119]T.Iguchi,D.R.J.Owen,G.O.Liu.Anslysis of rolling processes by dynamic explicit elasto-[lastic finite element method[A].Proceeding of the 7th International Conference on Steel Roling,Japan,1998,266-271
    [120]M.Fukumura,M.Fujikate,F.Fujita,Y.Fujita.Elasto-plastie finite element simulation of the flat rolling process by dynamic explicit method[A].Proceeding of the 7th International Conference on Steel Roling,Japan,1998,260-265
    [121]李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社,1999
    [122]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997,第二版
    [123]彭颖红.金属塑性成形仿真技术[M],上海:上海交通大学出版社,1999
    [124]肖景榕,李尚健.塑性成型模拟理论[M].武汉:华中理工大学出版社,1994
    [125]张翊.ANSYS平台下平板轧制过程的FEM模拟研究[M].东北大学硕士论文.2000
    [126]全建辉,基于ANSYS/LS-DYNA的花键冷滚轧成形机理研究[D].河南科技大学硕士论文.2006
    [127]H.Kahn.Random sampling(Monte Carlo)techniques in neutron attenuation problems[J]. Nucleonics,1950,6(5-6):311-315
    [128]K.M.Curtin.Monte Carlo approach to evaluate multimoded system reliability[J].Operations Research,1959,7(6):721-727
    [129]H.Kumamoto,K.Tanaka,K.Inoue.Efficient evalution of system reliability bu Monte Carlo method[J].IEEE Tranactions on Reliability,1977,R-26(5):311-315
    [130]C.N.Chen,C.I.Chou,C.R.Hwang,J.Kang,T.K.Lee,S.P.Li.Monte Carlo dynamics in global optimization[J].Physical Review E,1999,60(2B):2288-2393
    [131]D.J.Srolovitz,M.P.Anderson,G.S.Grest,P.S.Sahni.Grain growth in two dimensions[J].Scripta Metallurgica,1983,17(2):241-246
    [132]S.A.Safran,O.S.Sahni,G.S.Grest.Kinetics of ordering in two dimensions[J].Physical Review B,1983,28(5):2693-2716
    [133]M.P.Anderson,D.J.Srolovitz,G.S.Grest,P.S.Sajni.Computer simulation of grain growth-Ⅰ.Kinetics[J].Acta Metallurgica,1984,32(5):783-791
    [134]G.S.Grest,S.A.Safran,P.S.Sahni.Temperature dependence of modain growth[J].Journal of Applied Physics,1983,55(6):2432-2434
    [135]D.J.Srolovitz,M.P.Anderson,P.S.Sahni,G.S.Grest.Computer simulation of grain growth-Ⅱ.Grain size distribution,Topology,and local dynamics[J].Acta Metallurgica,1984,32(5):793-802
    [136]D.J.Srolovitz,M.P.Anderson,G.S.Grest,P.S.Sahni.Computer simulation of grain growth-Ⅲ.Influence of a particle dispersion[J].Acta Metallurgica,1984,32(9):1429-1438
    [137]G.S.Grest,D.J.Srolovitz,M.P.Anderson.Computer simulation of grain growth-Ⅳ.Anisotropic grain boundary energies[J].Acta Metallurgica,1985,33(3):509-520
    [138]D.J.Srolovitz,G.S.Grest,M.P.Anderson.Computer simulation of grain growth-Ⅴ.Abnormal grain growth[J].Acta Metallurgica,1985,33(12):2233-2247
    [139]E.A.Holm,D.J.Srolovitz,J.W.Cahn.Mocrostructural evolution in two dimensional,two-phase polycrystals[J].Acta Metallurgica Materialia,1993,41(4):1119-1136
    [140]A.D.Rollett,M.J.Luton,D.J.Srolovitz.Microstructural simulation of dynamic recrystallization[J].Acta Metallurgica Materialia,1992,40(1):43-55
    [141]张孝译.蒙特卡罗方法在统计物理中的应用[M].郑州:河南科学技术出版社,1991:5-6
    [142]N.Metropolis,A.W.Rosenbluth,M.N.Rosenbluth,A.H.Teller.Equation of the state calculations by Fast Computing Machines[J].Journal of Chmical Physics,1953,21(6):1087-1099
    [143]D.Wolf.Read-Shockley model for high angle grain boundaries[J].Scripta Metallurgica,1989,23(10):1713-1718
    [144]关小军,张继祥,孙胜.变形金属再结晶过程计算机模拟[J].特殊钢,2004,25(3):34-37
    [145]王廷溥,齐克敏.金属塑性加工学—轧制理论与工艺[M].北京:冶金工业出版社,2001,第二版,9-12
    [146]#12
    [147]关小军.烘烤硬化钢板[M].济南:山东科学技术出版社,2000:99-100,44
    [148]D.Y.Ye,S.Matsuoka,N.Suzuki,Y.Maeda.Further investigation of Neuber's rule and the equivalent strain energy density(ESED)method[J].International Journal of Fatigue,2004,26(5):447-455
    [149]N.Aravas,K.S.Kim,F.A.Leckie.On the calculation of the stored energy of cold work[J].Journal of Engineering Materials and Technology,1990,112(4):465-470
    [150]P.Ralph.Design plastic stress concentration factors using Ramberg-Osgood stress-strain parameters[J].AIAA Journal,1978,16(3):273-275
    [151]刘恒三,毛卫民,陈冷,冯惠平.退火方式对深冲压钢板晶粒尺寸不均匀性的影响[J].北京科技大学学报,2004,26(4):377-381
    [152]G.Mohame,B.Bacroix.Role of stored energy in static recrystallization of cold rolled copper single and multicrystals[J].Acta Mater,2000,48(13):3295-3302
    [153]N.Hansen,X.Huang.Microstructure and flow stress of polycrystals and single crystals[J].Acta Mater 1998,46(5):1827-1836
