用户名: 密码: 验证码:
异步轧制取向硅钢晶粒长大过程中的再结晶织构演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅钢是广泛应用于电力、电子、军工等领域的重要软磁材料。冷轧和退火是取向硅钢板材制造流程中组织结构发生重大变化的两个关键工序。探索可有效调控硅钢冷轧和再结晶织构的新方法,有利于建立自主知识产权的高品质硅钢先进制造技术。
     本文将异步轧制引入取向硅钢的制备过程,借助宏微观织构分析方法考察了轧制速比(1.0、1.125、1.19)对0.30mm厚取向硅钢薄板冷轧及再结晶织构的影响。研究结果表明:
     1、同步轧制和异步轧制方式下,取向硅钢薄板的冷轧织构均主要由以{001}<110>为强点的α织构及γ织构组成。异步轧制对快辊侧厚度层和中间层冷轧织构的影响幅度较大,降低α和γ中{111}<110>组分的强度,提高{111}<112>组分强度;对慢辊侧厚度层的影响幅度相对较小,倾向于提高α织构。整体而言,异步轧制倾向提高{111}<112>而降低{111}<110>强度,减弱α织构,该效应随速比增大而增强。
     2、不同轧制工艺下取向硅钢初次再结晶织构均由η{100}、{111}<112>及α等组分构成。随退火温度升高及时间延长,同步轧制薄板η强度略有降低,而异步轧制薄板η强度则有所提高;同步轧制薄板{111}<112>强度稍许提高,异步轧制薄板{111}<112>强度基本不变;同步和异步轧制薄板的{100}及α基本保持稳定。
     3、异步轧制影响主要再结晶织构组分的强度及其沿层厚的分布规律:
     (1)η织构组分—同步和异步轧制方式下,中间层强度均最低;异步轧制薄板慢辊侧高于快辊侧,而同步轧制薄板则是表层高于1/4层;异步轧制总体上提高η组分含量;异步轧制的作用主要体现在剪切应变对冷轧Y特别是{111}<112>组分的影响,其次剪切应变过大不利于η织构。
     (2){100}织构组分—异步轧制对{100}<011>组分的影响体现在其对冷轧{100}<011>组分的改变,对{100}<001>组分的影响与η组分相似;总体而言,1.125速比异步轧制倾向增加{100}。
     (3){111}<112>织构组分—异步轧制通过减少冷轧α和γ,使快辊侧及中间层的再结晶{111}<112>组分降低,进而总体上减小<111}<112>组分。
     (4)α织构组分—异步轧制使快辊侧及中间层再结晶α强度减弱、慢辊侧增强,总体上影响很小
     4、微观织构分析表明:异步轧制通过降低形核率减少再结晶{111}<112>组分;异步轧制通过同时提高形核率和长大速率(空间)强化再结晶η织构组分;{100}晶粒长大速率(空间)随速比增大而降低,但异步轧制稍许提高形核率,使1.125速比下的{100}组分较强;异步轧制由于降低长大速率(空间)而提高形核率,使其对再结晶α织构呈较弱的影响。
Silicon steels are important soft magnetic materials widely used in electric, electronic and military industries. Annealing and cold-rolled processes are the two key processes during which the significant change of microstructure takes place. Searching for the new method to efficiently control cold rolling and recrystallization texture can promote to establish the advanced technologies with independent intellectual property rights for high quality silicon steel production.
     In this thesis, asymmetric rolling was introduced to investigate the effects of speed ratio on cold rolling and recrystallization texture of grain-oriented silicon steel sheets by macro-and microtexture analysis.
     The obtained results are as follows:
     1. The symmetric and asymmetric rolling textures are mainly made up ofαandγcomponents. Asymmetric rolling has a larger impact on center layer and fast roll side layers with decreased{111}<110> and increased{111}<112>, while it has a smaller impact on slow roll side layers with the enhancedα. As a whole, asymmetric rolling shows a more obvious tendency to increase{111}<112>, and reduce{111}<110> andαas the speed ratio is raised.
