用户名: 密码: 验证码:
取向硅钢中铜硫化物析出形式及其固溶的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
取向硅钢沿轧制方向具有极佳的磁性能,是制造变压器铁芯必不可少的材料。它是钢铁工业中唯一运用二次再结晶现象生产的产品。在日益追求环保、节能以及降低成本的现代钢铁业中,传统的取向硅钢铸坯高温加热技术已不符合这些要求。铜硫化物(CuxS)作为一种可以实现铸坯低温加热的晶粒抑制剂,其具体的析出形式对取向硅钢的生产起着重要作用。目前,取向硅钢中作为晶粒抑制剂的铜硫化物究竟以哪种形式析出,还存在争议。因此,本文采用Materials Studio软件中基于量子力学密度泛函理论的CASTEP和DMOL3两个计算模块,分别对取向硅钢中可能存在的铜硫化物(Cu1.8S、Cu2S和CuS)的态密度、能带结构、形成热及结合能进行第一性原理研究,探讨在含铜取向硅钢中最有可能析出的铜硫化物的形式。并且对含铜的取向硅钢中析出的第二相颗粒进行透射电镜实验研究。同时,在第一性原理理论研究和实验研究基础上,对铜硫化物在铁基体中的固溶度积公式进行相关热力学推导。
     通过计算得到Cu1.8S、Cu2S和CuS的平均结合能及形成热。Cu1.8S、Cu2S和CuS的平均结合能分别为-10.12416 eV、-10.16943 eV和-6.91536eV,三种铜硫化物的相结构稳定性按Cu2S、Cu1.8S、CuS的顺序依次降低;Cu1.8S、Cu2S和CuS的形成热值均为负,分别为-97.7594 eV、-1.2055 eV和-0.9699 eV,表明它们都是热力学稳定相,并且Cu1.8S具有最负的形成热即其具有最强的形成能力。
     态密度计算结果表明,Cu2S、Cu1.8S和CuS在费米能级处的态密度均大于0,分别约为1.65electrons/eV、2.58electrons/eV、2.52electrons/eV。可见,Cu2S具有最稳定的结构是由于其在费米能级处的态密度N(EF)最小的缘故。
     通过对Cu含量(约0.48%)相对较高的取向硅钢中第二相进行透射电镜实验研究表明,沿晶界析出的细小颗粒状第二相为具有立方晶体结构的Cu1.8S。
     用热力学方法推导得到CuS和Cu2S在铁素体和奥氏体中的平衡固溶度积公式,并且对CuS和Cu2S在铁素体和奥氏体中的平衡固溶度积绘图比较得出,Cu2S在铁素体和奥氏体中的平衡固溶度均要小于CuS的,在富含Cu元素的情况下,Cu2S在取向硅钢中的析出数量要多于CuS。但是,由于相互竞争的结果,很难发生CuS的析出。
     从三种铜硫化物的第一性原理研究结果及固溶度积的比较可以推断出,在富含Cu元素的情况下,取向硅钢中更容易优先析出结构相对较稳定的Cu1.8S或Cu2S作为晶粒抑制剂。但是,取向硅钢中铜硫化物是在热轧或高温常化过程中(温度均约为1100℃左右)析出的。因此,在取向硅钢中真正起晶粒抑制作用的铜硫化物为高温立方结构的Cu1.8S。
The grain oriented silicon steel which has excellent magnetic properties along the rolling direction, is essential material for manufacturing the core of transformer. It is the only products manufacted by using the phenomenon of secondary recrystallization in iron and steel industry. The traditional high temperature slab reheating technology for grain oriented silicon steel no longer meets these requirements such as environmental protection, energy conservation and reducing costs in the modern steel industry. Copper sulfide (CuxS) is a kind of grain inhibitor which can decrease the reheating temperature of slab. There is still controversial currently about the precipitation form of copper sulfide grain inhibitors in grain oriented silicon steel. Therefore, it is very important to investigate the specific form of CuxS precipitate playing an important role in grain oriented silicon steel. In this paper, the density of states, band structure, formation energy and binding energy of copper sulfides such as.Cu1.8S, CU2S and CuS which may exist in grain oriented silicon steel with copper are calculated and analysed using the first principles calculation module of CASTEP and DMOL3 of Materials Studio based on the density functional theory of quantum mechanics, and the most possible form of the precipitation of copper sulfides is investigated. Furthermore, the precipitated second phase particles in tested grain oriented silicon steel with copper are investigated by TEM. Meanwhile, based on the studies of first principles and experiment, the formulas of solubility of copper sulfides in the iron matrix are derivated by thermodynamic method.
