用户名: 密码: 验证码:
变形方式对取向硅钢初次再结晶织构形成规律的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅钢主要用作各种电机和变压器的铁芯,是电力、电子和军事工业中不可缺少的软磁合金。再结晶织构是决定取向硅钢磁性能的关键因素之一。因此,探索有效调控取向硅钢织构的新方法,可为进一步改善磁性能拓展更大的空间。
     本文将异步轧制引入取向硅钢薄板的制备过程,采用不同速比(1.0、1.125、1.19)将工业热轧板轧至0.30mm厚。利用X-射线衍射技术与背散射电子衍射技术,研究冷变形和初次再结晶过程中的宏微观织构特征及形成规律。
     同步轧制及异步轧制方式下,取向硅钢薄板的冷轧织构主要由α和γ纤维织构组成,峰值分别出现在{001}<110>和{111}<110>。异步轧制对冷轧织构强度的影响依赖于层厚和速比:降低快辊侧各厚度层及中间层的织构强度,提高慢辊侧的织构强度;总体上降低冷轧织构强度,影响程度随速比增加而增大。剪切带与轧面大约成±20°和±35°,形成剪切带的晶粒的面积分数随速比增大而提高。
     初次再结晶过程中,各种工艺冷轧薄板的织构主要由α、η、γ以及{100}组分组成。异步轧制方式未显著改变织构的演变特征:α、{100}面织构强度随温度升高而降低;η织构随温度升高逐渐强化;{111}<112>和{111}<110>组分分别随温度升高呈增强和减弱趋势,γ织构取向密度峰随之移至{111}<112>;随着冷轧γ织构强度和剪切带密度的提高,γ和η织构强度增大。但与同步轧制方式相比,异步轧制提高η和γ组分强度,促进{111}<112>成为γ织构强点。
     在再结晶初期,γ取向的再结晶晶核优先在γ取向形变带内形核,也易于在α和γ取向的形变带之间的界面上形核。
Grain-oriented silicon steel sheets are indispensable soft magnetic materials in electric, electronic and military industries, as commonly used in hydroelectric power plant generators and electric motors. The magnetic properties of grain-oriented silicon steels are closely related to recrystallization texture. Thus, the exploration of a new method for more effective texture control can provide a new approach to optimize the magnetic properties of grain-oriented silicon steels.
     In present thesis, asymmetric rolling was introduced into cold rolling process of grain-oriented silicon steel sheets. The 0.3mm thick cold rolled sheets were prepared with speed ratios of 1,1.125 and 1.19 asymmetric rolling in all passes. Afterwards, vacuum annealing was carried out at 600,620,640,835℃for 5 minites. The textures after cold rolling and during primary recrystallization process were investigated by Electron Back Scattered Diffraction (EBSD) and X-Ray diffraction (XRD) methods.
     Deformation textures produced by symmetric and asymmetric rolling are both composed of a and y fibers, with the intensity peaks at{001}<110> and{111}<110>, respectively. Asymmetric rolling decreases the intensities of deformation textures in the middle and fast roller side layers, but increases in the slow roller side layers. Asymmetric rolling generally weakens the deformation textures, and this effect is more obvious with the increasing speed ratio. Shear bands are inclined to the rolling plane at approximate angles of±20°and±35°, the area fraction of the grains with shear bands increases with speed ratio.
     The textures of early stage primary recrystallization in the sheets by different rolling methods consist ofα,η,γand{100} fibers. Asymmetric rolling does not remarkably change the development characteristics of textures as primary recrystallization proceeds:a and{100} fibers are continuously weakened whileηfiber is strengthened; {111}<112> component is increased but the{111}<110> component are decreased, leading to the intensity peak of y fiber towards{111}<112>; as the intensity of cold rolled y fiber and density of shear band increase, the intensities of y andηfibers are strengthened. Compared with symmetric rolling, asymmetric rolling can strengthenηand y fibers, and promote the{111}<112> to be the peak of y fiber.
     At the early stage of recrystallization, the nuclei of y orientation preferentially form within the deformed y bands as well as the boundaries between deformed a andγbands.