     2. Under different rolling process, the first recrystallization textures are all composed ofη, {100},{111}<112> andαcomponents. As the recrystallization proceeds, the intensity ofηdecreases slightly in the symmetrically rolled sheet while increases in the asymmetrically rolled sheet;{111}<112> is weakened and enhanced in the symmetrically and asymmetrically rolled sheet respectively;{100} andαcomponents remain almost constant both in the symmetrically and asymmetrically rolled sheets.
     3. Asymmetric rolling has some impacts on the intensity and the distribution through thickness of recrystallization texture components.
     (1)ηtexture component. The lowest intensity appears at center layer under both symmetric and asymmetric rolling; the intensity of the slow roll side is higher than that of the fast roll side in the asymmetrically rolled sheet, while the intensity of the surface is higher than that of the 1/4 layer in the symmetrically rolled sheet. Generally, asymmetric rolling increasesη. The effect of asymmetric rolling stems mainly from the change of the cold-rolled y especially (111) <112> component due to the induced through-thickness shear strain, but two large shear strain seems not benefit forηcomponent.
     (2){100} texture component. Asymmetric rolling affects recrystallization{100}<011> component through rolling{100}<011>, and its effect on{100}<001> component is similar to theηcomponent. Asymmetric rolling tends to lower the{100} component on the whole.
     (3){111}<112> texture component. Asymmetric rolling reduces recrystallization{111}<112> component of center layer and fast roll side layers by weakening cold rolling a and y, resulting in the decrease of recrystallization{111}<112> component generally.
     (4) a texture component. Asymmetric rolling reduces the recrystallization a of the center layer and fast roll side layers while increases it in the slow roll side, so that an overall slight effect on a occurs.
     4. Accoring to microtexture analysis, asymmetric rolling reduces recrystallization {111}<112> through lowering nucleation rate, and enhancesηby increasing the nucleation rate and growth rate (space). The asymmetric rolling of 1.125 speed ratio increase{100} component by the increase in nucleation rate in spite of the deceasing growth rate (space) with the increase of speed ratio. By means of lowering growth rate (space) and increasing nucleation rate, asymmetric rolling affects the recrystallization a texture very slightly.
引文
[1]陈志浪.硅钢坯料轧制工艺中的应力场研究[D],杭州:浙江大学,2006
    [2]Haratani T, Hutchinson W B. Contribution of Shear Banding to Origin of Goss Texture in Silicon Iron [J], Metal Science,1984,18:57-65
    [3]方献军.硅钢温度场与应力场研究[D],杭州:浙江大学,2006
    [4]何忠治.电工钢[M],北京:冶金工业出版社,1996,8
    [5]Assmus F, Boll R, Gazu D et al.具有立方织构的硅钢片[J],钢铁译丛,1958,18(6):41
    [6]Quidort D, Brechet Y J M. A Model of Isothermal and Non Isothermal Transformation Kinetics of Bainite in 0.5% C Steel [J], ISIJ International,2002,42(9):1010-1017