     The calculation results show that the average binding energy of Cu1.8S,Cu2S and CuS are-10.12416 eV,-10.16943 eV and-6.91536eV, respectively.It can be seen that the phase stability of three kinds of copper sulfide is decrease by the order of Cu2S,Cu1.8S,CuS. The formation energy of Cu1.8S,Cu2S and CuS are negative, and their value are-97.7594 eV,-1.2055 eV,-0.9699 eV, respectively.The results show that they are thermodynamically stable phase,and the formation energy of Cu1.8S is the most negative value which indicates that Cu1.8S has the highest forming ability.
     The calculation results of density of states show that the density of states of Cu1.8S,Cu2S and CuS at fermi level are all higer than zero,1.65 electrons/eV for Cu2S,2.58 electrons/eV for Cu1.8S and 2.52 electrons/eV for CuS, respectively. The Cu2S with the most stable structure is due to that it has the minimum value of density of states at fermi level.
     The results of TEM eperiments for the second phase in the tested grain oriented silicon steel which contains relatively high content about 0.48%Cu show that the fine particle precipitations along the grain boundaries is Cu1.8S with cubic crystal structure.
     The balance solubilities of CuS and Cu2S in iron matrix have be deduced by using thermodynamic method. Futhermore, it can make conclusions by comparison of the figures of the balance solubility in the iron matrix that the balance solubilities of Cu2S in ferrite and austenite are less than that of CuS, and the precipitation amount of Cu2S in grain oriented silicon steel is more than that of CuS in the case of Cu-rich. However, it is difficult for precipitating CuS in the grain oriented silicon steel because of the results of competition.
     It can be inferred by the results of the first principle study and comparison of solubility product that it is easier that the relatively stable structure of Cu1.8S or Cu2S as grain inhibitor precipitate in grain oriented silicon steel. However, the copper sulfides in grain oriented silicon steel often precipitate in the hot rolling process or during the normalizing annealing(about 1100℃). Therefore, the really effective grain inhibitor of copper sulfides precipitated at high temperature is the Cu1.8S with cubic crystal structure.
引文
[1]卢凤喜,谌剑,姚国昌.我国硅钢进出口回顾与展望.电器工业,2009,(2):46-47
    [2]卢凤喜,谌剑,姚国昌等.世界及国内取向硅钢发展的现状.电器工业,2008,(5):22-23
    [3]何忠治.电工钢.北京:冶金工业出版社,1997
    [4]张颖,傅耘力,汪汝武等Nb(C,N)作为取向硅钢中抑制剂的可行性.中国冶金,2008,18(7):14-18
    [5]李俊杰,王锦程,杨根仓.含第二相颗粒的晶粒长大过程相场法.稀有金属材料与工程,2008,37(10):1746-1750
    [6]朱业超,毛炯辉,王若平等.析出相质点对取向硅钢二次再结晶的影响.金属热处理,2009,34(6):29-32
    [7]Gladman T.On the Theory of the Effect of Precipitate Particles on Grain Growth in Metals.Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1996,294(1438):298-309
    [8]杨光,王均安,邱振伟等.含硅3%硅钢片退火过程中晶界特征分布研究.上海金属,2008,30(5):20-23
    [9]Harase J,Shimizu R,Dingley D J.Texture evolution in the presence of precipitates in Fe-3%Si alloy.Acta Metallurgica et Materialia,1991,39(5):763-770
    [10]Lin P,Palumbo QHarase J,etal.Coincidence Site Lattice(CSL) grain boundaries and Goss texture development in Fe-3%Si alloy.Acta Materialia,1996,44(12):4677-4683