引文
1.何忠治.电工钢[M],北京:冶金工业出版社,1996,8.
    2. Taguchi S, Yamamoto T, Sakakura A. New grain-oriented silicon steel with high permeability orientcore Hi-B [J], IEEE Trans Magn,1974,10:123-127.
    3. Yamamoto T, Taguchi S, Sakakura A, et al. Magnetic properties of grain-oriented silicon steel with high permeability orientcore Hi-B [J], IEEE Trans Magn,1972, MAG-8(3): 677-681.
    4. Iuchi T, Yamaguchi S, Ichiyama T, et al. Laser processing for reducing core loss of grain oriented silicon steel [J], J Appl Phys,1982,53:2410-2412.
    5. Rauch G C, Krause R F. Effect of beam time on surface changes during laser scribing [J], J Appl Phys,1985,57:4209-4211.
    6. Krause R F, Rauch G C, Kasner W H, et al. Effect of laser scribing on the magnetic properties and domain structure of high-permeability 3% Si-Fe [J], J Appl Phy,1984,55: 2121-2123.
    7. Fukuda B, Sato K, Sugiyama T, et al. Loss reduction in grain oriented Si steel sheets by new domain refining technique [J], ASM Hard and Soft Magnetic Material Symposium, 1987,8:8710-008.
    8. Sato K, Honda A, Nakano K, et al. Development of domain refined grain-oriented silicon steel by grooving [J], J Appl Phys,1993,73:6609-6611.
    9.李贺杰,韩静涛,皮华春,等.取向硅钢的研究与发展[J],唐山学院学报,2007,6(20):26.
    10.何忠治.电工钢的最近发展[J],金属功能材料,1997,4(6):241-247.
    11.朱泉,潘大炜.板带异步轧制的理论与实践[M],1984.
    12.彭大暑.金属塑性加工原理[M],长沙:中南大学出版社,2004:82-83.
    13.马东清.异步轧制对金属组织和性能的影响及其力能参数的研究[D],北京:北京钢铁研究总院,1981.
    14. Liu G, Wang F, Zuo L, et al. Effect of cross shear rolling on textures and magnetic properties of grain oriented silicon steel [J], Scripta Mater,1997,37(12):1877-1881.
    15. Liu G, Zuo L, Qi K M, et al. Through thickness variation of cross shearrolling texture in grain oriented silicon steel [J], J Mater Sci Tech,2002,18:519-521.
    16.刘刚,齐克敏,王福,等.异步轧制速比对3%硅钢织构转变的影响[J],金属学报, 1998,34:400-405.
    17. Takashima M, Komatsubara M, Morito N.{001}<210> texture development by two-stage cold rolling method in non-oriented electrical steel [J], ISIJ Inter,1997,37(12): 1263-1268.
    18. Waeckerle T, Cornut B. A metallurgical and magnetic study of{100} textured soft magnetic sheets [J], J Magn Magn Mater,1996,160:125-126.
    19.赵骧.退火时间对单向异步轧制70-30黄铜再结晶织构的研究[J],材料研究学报,1995,9(1):21-24.
    20.方淑芳.08Al钢板异步退火织构的研究[J],物理测试,1989,3:35-37.
    21.方淑芳,梁志德.异步轧制08Al钢板织构研究[J],钢铁,1990,25(1):34-37.
    22. Haratani T. Contribution of shear bands banding to origin of Goss texture in silicon iron [J], Met Sci,1984,18:57-65.
    23.Kohsaku U. Role of shear bands in annealing texture in3%Si-Fe (111) [112] single crystals [J], ISIJ int,1989,129(10):862-867.
    24. Barnett M R. Role of In-grain Recrystallzation Shear Bands Textures in the Warm Nucleation of<111>//ND Rolled Steel [J], ISIJ International,1998,38(1):78-85.
    25. Samajdar I, Cicale S, Verlinden B, et al. Primary Recrystallization in grain oriented silicon steel:on the origin of goss{110}<001> grains [J], Scripta Materialia,1998,39(8): 1083-1088.