    [7]蔡正,王国栋,刘相华.热轧带钢温度场的数值模拟[[J],金属成形工艺,1998,16(5):39-42
    [8]Kopp R, Karhausen R, Souza M M. Numerical Simulation Method for Designing Thermo Mechanical Treatment, Illustrated by Bar Rolling [J], Scandinavian J of Metallurgy,1991,20(6):351-363
    [9]崔文暄,李文卿,王有铭,韦光等.低碳钢控制轧制中的组织与性能[[J],北京钢铁学院学报,1980,(4):47-56
    [10]许云波,王国栋,刘相华.奥氏体低温变形相变Fe晶粒尺寸的预测模型[[J],金属学报,2002,38(2):123-126
    [11]孙卫华,王国栋,吴国良.带钢热轧过程中轧件横断面上温度场的解析[[J],山东冶金,1994,(4):30-35
    [12]刘靖,鹿守理.低碳钢组织与力学性能的关系[[J],北京科技大学学报,2002,24(2):208-210
    [13]卓卫东.应用弹塑性力学[M],北京:科学出版社,2005
    [14]Tsuya N, Arai K I. Magnetostriction of ribbon form amorphous and crystalline ferromagnetic alloys [J],1979,50(3):1658-1663
    [15]石川腾.超级E铁芯制造设备及其产品的性能[J],武钢技术,1995,(6):44-49
    [16]Arai K I, Shiyama K. Rolled texture and magnetic properties of 3% silicon steel [J], J. Appl. Phys,1988,64:5352-5354
    [17]Arai K I, Ishiyama K, Mogi H. Iron loss of tertiary recrystallized silicon steel [J], IEEE Tran. Mag,1989,25:3949-3954
    [18]Arai K I, Ishiyama K, Mogi H. Dynamic domain wall movement of surface scratched silicon steel [J], IEEE Tran. Mag,1990,26:1966-1968
    [19]王良芳.我国电工钢生产现状及发展建议[J],中国冶金,2004,(7):16-22
    [20]朱泉,潘大炜.板带异步轧制的理论与实践[M],沈阳:东北大学,1984
    [21]齐克敏,贾广凤,栗守维,朱泉.异步轧制极薄带材技术的新进展及应用前景[J],辽宁冶金,1994,5:36-42
    [22]齐克敏,异步恒.延伸轧制的试验及理论研究[D],沈阳:东北工学院:1986
    [23]朱泉.极薄带材鉴定会资料[M],沈阳:东北工学院:1981
    [24]马东清.异步轧制对金属组织和性能的影响及其力能参数的研究[D],北京:北京钢铁研究总院,1981
    [25]Liu G., Wang F, Zuo L, Qi K M, Liang Z D. Effect of cross shear rolling on textures and magnetic properties of grain oriented silicon steel[J], Scripta Mater.,1997,37(12): 1877-1881
    [26]齐克敏,李壬龙,高秀华,邱春林.异步轧制取向硅钢薄带的三次再结晶[J],钢铁,2001,36:58-61
    [27]赵骧.关于单向异步轧制黄铜织构的研究[D],沈阳:东北工学院,1987
    [28]方淑芳,梁志德.异步轧制对08Al深冲钢板织构和性能的影响[D],沈阳:东北工学院,1988
    [29]方淑芳,梁志德.异步轧制08Al钢板织构研究[J],钢铁,1990,25(1):34-37
    [30]刘刚,齐克敏等.异步轧制取向硅钢的织构形成与转变机理.钢铁研究学报,1999,11(5):30-33
    [31]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002,57-63
    [32]Doherty R D, Hughes D A, Humphreys F J et al. Current issues in recrystallization:a review [J], Mater. Sci. Eng. A.,1997,238:219-274
    [33]Humphreys F J, Matherly M. Recrystallization and related annealing phenomena [M], New York:Elsevier Science Ltd. Publications,1995,173-178
    [34]Ushioda K, Hutchinson W B. Role of Shear Bands in Annealing Texture Formation in 3%Si-Fe (111)[11-2] Single Crystals[J], ISIJ International,1989,29(10):862-867
    [35]Barnett M R, Kestens L. Formation of {111}<110> and {111}<112> textures in cold rolled and annealed IF sheet steel [J], ISIJ Inter.,1999,39(9):923-929
    [36]Vanderschueren D, Yoshinaga N, Koyama K. Recrystallization of Ti IF steel investigated with electron back-scattering pattern (EBSP) [J], ISIJ Inter.,1996,36:1046-1054
    [37]Hashimoto N, Yoshinaga N, Senuma T. Texture evolution of IF steel due to recrystallization [J], ISIJ Inter.,1998,38:617-624.