    [11]赵宇,何忠治.取向硅钢二次再结晶机理研究的进展.钢铁研究学报,1991,3(4):79-89
    [12]Rouag N,Vigna G,Penelle.Evolution of local texture and grain boundary characteristics during secondary recrystallisation of Fe-3% Si sheets.Acta Metallurgica et Materialia,1990,38(6):1101-1107
    [13]Shimizu R,Harase J,Dingley D J.Prediction of secondary recrystallization texture in Fe-3%Si by three-dimensional texture analysis.Acta Metallurgica et Materialia,1990,38(6):973-978
    [14]Tomoji Kumano,Tsutomu Haratani,Yoshiyuki Ushigami.Grain boundary characteristics in Grain Oriented silicon steel. ISIJ International,2004,44(11):1888-1893
    [15]Tomoji Kumano,Yoshiyuki Ushigami.Grain boundary characteristics of Isolated Grains in Conventional Grain Oriented Silicon Steel.ISIJ International,2007,47(6):890-897
    [16]Afer H,Rouag N,Penelle R.Onset of abnormal growth related to the crystallographic neighbourhood from the texture function.Application to Goss grain growth in magnetic sheets of Fe-3%Si.Journal of Crystal Growth,2004,268(1-2):320-327
    [17]Afer H,Rouag N,Penelle R.Influence of textured cluster on the Goss grain growth in silicon steels consideration of energy and mobility.World Academy of Science,Engineering and Technology,2007,34:62-65
    [18]Rajmohan N,Szpunar J A,Hayakawa Y.Importance of fractions of highly mobile boundaries in abnormal growth of Goss grains.Materials Science and Engineering A,1999,259(1):8-16
    [19]Hayakawa Y,Szpunar J A,Palumbo G,etal.The role of grain boundary chatacter distribution in Goss texture development in electrical steels.Journal of Magnetism and Magnetic Materials,1996,160:143-144
    [20]Rajmohan N,Szpunar J A.An analytical method for characterizing grain boundaries around growing goss grains during secondary recrystallization. Scripta Materialia,2001,44(10):2387-2392
    [21]Maazi N,Rouag N,Etter A L,etal.Influence of neighbourhood on abnormal Goss grain growth in Fe-3%Si steels:Formation of island grains in the large growing grain.Scripta Materialia,2006,55(7):641-643
    [22]夏兆所,康永林,王全礼.冷轧取向电工钢生产技术的进展.特殊钢,2007,28(6):35-38
    [23]仇圣桃,项利,岳尔斌等.薄板坯连铸连轧流程生产取向硅钢技术分析.钢铁,2008,43(9):1-7
    [24]于永梅,李长生,王国栋.薄板坯连铸连轧生产取向硅钢技术的研究.钢铁,2007,42(11):45-64
    [25]蒙肇斌,赵宇,何忠治等.铸坯加热温度和Mo对高磁感取向硅钢第二相析出形态的影响.钢铁研究学报,1996,8(6):19-23
    [26]李文达.冷轧取向硅钢片中的抑制相系.特殊钢,1998,19(6):1-7
    [27]Gheorghies C,Doniga A.Evolution of Texture in Grain Oriented Silicon Steels.Journal of Iron and Steel Research,International,2009,16(4):78-83
    [28]Takeshi Kubota,Masahiro Fujikura,Yoshiyuki Ushigami.Recent progress and future trend on grain-oriented silicon steel. Journal of Magnetism and Magnetic Materials,2000,215-216(2):69-73
    [29]王爱华,刘畅.国外生产高磁感取向硅钢的最新发展.钢铁研究,2008,36(3):55-57
    [30]张颖,傅耘力,汪汝武等.高磁感取向硅钢中的抑制剂.中国冶金,2008,18(11):4-8
    [31]卢凤喜.日本取向硅钢板坯低温加热的研制现状.钢铁研究,1996,(6):54-59
    [32]李军,孙颖,赵宇等.取向硅钢低温铸坯加热技术的研发进展.钢铁,2007,42(10):72-75
    [33]魏天斌.国外取向电工钢工艺发展新趋势.钢铁研究,2007,35(1):55-58
    [34]赵宇,李军,董浩等.国外电工钢生产技术发展动向.钢铁,2009,44(10):1-5
    [35]赵宇,何忠治,朱静等.Cu在高磁感取向硅钢中的作用.钢铁研究学报,1994,6(1):37-42