    [154]石德珂.材料科学基础[M].北京:机械工业出版社,1999:229,265
    [155]美国金属学会.金属手册[M].北京:机械工业出版社,1994:907,960
    [156]O.M.Ivasishin,S.V.Shevchenko,N.L.Vasiliev,S.L.Semiatin.A 3-D Monte-Carlo(Ports)model for recrystallization and grain growth in polycrystalline materials[J].Materials Science and Engineering A,2006,433(1-2):216-232
    [157]E.A.Bonifaz,N.L.Richards.The plastic deformation of non-homogenneous polycrystals[J].International Journal of Plasticity,2008,24(2):289-301
    [158]E.O.Hall.Deformation and ageing of mild steel[J].Physical Society,1951,64(381B):747-753
    [159]N.J.Petch.Cleavage strength of polycrystals[J].Iron and Steel,1953,26(14):601-602
    [160]T.Narutani,J.Takamura.Grain-size strengthening in terms of dislocation density measured by resistivity[J].Acta Metall,1991,39(8):2037-2049
    [161]A.W.Thompson,M.I.Baskes,W.F.Flanagan.The dependence of polycrystal work hardening on grain size[J].Acta Metall,1973,227(1):1017-1028
    [162]J.C.M.Li.Petch relation and grain boundary sources[J].Metallurgical Society of American Institute of Mining,Metallurgical and Petroleum Engineers-Transactions,1963,227(1):239-247
    [163]S.Miura,Y.Nishimura,N.Ono.Sub-grain size and hall-petch relation in pure copper single crystals[J].Key Engineering Materials,2007,345-346:29-32
    [164]M.Furukawa,Z.Horita,M.Nemoto,R.Z.Valiev,T.G.Langdon.Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size[J].Acta Materialia,1996,44(11):4619-4629
    [165]T.R.Smith,R.W.Armstrong,P.M.Hazzledine,R.A.Masumura,C.S.Pande.Pile-up based Hall-Perch considerations at urltra-fine grain size[A].Materials Research Society Symposium-Proceedings,1995,362:31-37
    [166]杨钢,高永亮,王立民,刘正东.塑性变形方法对奥氏体不锈钢力学性能的影响[J].钢铁,2007,42(2):47-63
    [167]J.P.Hirth.Influence of grain boundaries on mechanical properties[J].Metallurgical Transactions,1972,3(12):3047-3066
    [168]M.F.Ashby.Deformation of plastically non-homogeneous materials[J].Phil Mag,1970,21(170):399-424
    [169]D.S.Balint,V.S.Deshpande,A.Needleman,E.Van der Giessen.A discrete dislocation plasticity analysis of grain-size strengthening[J].Materials Science and Engineering A,2005,400-401(1-2):186-190
    [170]U.F.Kocks,R.E.Cook,R.A.Mulford.Strain aging and strain hardening in Ni-C alloys[J].Acta Metallurgica,1985,33(4):623-638
    [171]K.K.Singh,S.Sangal,G.S.Murty.Hall-Petch behavior of 316L austenitic stainless steel at room temperature[J].Materials Science and Technology,2002,18(2):165-172
    [172]关小军,成分和工艺对超低碳高强度烘烤硬化钢板组织和性能影响的研究[D].北京科技大学博士学位论文,1993:44
    [173]H.Mughrabi.On the role of strain gradients and long-range internal stress in the composite model of crystal plasticity[J].Materials Science and Engineering,2001,A 317(1-2):171-180
    [174]H.Mughrabi.Self-consistent experimental determination of the dislocation line tension and long-range internal stress in deformed copper crystals by analysis of dislocation curvatures[J].Materials Science and Engineering,2001,A309-310:237-245
    [175]H.Mughrabi.The effect of geometrically necessary dislocations on the flow stress of deformed crystals containing a heterogeneous dislocation distribution[J].Materials Science and Engineering,2001,A319-321:139-143
    [176]H.Mughrabi.On the current understanding of strain gradient plasticity[J].Materials Science and Engineering,2004,A387-389:209-213
    [177]H.Mughrabi.Dual role of deformation-induced geometrically necessary dislocations with respect to lattice plane misorientations and/or long-range internal stressis[J].Acta Materialia,2006,54(13):3417-3427
    [178]宋余九.金属的晶界与强度[M].西安:西安交通大学出版社,1987:46
    [179]张涛.1050工业纯铝微观组织对性能的影响研究[D].哈尔滨理工大学硕士学位论文,2002:38-40
    [180]R.L.Goetz,V.Seetharaman.Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model[J].Metall.Mater.Trans.,1998,29A(8):2307-2321
    [181]N.Rajmohan,J.A.Szpunar.New model for recrystallization of heavily cold-rolled aluminum using orientation-dependent stored energy[J].Acta Mater.,2000,48(13):3327-3340
    [182]范力茹,张瑞军,刘建华,杨庆祥,宋诚忠,张炜星,王宽.强变形低碳钢再结晶的研究[J].物理测试,1998,3:8-11
    [183]A.H.Cottrell,V.Aytekin.The flow of zinc under constant stress[J].Inst.Met.,1950,77:389-422

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700