    26. Park J T, Szpunar J A. Evolution of recrystallization texture in nonoriented electrical steels [J], Acta Mater,2003,51:3037-3051.
    27.沈凯, Duggan B J. 南京航空航天大学学报[J],2005,37:571-575.
    28. Zhang F, Vincent G, Sha Y H. Experimental and simulation textures in an asymmetrically rolled zinc alloy sheet [J], Scripta Materialia,2004,50:1011-1015.
    29.崔忠圻,刘北兴.金属学与热处理原理[M],哈尔滨工业大学出版社.1998:162-167.
    30.毛卫民,张新民.晶体材料织构定量分析[M],北京:冶金工业出版社,1995:61-89.
    31. Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization:a review [J], Mater Sci Eng A,1997,238:219-274.
    32. Humphreys F J, Matherly M. Recrystallization and related annealing phenomena [M], New York:Elsevier Science Ltd Publications,1995,173-178.
    33. Raabe D, Lucke K. Rolling and annealing textures Of Bcc metals [J], Mater Sci Forum, 1994,597-610.
    34.毛卫民.金属材料的晶体学织构与各向异性[M],北京:科学出版社,2002,57-63.
    35. Adams B L, Dingley D J, Kunze K, et al. Orientation imaging microscopy new possibilities for microstructural investigations using automated BKD analysis [J], Mater Sci Forum,1994,157-162:31-42.
    36.梁志德,徐家桢,王福.织构材料的三维取向分析术—ODF分析[M],沈阳:东北工学院出版社,1986:93-99.
    37. Canova G R, Kocks U F, Stout M G. On the origin of shear bands in textured polycrystals [J], Scripta Metallurgica,1984,18,437.
    38.孟延军.轧钢基础知识[M],北京:冶金工业出版社,2005,229.
    39. Asbeck H O, Mecking H. Influence of friction and geometry of deformation on texture [J], Mater Sci Engng,1978,34,111-112.
    40. Truszkowski W, Krol J, Major B. Inhomogeneity of rolling texture in FCC metals [J], Metall Trans,1980,11A:749-758.
    41. Truszkowski W, Krol J, Major B. On penetration of shear texture into the rolled aluminum and copper [J], Metall Trans,1982,13A:665-669.
    42. Bauer R E, Mecking H, Lucke K. Textures of copper single crystals after rolling at room temperature [J], Mater Sci Eng,1977,27:163-180.
    43. Sakai T, Saito Y, Kato K. Recrystallization and. texture formation in high speed hot rolling of low carbon. Ferritic stainless steel [J], Trans ISIJ,1987,27:520-525.
    44. Sakai T, Saito Y, Matsuo M, et al. Inhomogeneous texture formation in high speed hot rolling of ferritic stainless steel [J], ISIJ Inter,1991,31:86-94.
    45. Um K K, Jeong H T, An J K, et al. Effect of initial sheet thickness on shear deformation in ferritic rolling of IF-steel sheets [J], ISIJ Inter,2000,40:58-64.
    46. Choi C H, Lee D N. Evolution of recrystallization texture from aluminum sheet cold rolled under unlubricated condition [J], Metall Mater Trans,1997,28A:2217-2222.
    47. Lee S H, Lee D N. Analysis of deformation textures of asymmetrically rolled steel sheets [J], Inter J Mech Sci,2001,43:1997-2015.
    48. Hutchinson W B. Recrystallization textures in iron resulting from nucleation at grain boundaries [J], Acta Metall,1989,37(4):1047-1056.
    49.赵骧,何长树,徐俊,左良.退火时间对IF深冲钢板再结晶织构的影响[J],东北大学学报(自然科学版),2006,27(12):1343-1346.
    50. Hutchinson W B. Recrystallization textures in iron resulting from nucleation at grain boundaries [J], Acta Metall,1989,37(4):1047-1056.
    51. Haratani T, Hutchinson W B, Dillamore I L, et al. Contribution of shear banding to origin of goss texture in silicon iron [J], Met Sci,1984,18:57-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700