    [36]蒙肇斌,赵宇,何忠治等.铸坯加热温度和Mo对高磁感取向硅钢第二相析出形态的影响.钢铁研究学报,1996,8(6):19-23
    [37]蒙肇斌,赵宇,何忠治等.高磁感取向硅钢中抑制剂质点硫化物与A1N析出形态的研究.金属功能材料,1997,8(1):34-37
    [38]Liu Z Z.Kuwabara M,Iwata Y.Isothermal Precipitation Behavior of Copper Sulfide in Ultra Low Carbon Steel.ISIJ International,2007,47(11):1672-1679
    [39]张晨,项利,岳尔斌等.薄板坯连铸连轧试制取向硅钢抑制剂的析出特点.钢铁研究学报,2009,21(6):28-35
    [40]孙颖,李军,赵宇等.采用低温板坯加热工艺生产取向硅钢中抑制剂的研究.钢铁,2009,44(5):64-67
    [41]王若平,黎世德,方泽民等.低温热轧高磁感取向硅钢板常化组织及析出相研究.金属热处理,2009,34(6):9-14
    [42]Keith Jenkins,Magnus Lindenmo.Precipitates in electrical steels.Journal of Magnetism and Magnetic Materials,2008,320(20):2423-2429
    [43]夏兆所,康永林,倪献娟等.板坯加热温度对低温技术取向电工钢抑制剂与磁性的影响.北京科技大学学报,2009,31(4):439-444
    [44]朱宇昕,钙钛矿结构的能带计算:[硕士学位论文],陕西:西安电子科技大学,2007
    [45]毛宇亮,碳纳米管的第一性原理研究:[硕士学位论文],湖南:湘潭大学,2004
    [46]谭丽娜,傅敏,崔红玲.纤维锌矿结构GaN热力学性质的第一性原理计算.原子与分子物理学报,2007,24(6):1303-1308
    [47]关丽,刘保亭,李旭等.萤石结构Ti02的电子结构和光学性质.物理学报,2008,57(1):482-487
    [48]周惦武,彭平,胡艳军等Mg-Ce化合物相结构稳定性的赝势平面波方法研究.稀有金属材料与工程,2006,35(6):871-875
    [49]陈中钧,肖海燕,祖小寿.MgS晶体结构性质的密度泛函研究.物理学报,2005,54(11):5301-5307
    [50]李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展.化学进展,2005,17(2):192-202
    [51]Born M,Oppenheimer R.Zur Quantentheorie der Molekeln.Ann.Phys.1927,84:457-484
    [52]肖慎修,王崇愚,陈天朗著.密度泛函理论的离散变分方法在化学和材料物理学中的应用.北京:科技出版社,1998
    [53]Hohenberg P,Kohn W.Inhomogeneous electron gas.Phys Rev,1964,136(3B):B864-B871
    [54]Kohn W,Sham L J.Self-consistent equations Including exchange and correlation effects.Phys Rev,1965,140(4A):1133-1138
    [55]Kohn W.Nobel lecture:Electronic structure of matter-wave functions and density functionals.Rev Mod Phys,1999,71(5):1253-1266
    [56]Slater J C.A simplification of the hartree-fock method.Phys Rev,1951,81(3):385-390
    [57]Capaz R B,Caldas M J.Density-functional and plane-wave approach to structural properties of poly(p-phenylene) and poly(p-phenylene vinylene).Journal of Molecular Structure(Theochem),1999,464:31-38
    [58]Jones R O,Gunnarsson O.The density functional formalism,its applications and prospects. Rev Mod Phys,1989,61(3):689-746
    [59]Yu-Min,Efthimios Kaxiras.Use of the generalized gradient approximation in pseudopotential calculations of solids.Phys Rev B,1995,51(15):9521-9525
    [60]Langreth C,Perdew J P.Analysis of the gradient approximation and a generalization that works.Phys Rev B,1980,21(12):5469-5493
    [61]Perdew J P,Burke K.Generalized gradient approximation made simple.Phys Rev Lett, 1996,77(18):3865-3868
    [62]Lee C,Yang W,Robert GDevelopment of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys Rev B,1988,37(2):785-789
    [63]Wu Z,Cohen R E,Singh D J.Comparing the weighted density approximation with the LDA and GGA for ground-state properties of ferroelectric perovskites.Phys Rev B,2004,70(10):104-112
    [64]Troullier N,Martins J L.Efficient pseudopotentials for plane-wave calculations.Physical Review B,1991,43(3):1993-2006
    [65]Kresse G,Furthmuller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Physical Review B,1996,54(16):11169-11186
    [66]闫万珺,谢泉,朱林山等.固体能带结构计算方法.贵州大学学报(自然科学版),2006,23(1):68-72