    [38]Samajdar I, Cicale S. Primary Recrystallization in a Grain Oriented Silicon Steel:On the Origin of Goss {110}<001>Grains [J], Scripta Materialia,1998,39(8):1083-1088
    [39]Park J T, Szpunar J A. Evolution of Recrystallization Texture in Nonoriented Electrical Steels [J], Acta Mater.,2003,51:3037-3051
    [40]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994
    [41]Kubota T, Fujikura M. Recent Progress and Future Trend on Grain-Oriented Silicon Steel [J], Journal of Magnetism and Magnetic Materials,2000,215-216:69-73
    [42]Chang S K. Texture Change from Primary to Secondary Recrystallization by Hot-Band Normalizing in Grain-Oriented Silicon Steels [J], Materials Science and Engineering A, 2007,452-453:93-98
    [43]Hatherly M, Hutchinson W B. An Introduction to Texture in Metals [C]. London: Chameleon Press,1979
    [44]Lucke K, Holscher M. Rolling and Recrystallization Texture of bcc Steels [J]. Texture and Microstructures,1991,14-18:586-596
    [45]Savoie J, Lucke K. Influence of Texture and Microstructure Inhomogeneities on Origin of Goss Texture in Silicon Steel [J]. Texture and Microstructures,1991,14-18:903-908
    [46]Raabe D, Lucke K. Rolling and Annealing Texture of bcc Metals [J]. Material Science Forum,1994,157-162:597-610
    [47]Mishra S, Darmann C. On the Development of the Goss Texture in Iron-3% Silicon [J], Acta metal,1984,32(12):2185-2201
    [48]Etter A L, Baudin T. Influence of the Goss Grain Environment During Secondary Recrystallisztion of Conventional Grain Oriented Fe-3%Si Steel [J], Scripta Materialia, 2002,47:725-730
    [49]Mishra S, Darmann C, Lucke K. On the Development of the Goss Texture in Iron-3% Silicon [J]. Acta Met.,1984,32(12):2185-2201
    [50]何忠治,孙学范,帅仁杰.不同抑制剂的取向硅钢再结晶行为.钢铁研究总院学报,1985,5(3),297-305
    [51]钱玉.近终形技术的开发现状-双辊薄带连铸工艺在高硅电工钢中的应用[J].上海钢研,2002,(2):33-39
    [52]赵沛.合金钢冶炼[M],北京:冶金工业出版社,1992,47-75
    [53]邹冰梅,阮晓丰.双辊薄带连铸工艺生产硅钢技术[J],钢铁研究,2003,(5):59-63
    [54]梁志德,徐家桢,王福.织构材料的三维取向分析术-ODF[M],沈阳:东北工学院,1986
    [55]毛为民,张新明.晶体材料织构定量分析[M],北京,冶金工业出版社,1995
    [56]Roe R J. Description of Crystallite Orientation in Polycrystalline Materials General Solution to Pole Figure Inversion [J], J. Appl. Phys.,1965,36:2024-2027
    [57]Bunge H J. Zur karstellung allgemeiner texturen von hans-joachim bunge in berlin [J], Z Metallkde [J],1965,56:872-877
    [58]杨平.电子背散射衍射技术及其应用[M],北京:冶金工业出版社,2007,1-3
    [59]Samajdar I, Verlinden B, Van Houtte P. Development of Recrystallization Texture in IF-Steel:an Effort to Explain Developments in Global Texture from Microtextural Studies [J], Acta Mater.,1998,46(8):2751-2763
    [60]Rajmohan N, Hayakawa Y, Szpunar J A, Root J H. Neutron Diffraction Method for Stored Energy Measurement in Interstitial Free Steel [J], Acta Mater.,1997,45(6): 2485-2493
    [61]Ray R K, Jonas J J, Hook R E. Cold Rolling and Annealing Textures in Low and Etra Low Carbon Steels [J], Int. Mater. Rev.,1994,39:129-172
    [62]Emren F, Lucke K. Investigation of the Development of the Recrystallization Textures in Deep Drawing Steels by ODF Analysis [J], Acta Metall.,1986,34:2105-2117
    [63]Every R L, Hatherly M. Oriented Nucleation in Low Carbon Steels [J], Texture,1974,4: 183-194
    [64]Dillamore I L, Smith C J E, Watson T W. Oriented Nucleation in the Formation of Annealing Textures in Iron [J], Met. Sci. J.,1967,1:49-54
    [65]Matsuo M, Hayami S, Nagashima S. Study of Recrystallisation Texture Formation in Cold Rolled Iron Sheets with X-ray Diffraction Techniques [J], Advances in X-ray analysis,1971,14:214-230
    [66]Ushioda K, Hutchinson B. Role of Shear Bands in Annealing Texture Formation in 3% Si-Fe (111) Single Crystals [J], ISIJ Inter.,1989,29:862-867
    [67]Haratani T, Hutchinson B, Dillamore I L, Bate P. The Contribution of Shear Banding to the Origin of Goss Texture in Silicon Iron [J], Metal Sci.,1984,18:57-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700