    [67]Reis C L,Pacheco J M,Jose Luis Martins.First-principles norm-conserving pseudopotential with explicit incorporation of semicore states.Physical Review B,2003,68(15):155111
    [68]Hamann D R,Schluter M,Chiang C.Norm-Conserving Pseudopotentials.Phys Rev Lett,1979,43(20):1494-1497
    [69]David Vanderbilt.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys Rev B,1990,43(11):7892-7895
    [70]Li Zhen-Yu,Yang Jin-Long.Properties of some novel materials from first principles. Journal of the Graduate School of the Chinese Academy of Sciences,2009,26(3):426-431
    [71]Hasnip P J,Pickard C J.Electronic energy minimization with ultrasoft pseudopotentials. Computer Physics Communications,2006,174(1):24-29
    [72]Harbottle J E,Fisher S B.Copper Sulphide Cu1.8S(Digenite Ⅰ) precipitation in mild steel.Nature,1982,299(9):139-140
    [73]Liu Z Z,Kobayashi Y,Nagai K,etal.Morphology Control of Copper Sulfide in Strip Casting of Low Carbon Steel.ISIJ International,2006,46(5):744-753
    [74]Yamamoto K I,Shibata H,Mizoguchi S.Precipitation behavior of copper,tin and manganese sulfide at high temperature in Fe-10%Cu-0.5%Sn alloys.ISIJ International,2006,46(1):82-88
    [75]李岩,宋波,毛璟红等.残余元素铜在中碳钢中的析出规律.中国科技论文在线,2008,3(11):849-852
    [76]Yamamoto K,Kashida S.X-Ray Study of the Average Structures of Cu2Se and Cu1.8S in the Room Temperature and the High Temperature Phases.Journal of Solid State Chemistry,1991,93(1):202-211
    [77]Gotsis H J,Barnes A C,Strange P.Experimental and theoretical investigation of the crystal structure of CuS.Journal of Physics:Condensed Matter,1992,4(50):10461-10468
    [78]Burgers M J,Wuensch B J.Distribution of atoms in high chalcocite,Cu2S.Science,Washington D.C,1963,141(3577):276-277
    [79]Kashida S,Shimosaka W,Mori M,etal.Valence band photoemission study of the copper chalcogenide compounds,Cu2S,Cu2Se and Cu2Te.Journal of Physics and Chemistry of Solids,2003,64(12):2357-2363
    [80]Monkhorst H J,Pack J D.Special points for Brillouin Zone integrations.Phys Rev B,1976,13(12):5188-5192
    [81]Hammer B,Hansen L B,Nφrskov J K.Improved adsorption energetics within density-functionaltheory using revised Perdew-Burke-Ernzerhof functionals.Phys Rev B,1999,59(11):7413-7421
    [82]Konev V P,Kudina V A,Krushatina N A.X-Ray Investigation of the mutual solubility of the products of the reactions of copper with sulfur and selenium (The system Cu1.8S-Cu1.8Se). Protection of Metals,Translated From Zashchita Metallov,1973,9:267-268
    [83]Cava R J,Reidinger F, Wuensch B J.Mobile ion distribution and anharmonic thermal motion in fast ion conducting Cu2S.Solid State Ionics,1981,5:501-504
    [84]Sadanaga R,Ohmasa M,Morimoto N. On the statistical distribution of copper ions in the structure of b-Chalcocite.Mineralogical Journal,Japan,1965,4:275-290
    [85]Fjellvag H,Gronvold F,Stolen S,etal.Low-temperature structural distortion in CuS. Zeitschrift Fuer Kristallographie,1988,184:111-121
    [86]Evans H T J,Konnert J A.Crystal structure refinement of covellite.American Mineralogiste,1976,61:996-1000
    [87]Peng J Z,Wang Y F,Gray M F.First-principles study of structural stabilities and electronic properties of Mg-Nd intermetallic compounds.Physica B:Condensed Matter,2008,403(13-16):2344-2348
    [88]Shi Y J,Du Y L,Chen Qetal.First principle study on phase stability and electronic structure of YCu.Physics Letters A,2007,368(6):495-498
    [89]Lukashev P,Lambrecht WRL,etal.Electronic and crystal structure of Cu2-xS:Full-potential electronic structure calculations.Phys Rev B,2007,76(19):14
    [90]Takeo S,Katsuyuki M,Hiromichi O,etal.Atomic and electronic structures of Cu/a-Al2O3 interfaces prepared by pulsed-laser deposition. Science and Technology of Advanced Materials,2003,4:575-584
    [91]Wilson J I B, Woods J.Photovoltaic properties of single-crystal CdS-Cu2S cells. Journal of Physics D:Applied Physics,1972,5(9):1700-1711
    [92]Shein I R,Shein K I,Ivanovskii A L.First-principles study on the structural,cohesive and electronic properties of rhombohedral Mo2B5 as compared with hexagonal MoB2.Physica B,2007,387(1-2):184-189
    [93]Zhou D W,Peng P,Liu J S.Electronic structure and stability of Mg-Ce Intermetallic compounds from first-principles calculations Journal of Alloys and Compounds,2007,428(1-2):316-321
    [94]Young Hoon Yeom,Seong Hwan Song, Yang Kim.The crystal structure of sulfur sorption complex of the dehydrated partially Co2+exchanged zeolite A.Bull Korean Chem.Soc,1995,16(9):823-826
    [95]Thierry Leininger,Florent Xavier Gadea.Ab initio calculations for electron attachment to Cl2.Mol Phys,2000,33:735-744
    [96]Delley B.An all-electron numerical method for solving the local density functional for polyatomic molecules.Chem Phys,1990,92:508
    [97]Xiao B,Xing J D,Ding S F,etal.Stability,electronic and mechanical properties of Fe2B.Physica B,2008,403(10-11):1723-1730
    [98]Chakrabarti D J.Laughlin D E.The Cu-S(Copper-Sulefur) System.Bulletin of Alloy Phase Diagrams,1983,4(3):254-271
    [99]Blachnik R,MUller A.The formation of Cu2S from the elements I.Copper used in form of powders.Thermochimica Acta,2000,361:31-52
    [100]Grφnvold F.Thermodynamics of copper sulfides I.Heat capacity and thermodynamic properties of copper(I) sulfide,Cu2S,from 5 to 950 K.J Chem Thermodynamics,1987,19:1183-1198
    [101]Leitner J,Chuchvalec P,Abrman P,etal.Estimation of heat capacities of solid mixed oxides.Thermochimica Acta,2003,395(1-2):27-46
    [102]Huang G S,Xu Z H.Thermochemistry of inorganic compounds:Part2.Estimation of heat capacities of AxBy-type solids.Thermochimica Acta,1989,145(20):363-366
    [103]Leitner J,Svoboda P,etal.Application of Neumann Kopp rule for the estimation of heat capacity of mixed oxides.Thermochimica Acta,2010,497(1-2):7-13
    [104]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社,2002
    [105]徐祖耀.材料热力学(第二版).北京:科学出版社,2001
    [106](土耳其)伊赫桑·巴伦主编,程乃良等译.纯物质热化学数据手册.北京:科学出版社,2003
    [107]Shigenari H,Takeshi S,Kazuhiko H,etal.The effect of S and Mn on the high-temperature oxidation and scale spallation behavior of low-carbon steels.ISIJ,2009,49(12):1938-1944
    [108]雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700